SFTrack++: A Fast Learnable Spectral Segmentation Approach for Space-Time Consistent Tracking

Elena Burceanu eburceanu@bitdefender.com

University of Bucharest, Romania Tracking by taking advantage of the intrinsic object consistency over space and time

• Using SFSeg*, a fast 3D spectral segmentation method over the video's graph of pixels

Improving the 3D spectral formulation for segmentation

- Enable multiple inputs towards robustness
- Enable **learning**, by make the algorithm differentiable

Challenge the **rough bounding boxes** used for tracking

• Learn end-to-end, going through segmentation as an intermediate representation

Prior work on spectral segmentation*

- See the video as a volume of pixels
 - Interconnected in space and time
 - With an intrinsic graph structure

Object segmentation in video

- The strongest cluster in the volume
- Strongest cluster is given by the leading eigenvector

*Learning a Fast 3D Convolutional Approach to Spectral Object Segmentation in Space and Time, E. Burceanu, M. Leordeanu, 2020

Approach

Algorithm

Phase 1. Segmentation

- · use multiple trackers as input
- learn $NN_{feat2seg}$: RGB + tracking features or output \rightarrow segmentation mask

Phase 2. Segmentation

- · learn to combine multi-channels for spectral space-time consistency
- fine-tune all
- apply fast power iteration over a moving window of frames

Phase 3. Tracking

- learn $NN_{seg2box}$
- fine-tune end-to-end

Results

- For tracking, train only on GOT-10k and TrackingNet training sets (5 frames/video)
- Robust (low variance) state-of-the-art results on GOT-10k and TrackingNet
- UAV: datasets with a different data distribution (smaller objects, captured from drones)

	${\bf Method}$	Method OTB UAV NFS GOT-10k)k	TrackingNet					
		AUC	AUC	AUC	AO	SR_{50}	SR_{75}	Prec	$\operatorname{Prec}_{norm}$	AUC
Single Method	D3S	57.7	45.0	38.6	39.3	39.0	10.1	52.2	67.9	52.4
	SiamBAN	67.6	60.8	54.2	54.6	64.6	40.5	68.4	79.5	72.0
	ATOM-18	66.7	64.3	58.4	55.0	62.6	39.6	64.8	77.1	70.3
	SiamRPN++	65.0	65.0	50.0	51.7	61.5	32.5	69.3	80.0	73.0
	PrDimp-18	67.6	63.5	62.6	60.8	71.0	50.3	69.1	80.3	75.0
Ensemble	Basic (median)	66.6	60.8	55.5	54.7	63.9	31.6	69.0	80.0	73.9
	Neural Net	71.3	59.7	58.2	59.5	69.8	42.9	70.6	80.2	74.5
	$\mathbf{SFTrack}++$	70.3	61.2	62.4	62.0	73.3	47.8	71.9	81.9	76.1
	std	± 0.5	± 0.2	± 0.1	± 0.7	± 0.5	\pm 1.1	± 0.3	± 0.3	± 1.0

Ablations

- Remove pipeline components
- Input methods combinations
- Vary the number of spectral iterations

SFTrack++ variations	OTB	UAV	NFS	OTB+UAV+NFS
w/o Spectral Refinement (phase two) w/o $NN_{segm2bbox}$ (phase three)	71.6 65.5	$\begin{array}{c} 60.5\\ 57.4 \end{array}$		$\begin{array}{c} 64.0\\ 60.2 \end{array}$
Median (over 5 methods) as input Best method (PrDimp-18) as input Top 3 methods as input	$70.8 \\ 67.1 \\ 64.8$	$60.8 \\ 59.7 \\ 60.8$	$60.0 \\ 61.3 \\ 61.1$	63.7 62.5 62.1
2 spectral iterations 3 spectral iterations	70.3 68.0	$\begin{array}{c} 60.9\\ 61.0\end{array}$	$\begin{array}{c} 61.8\\ 60.1 \end{array}$	64.1 62.9
SFTrack ++ $(1 \text{ iter}, 5 \text{ methods})$	70.3	61.2	62.4	64.5

Qualitative results

SFTrack++ combines the input methods better

• even when there is a **high variance** among them.

SFTrack++ - Takeaway message

- Preserve the tracked object consistency over space and time
 - · Adapt 3D spectral filtering algorithm to
 - · combine multiple and powerful inputs
 - to allow an end-to-end learning pipeline

- Use segmentation as an intermediate representation for the tracking task
 - Improved performance
 - Robust solution

Thank you!

Code: <u>https://github.com/bit-ml/sftrackpp</u>

Elena Burceanu eburceanu@bitdefender.com If you have any **questions** or just want to reach out: <u>https://ilarele.github.io</u>

Bitdefender, Romania

University of Bucharest, Romania