

Motion-Augmented Self-Training for Video Recognition at Smaller Scale

Kirill Gavrilyuk, Mihir Jain, Ilia Karmanov, Cees G.M. Snoek

Goal

• Self-train a model that can be effectively fine-tuned on **small-scale** datasets with around 10k or even less videos

- Small-scale video datasets benefit more from motion than appearance, but the **flow computation** affects efficiency
- We strive to train a network using optical flow but avoid its computation during inference on small-scale video datasets

Standard pipeline

1. Pretraining on large labeled dataset

Kinetics

2. Fine-tuning on small labeled dataset

Shortcomings

• Requires large amount of **human annotated** videos to pre-train the model

• Treats different video representations (motion, appearance) mostly equally

Model

1. Training motion pseudo-label generator

Contributions

- **MotionFit:** A motion-augmented self-training procedure to transfer motion knowledge to the appearance model
- **Empirical study** to discover form of video pseudo-labels at smaller scale
- **Boosting** the performance on small-scale video datasets in comparison to the state-of-the-art methods

Source dataset

Kinetics-400: ~246k train videos, 50k validation videos

Target datasets

UCF101: 13k videos

HMDB51: 7k videos

Motion pseudo-label generator

		Clip length		Multi-clips (R)			
Dataset	Representation	32	64	1	2	3	4
UCF101	Appearance	59.4	60.3	58.9	57.0	59.1	58.4
	Motion	80.8	81.1	78.2	82.2	82.6	82.8
HMDB51	Appearance	20.2	20.4	20.1	20.9	19.1	18.9
	Motion	35.9	35.0	29.7	35.1	35.9	37.9

Training on motion representation is more effective.

Multi-clips helps even more than using larger temporal extent

MotionFit: temporal modeling

Temporal granularity							
Video	ActionBytes	TSN	Clip				
76.5	79.0	77.3	80.3				

Simple clip-level beats semantic partitions and video-level

MotionFit: knowledge transfer comparison

	Backbone	Frames	Resolution	Additional labels	UCF101	HMDB51
Random initialisation	R(2+1)D-18	16	112	_	58.9	22.0
MERS	R(2+1)D-18	16	112	-	78.3	42.1
MARS	R(2+1)D-18	16	112	—	82.2	48.7
STC	STC-ResNext	16	112	ImageNet	84.7	-
DistInit	R(2+1)D-18	32	112	ImageNet	85.7	54.9
Supervised	R(2+1)D-18	16	112	Kinetics-400	95.0	70.4
MotionFit (ours)	R(2+1)D-18	16	112	_	87.4	56.4

Our approach outperforms knowledge transfer methods even when they rely on additional labels

MotionFit: self-supervised comparison

		Backbone	Frames	Resolution	Modality	UCF101	HMDB51
Multi-modal	Sun et al.	S3D	16	112	V + T	79.5	44.6
	Asano et al.	R(2+1)D-18	30	112	V + A	83.1	47.1
	Alwassel et al.	R(2+1)D-18	32	224	V + A	86.8	52.6
	Xiao et al.	SlowFast	64	224	V + A	87.0	54.6
	Morgado et al.	R(2+1)D-18	32	224	V + A	87.5	60.8
	Patrick <i>et al</i> .	R(2+1)D-18	32	224	V + A	89.3	60.0
	Kim et al.	R3D-18	16	112	V	65.8	33.7
	Kong et al.	R3D-18	8	112	V	69.4	37.8
Vision-only	Han et al.	R-2D3D-34	25	224	V	75.7	35.7
	Jing et al.	R3D-18	64	112	V	76.6	47.0
	Zhuang et al.	SlowFast	16	112	V	77.0	46.5
	Han et al.	R-2D3D-18	25	224	V	78.1	41.2
	Benaim et al.	S3D-G	64	224	V	81.1	48.8
	Han <i>et al</i> .	S3D	32	128	V	87.9	54.6
	MotionFit (<i>ours</i>)	R(2+1)D-18	32	112	V	88.9	61.4
	MotionFit (ours)	S3D-G	64	224	V	90.1	50.6

Our approach outperforms most video-only methods being on par with multi-modal self-supervised methods

Retrieval examples

While our model may retrieve videos from different action classes, it still captures distinctive motion patterns like hand motion and human poses

Conclusion

- Motion representation can be successfully transferred to the appearance model via pseudo-labeling self-training on large unlabeled dataset
- Does not require costly optical flow computation during inference
- Well suited for deployment on small-scale video with compute budgets