|
Classes |
| class | WindowAnnoVidSet |
| class | WindowBackground |
| class | ConceptLearnClient |
| class | DataServer |
| class | FileServer |
| class | WindowImBrowse |
| class | WindowPlay |
| class | WindowShow |
| class | WindowShowImSet |
| class | WindowShowVidSet |
| class | WindowTrecResult |
| class | WindowTrecSearch |
| class | WindowVdiff |
| class | WindowVidBrowse |
Namespaces |
| namespace | IDash |
| namespace | Client |
| namespace | DataTransfer |
| namespace | DemoCamera2d |
| namespace | FileClient |
| namespace | Im |
| namespace | Repository |
| namespace | Src |
| namespace | Table |
| namespace | Util |
| namespace | Video |
| namespace | VidSet |
| namespace | MediaTable |
| namespace | VideoExcel |
| namespace | SDash |
| namespace | TagsLife |
| namespace | Videolympics |
Functions |
| Table::SimilarityTableSet * | LearnConceptFromAnnotations (CmdOptions &options, Matrix::DistributedAccess &da, String concept, String modelname, Table::AnnotationTable *annotations, Util::Database *db) |
| int | RunDistributedLearningEngine (CmdOptions &options) |
| int | mainActiveLearner (int argc, char **argv) |
| | ILOG_VAR_INIT (WindowAnnoVidSet, Application) |
| char | GetKeyBinding (std::string name, std::string dflt) |
| int | mainAnnoVidSet (int argc, char *argv[]) |
| int | mainBackground (int argc, char *argv[]) |
| | ILOG_VAR_INIT (ConceptLearnClient, Application) |
| int | mainConceptLearnClient (int argc, char *argv[]) |
| int | mainConstructCodebook (int argc, char *argv[]) |
| void | WriteResults (Util::PropertySet *properties, DataFactory *dataFactory, String concept, ParameterSearcher *searcher) |
| void | CrossValidate (Util::PropertySet *properties, Training::Factory *trainFactory, DataFactory *dataFactory) |
| int | mainCrossValidate (int argc, char **argv) |
| | ILOG_VAR_INIT (DataServer, Impala.Application) |
| int | mainServer (int argc, char *argv[]) |
| | ILOG_VAR_INIT (FileServer, Impala.Application) |
| int | mainFileServer (int argc, char *argv[]) |
| int | mainImBrowse (int argc, char *argv[]) |
| int | mainImSet (int argc, char *argv[]) |
| int | mainJobRunner (int argc, char *argv[]) |
| int | mainJobServer (int argc, char *argv[]) |
| int | mainPlay (int argc, char *argv[]) |
| bool | CheckParameteres (CmdOptions &options, RawDataSet *dataset, RawDataSet *dataset2, std::vector< Feature::FeatureDefinition > &featureDefs, std::vector< double > &weights, String resultname) |
| | This function loops over the command line arguments to find (weight,featureDef)-pairs.
|
| Feature::FeatureTable * | OpenFeatureTable (Feature::FeatureDefinition &featureDef, RawDataSet *dataset) |
| | opens feature table in MPI mode only node0 reads the table, then it is broadcasted
|
| void | GetPartialTask (int &partcount, int &row, int &column) |
| | This functions figures out which part of the table this process should process.
|
| void | CheckQuids (Feature::FeatureTable *f, RawDataSet *set, RawDataSet *set2, String resultname, int part, int partcount) |
| | This function does two things:
- store the quid table of the part of the matrix processed by this node
- so the whole table in case of single process
- if there are more than one feature table, check that the quids are consistent.
|
| Feature::FeatureTable * | GetPartial (Feature::FeatureTable *f, int partnumber, int partcount) |
| | Split table in subtables depending on this nodes id and the number of nodes if partcount == 1 the the full table is returned.
|
| Matrix::Mat * | ComputeMatrix (Feature::FeatureTable *devel, Feature::FeatureTable *test, String resultname, RawDataSet *set, RawDataSet *set2) |
| | Input one or two feature tables and out comes the kernel distance matrix.
|
| double | GetAverage (Matrix::Mat *distanceMatrix) |
| | the average is broadcasted over all nodes
|
| void | WriteInfoFile (int columns, int rows, int partcount, String filepathname, Util::Database *db) |
| void | WriteAverages (String filepathname, Util::Database *db, std::vector< double > averages) |
| void | LoadAverages (RawDataSet *set, String filepathname, std::vector< double > &averages) |
| void | WriteResult (String resultname, Util::Database *db, Matrix::Mat *accumulator) |
| int | mainPrecomputeKernelMatrix (CmdOptions &options) |
| Matrix::Mat * | CreateTestMat (int row, int column, int partCount, int totalSize) |
| void | CreateTestQuids (String resultname, Util::Database *db, int part, int partCount, int totalSize) |
| int | makeTestMatrix (CmdOptions &options) |
| int | mainShotSegmentation (int argc, char *argv[]) |
| | ILOG_VAR_INIT_TEMPL_1 (WindowShow, ArrayT, Application) |
| int | mainShow (int argc, char *argv[]) |
| | ILOG_VAR_INIT (WindowShowImSet, Application) |
| int | mainShowImSet (int argc, char *argv[]) |
| | ILOG_VAR_INIT (WindowShowVidSet, Application) |
| int | mainShowVidSet (int argc, char *argv[]) |
| int | TrainModel (Training::Factory *trainFactory, DataFactory *dataFactory, bool distKernel) |
| int | mainTrainModel (int argc, char **argv) |
| int | mainTrecResult (int argc, char *argv[]) |
| | ILOG_VAR_INIT (WindowTrecSearch, Application) |
| int | mainTrecSearch (int argc, char *argv[]) |
| int | mainVdiff (int argc, char *argv[]) |
| int | mainVidBrowse (int argc, char *argv[]) |
| int | mainVideoJobManager (int argc, char *argv[]) |
| const String | cSetName ("test.txt") |
| Core::VideoSet::VideoSet * | MakeVideoSet (String directory, Core::VideoSet::VideoSet *indexSrc) |
| | This version creates a dataset that uses the index of src (if src != 0) So it is a 'Fake' dataset in the sense that it doen't have to have a VideoData folder at all, as long as the original has.
|
| Core::VideoSet::VideoSet * | MakeVideoSet (String directory) |
| int | main (int argc, char **argv) |