
SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 1

Learning event representations
for temporal segmentation of image sequences

by dynamic graph embedding
Mariella Dimiccoli, Member, IEEE and Herwig Wendt, Senior Member, IEEE

Abstract—Recently, self-supervised learning has proved to be
effective to learn representations of events suitable for temporal
segmentation in image sequences, where events are understood
as sets of temporally adjacent images that are semantically
perceived as a whole. However, although this approach does not
require expensive manual annotations, it is data hungry and
suffers from domain adaptation problems. As an alternative,
in this work, we propose a novel approach for learning event
representations named Dynamic Graph Embedding (DGE). The
assumption underlying our model is that a sequence of images
can be represented by a graph that encodes both semantic and
temporal similarity. The key novelty of DGE is to learn jointly
the graph and its graph embedding. At its core, DGE works by
iterating over two steps: 1) updating the graph representing the
semantic and temporal similarity of the data based on the current
data representation, and 2) updating the data representation
to take into account the current data graph structure. The
main advantage of DGE over state-of-the-art self-supervised
approaches is that it does not require any training set, but
instead learns iteratively from the data itself a low-dimensional
embedding that reflects their temporal and semantic similarity.
Experimental results on two benchmark datasets of real image
sequences captured at regular time intervals demonstrate that
the proposed DGE leads to event representations effective for
temporal segmentation. In particular, it achieves robust temporal
segmentation on the EDUBSeg and EDUBSeg-Desc benchmark
datasets, outperforming the state of the art. Additional experi-
ments on two Human Motion Segmentation benchmark datasets
demonstrate the generalization capabilities of the proposed DGE.

Index Terms—clustering, event representations, geometric
learning, graph embedding, temporal context prediction, tem-
poral segmentation

I. INTRODUCTION

Temporal segmentation of videos and image sequences
has a long story of research since it is crucial not only to
video understanding but also to video browsing, indexing
and summarization [1]–[3]. With the proliferation of wearable
cameras in recent years, the field is facing new challenges.

Manuscript received August 10, 2019; revised June 19, 2020; October 30,
2020, December 4, 2020, December 8, 2020; accepted December 9, 2020.

M. Dimiccoli is with the Institut de Robòtica i Informàtica Industrial, CSIC-
UPC, Barcelona, Spain (mdimiccoli@iri.upc.edu).

H. Wendt is with the Institut de Recherche en Informatique de Toulouse,
CNRS, University of Toulouse, France (herwig.wendt@irit.fr).

This work was partially supported by the Spanish Ministry of Econ-
omy and Competitiveness and the European Regional Development Fund
(MINECO/ERDF, EU) through the program Ramon y Cajal and the national
Spanish projects PID2019-110977GA-I00, RED2018-102511-T and 2017
SGR 1785. We acknowledge the support of NVIDIA Corporation with the
donation of Titan Xp GPUs.

Fig. 1. Temporally adjacent frames in two events in first-person image
sequences.

Indeed, wearable cameras allow to capture, from a first-person
(egocentric) perspective, and “in the wild”, long unconstrained
videos (≈35fps) and image sequences (aka photostreams,
≈2fpm). Due to their low temporal resolution, the segmen-
tation of first-person image sequences is particularly challeng-
ing, and has received special attention from the community
[4]–[14]. Indeed, abrupt changes in appearance may arise even
between temporally adjacent frames within an event due to
sudden camera movements and the low frame rate, making it
difficult to distinguish them from event transitions. While for
a human observer it is relatively easy to segment egocentric
image sequences into discrete units, this poses serious diffi-
culties for automated temporal segmentation (see Figure 1 for
an illustration). In particular, classical spatio-temporal video
representations, that typically rely on motion information [15]–
[17], cannot be reliably computed on photostreams due to this
lack of temporal continuity [18].

Given the limited amount of annotated data, current state-
of-the-art approaches for the temporal segmentation of first-
person image sequences aim at obtaining event representations
by encoding the temporal context of each frame in an unsu-
pervised fashion [12], [13]. These methods rely on neural or
recurrent neural networks and are generally based on the idea
of learning event representations by training the network to
predict past and future frame representations. Recurrent neural
networks have proved to be more efficient than simple neural
networks for the temporal prediction task. The main limitation
of these approaches is that they must rely on large training
datasets to yield state-of-the-art performance. Even if, in this
case, training data do not require manual annotations, they can

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 2

Fig. 2. The assumption underlying our learning approach is that image
sequences captured at regular time intervals (2fpm) can be organized into
a graph structure, where each community in the graph corresponds to a
particular semantic context. Points of the same color in the figure are
related semantically and may be more or less related at temporal level. The
arrows indicate temporal transitions between communities. They have only a
visualization purpose, since temporal transition are between pairs of points.

nevertheless introduce a bias and the learnt models can suffer
from the domain adaptation problem. For instance, in the case
of temporal segmentation of image sequences, the models will
be difficult to generalize to data acquired with a camera with
different field of view or for people having different lifestyles.

In this paper, we aim at overcoming this limitation with
a novel approach that is able to unveil a representation that
encodes the temporal and semantic similarity of an image se-
quence from the single sequence itself. With this goal in mind,
we propose to learn event representations as an embedding on
a graph. Our model is based on the assumption that each event
belongs to a particular semantic context that can be shared
across semantically similar events. These semantic contexts
can be represented as communities on an unknown underlying
graph. In particular, graph nodes correspond to individual
frames, and edges between nodes encode frame similarity. The
communities are understood here as sets of nodes (frames) that
are interconnected by edges with large weights. Moreover, the
graph weights reflect not only temporal proximity, but also
semantic similarity, which is understood here as similarity
in terms of high-level visual features. This is motivated by
neuroscientific findings which show that neural representations
of events arise from temporal community structures [19] and
suggest that frames which share the context are grouped
together in the representational space. In Figure 2 we illustrate
this idea by means of an egocentric image sequence capturing
the full day of a person: going from home to work using public
transports, having a lunch break in a restaurant and going
back to home after doing some shopping, etc. Each point cloud
corresponds with images similar in appearance and most of
them are visited multiple times. This means that every pair of
images in a point cloud is related semantically, but they could
or could not be related at temporal level.

Based on this model, the proposed solution consists in
learning simultaneously the graph structure (encoded by its
weights) and the data representation. This is achieved by

iterating over two alternate steps: 1) update of the graph
structure as a function of the current data representation, where
the graph structure is assumed to encode a finite number of
communities, and 2) update of the data representation as a
function of the current graph structure in a low-dimensional
embedding space. We term this solution dynamic graph
embedding (DGE). We provide illustrative experiments on
synthetic data, and we validate the proposed approach on two
real world benchmark datasets for first-person image sequence
temporal segmentation. Our framework is the first attempt to
learn simultaneously graph structure and data representations
for temporal segmentation of image sequences.

Our main contributions are: (i) we re-frame the event learn-
ing problem as the problem of learning a graph embedding, (ii)
we introduce an original graph initialization approach based
on the concept of temporal self-similarity, (iii) we propose
a novel technical approach to solve the graph embedding
problem when the underlying graph structure is unknown, (iv)
we demonstrate that the learnt graph embedding is suitable
for the task of temporal segmentation, achieving state-of-the-
art results on two challenging reference benchmark datasets
[11], [20], without relying on any training set for learning the
representation, (v) we show that the proposed DGE generalizes
to other problems, yielding state-of-the-art results also on
two reference benchmark datasets for the Human Motion
Segmentation problem.

The structure of the paper is as follows. Section II highlights
related work on data representation learning on graphs and on
the temporal segmentation of videos and image sequences. In
Section III-A we introduce our problem formulation while in
Sections III-B to III-E we detail the proposed graph embedding
model. The performance of our algorithm on real world data
are evaluated in Section IV. In Section V, we conclude on our
contributions and results.

II. RELATED WORK

A. Geometric learning

The proposed approach lies in the field of geometric learn-
ing, which is an umbrella term for those techniques that
work in non-Euclidean domains such as graphs and manifolds.
Following [21], geometric learning approaches either deal
with analyzing functions defined on a given non-Euclidean
domain or address the problem of characterizing the structure
of the data. The former case includes methods dealing with
manifolds [22], [23] as well as methods of signal processing
on graphs [24]. These allow to generalize CNN to graphs
[25], [26] by defining an operation similar to convolution
in the graph spectral domain. In the latter case, which is
more closely related with the method proposed in this paper,
the goal is to learn an embedding of the data in a low-
dimensional space such that the geometric relations in the
embedding space reflect the graph structure. These methods
are commonly referred to as node-embedding and can be
understood from an encoder-decoder perspective [27]. Given
a graph G = (V, E), where V and E represent the set of nodes
and edges of the graph respectively, the encoder maps each
node v ∈ V of G in a low-dimensional space. The decoder is a

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 3

function defined in the embedding space that acts on node pairs
to compute a similarity S between the nodes. Therefore the
graph embedding problem can be formulated as the problem
of optimizing decoder and encoder mappings such that they
minimize the discrepancy between similarity values in the
embedding and original feature space.

Within the general encoder-decoder framework, node em-
bedding algorithms can be roughly classified into two classes.
The first class covers shallow embedding methods, including
matrix factorization [28]–[30] and random-walk based ap-
proaches [31]–[34]. The second class subsumes generalized
encoder-decoder architectures [35]–[38]. In shallow embed-
ding approaches, the encoder function acts simply as a lookup
function and the input nodes vi ∈ V are represented as
one-hot vectors, so that they cannot leverage node attributes
during encoding. Instead, in generalized encoder-decoder ar-
chitectures [35]–[37] the encoders depend on the structure and
attributes of the graph. In particular, convolutional encoders
[38] rely on node features to generate embeddings for a node
by aggregating information from its local neighborhood, in
a manner similar to the receptive field of a convolutional
kernel in image processing. As the process is iterated, the node
embedding contains information aggregated from further and
further reaches of the graph. Closely related to convolutional
encoders are Graph Neural Networks (GNNs). The main dif-
ference is that GNNs capture the graph’s internal dependencies
via message passing between its nodes. Moreover, GNNs
can utilize node attributes and node labels to train model
parameters end-to-end for a specific task in a semi-supervised
fashion [25], [26], [39], [40].

In all these methods, the graph structure is assumed to be
given by the problem domain. For instance, the graph structure
for social networks can be inferred from the connections be-
tween people. However, in the case of temporal segmentation
considered here the problem is non-structural since the graph
structure is not given by the problem domain. Instead, it needs
to be determined together with the node embedding.

B. Event segmentation
Extensive research has been conducted to temporally seg-

ment videos and image sequences into events. Early ap-
proaches aimed at segmenting edited videos such as TV
programs and movies [41]–[45] into commercial, news-related
or movie events. This includes the use of the concept of
Logical Story Units (LSU), defined as a series of shots that
communicate a unified action with a common setting and time;
in particular, [41] proposed a method to segment TV programs
into LSUs by firstly clustering given video shots and then
building a Scene Transition Graph with nodes corresponding to
the clusters and edges to temporal transitions. More recently,
with the advent of wearable cameras and camera equipped
smartphones, there has been an increasing interest in seg-
menting untrimmed videos or image sequences captured by
nonprofessionals into semantically homogeneous units [46]–
[48]. In particular, videos or image sequences captured by a
wearable camera are typically long and unconstrained [18].
Therefore it is important for the user to have them seg-
mented into semantically meaningful chapters. In addition to

appearance-based features [49], [50], motion features have
been extensively used for temporal segmentation of both third-
person videos [1], [47] and first-person videos [51]–[54]. In
[52], motion cues from a wearable inertial sensor are leveraged
for the temporal segmentation of human motion into actions.
Lee and Grauman [53] used temporally constrained clustering
of motion and visual features to determine whether the dif-
ferences in appearance correspond to event boundaries or just
to abrupt head movements. Poleg et al. [54] proposed to use
integrated motion vectors to segment egocentric videos into a
hierarchy of long-term activities whose first level corresponds
to static/transit activities.

However, motion information is not available in first-person
image sequences that are the main focus of this paper. In
addition, given the limited amount of annotated data, event
segmentation is very often performed by using a clustering
approach that takes as input hand-crafted visual features such
as color [4], MPEG7 descriptors [6], a combination of environ-
mental sensor data, SIFT, SURF and MPEG7 descriptors [5],
or a combination of CNN-based features [9], [10]. Tavalera
et al. [7] proposed to combine agglomerative clustering with
a change detection method within a graph-cut energy mini-
mization framework. Later on, [11] extended this framework
and proposed an improved feature representation by building
a vocabulary of concepts. Paci et al. [8] proposed a Siamese
ConvNets based approach that aims at learning a similarity
function between low temporal resolution egocentric images.
Recently, [13] proposed to learn event representations as the
byproduct of learning to predict the temporal context. In this
work, the single image sequence itself is employed to learn the
new representation by using an autoencoder model or a LSTM
encoder-decoder model, without relying on a training dataset.
Molino et al. [12] later proposed a similar LSTM based model
that achieved impressive results on the EDUBSeg dataset by
leveraging on more powerful initial features and by relying on
a large training dataset (over 1.2 million images).

Here, we propose a new model that as in [13] does not
make use of any training set for learning the temporal event
representation, but achieves state-of-the-art results. In particu-
lar, it outperforms [12] on the EDUBSeg and EDUBSeg-Desc
benchmarks [11], [20].

III. DYNAMIC GRAPH EMBEDDING (DGE)

A. Problem formulation and proposed model

We formulate the event learning problem as a geometric
learning problem. More specifically, given a set of data points
(the frames of the image sequence) embedded into a high-
dimensional Euclidean space (the initial data representation),
we assume that these data points are organized in a graph
in an underlying low-dimensional space. Here, graph nodes
correspond to individual frames, and edges between nodes
encode frame similarity. Our a priori on the structure of the
graph is that it consists of a finite number of communities
(sets of nodes (frames) that are interconnected by edges with
large weights) corresponding to different semantic contexts.
Since along an image sequence a same community can be
visited several times at different time intervals, we assume

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 4

ALGORITHM 1: Dynamic Graph Embedding (DGE)

N − length of the image sequence
n − original feature dimension
d − embedding feature dimension (d� n)

Input : X ∈ RN × Rn initial feature matrix
Output: X̃ ∈ RN × Rd graph embedded feature matrix

/* Graph initialization Eqs. (1-3) */
X̂0 = NLmeans1D(X) ∈ RN × Rn denoise initial features
G0 = Sl̂(X̂0) ∈ RN × RN initialize graph in original space
/* Graph embedding initialization Eqs. (3-4) */
X̃ = PCAd(X̂0) ∈ RN × Rd
X̃0 = argminX̃ L(Sl̃(X̃),G0) initialize embedding features
G̃0 = Sl̃(X̃0) ∈ RN×RN initialize graph in embedding space

/* DGE core loop Eqs. (5-7) */
for i← 1 to K do

— graph embedding update
X̃i = argminX̃(1−α)L1(Sl̃(X̃), G̃i−1)+αL2(Sl̃(X̃),G0)

update embedding features given current graph G̃i−1

— graph structure update: temporal prior
G̃i ← Sl̃(X̃i) ∗Kp local average of weights of graph of X̃i
G̃i ← fη(G̃i) strengthen temporally adjacent edges
— graph structure update: semantic prior
C = kmeans(X̃i;NC) estimate semantic communities
G̃i = gµ(G̃i, C) encode semantic similarity in graph

end

that edges between nodes belonging to different communities
correspond to transitions between different semantic contexts.
In contrast, edges between nodes belonging to the same
community correspond to transitions between nodes sharing
the same semantic context, being them temporally adjacent or
not. This structure implicitly assumes that the graph topology
models jointly temporal and semantic similarity relations.

More formally, let X ∈ RN ×Rn denote the n-dimensional
feature vectors for a given sequence of N images, and S
a similarity kernel. We aim at finding a fully connected,
weighted graph G̃ = (X̃, E , W̃) with node embedding X̃ ∈
RN×Rd in a low-dimensional space, d� n, and edge weights
W̃ given by the entries of an affinity matrix G̃ = S(X̃)
such that the similarity G̃kj between any pair k, j of nodes
of the graph reflects both semantic relatedness and tempo-
ral adjacency between the images. Semantic relatedness is
captured by a similarity function between high-level visual
image descriptors, whereas temporal adjacency is imposed
through temporal constraints on the edge weights. The above
constraints lead to easily grouping the graph nodes in a finite
number of communities that each correspond to a different
semantic context. As seen in the previous section, in classical
node embedding the low-dimensional representation of each
node encodes information about the position and the structure
of the local neighborhood in the graph. Since all these methods
incorporate graph structure in some way, the construction of
the underlying graph is extremely important but relatively little
explored. In our problem at hand the graph structure is initially
unknown since it arises from unknown events. Therefore, we
aim at learning jointly the structure of the underlying graph
and the node embedding.

B. Graph initialization by nonlocal self-similarity

Temporal nonlocal self-similarity. To obtain a first coarse
estimate of the graph, we apply a nonlocal self-similarity
algorithm in the temporal domain to the initial data X that
we normalize to the interval [−1, 1] [14]. The nonlocal self-
similarity filtering creates temporal neighborhoods of frames
that are likely to be in the same event. Let X(k) ∈ Rn denote
the k-th row of X , that is, the vector of n image features at
time k, k = 1, . . . , N . Further, let NM

k = {k −M, . . . , k −
1, k+1, . . . , k+M} andNL

k = {k−L, . . . , k−1, k+1, . . . , k+
L} denote the indices of the 2M and 2L neighboring feature
vectors of X(k), respectively, with L > M . In analogy with
2D data (images) [55], the self-similarity function of X(k) in
a temporal sequence, conditioned to its temporal neighborhood
j ∈ NM

k , is given by the quantity [14]

SNL(k, j) =
1

Z(k) exp
(
−
dist(X(NM

k), X(NM
j))

h

)
. (1)

Here Z(k) is a normalizing factor such that
∑
j∈NL

k
SNLkj =

1, ensuring that SNLkj can be interpreted as a conditional
probability of X(j) given X(Nk), as detailed in [55],
dist(X(Nk), X(Nj)) =

∑2M
i=1 ||X(Nk(i)) −X(Nj(i))||`1 is

the sum of the `1 distances of the vectors in the neighborhoods
of k and j, and h is the parameter that tunes the decay of the
exponential function. The key idea of our graph initialization
is to model each frame k by its denoised version, obtained as

X̂(k) = NLmeans1D(X(k)) =
∑

j∈NL
k

SNLkj ·X(j),

X̂0 = (X̂(1)T X̂(2)T . . . X̂(N)T)T . (2)

A numerical illustration on real data is provided in Figure 4.
Initial graph and initial embedding. An initial graph G0
is obtained by computing the RN ×RN affinity matrix G0 =
Sl̂(X̂0) of X̂0, defined elementwise as the pairwise similarity

(Sl(X))kj = exp

(
−1− cdist(X(j), X(k))

l

)
(3)

where cdist(·, ·) is the cosine distance and l the filtering
parameter of the exponential function. In the following, we
will not distinguish any longer between a graph G and the
representation by its affinity matrix G and make use of both
symbols synonymously. In our model, G0 represents the initial
data structure in the original high dimensional space as a fully
connected graph, from which we aim to learn a graph in the
embedding space that better encodes temporal and semantic
constraints, denoted G̃. To obtain an initial embedding X̃0 for
the graph, we apply PCA on X̂0, keep the d major principal
components X̃ and minimize the cross-entropy loss L between
the affinity matrices G0 = Sl̂(X̂0) and Sl̃(X̃0)

X̃0 = argminX̃L(Sl̃(X̃),G0) (4)

where the different filtering parameters l̂ and l̃ account for the
different dimensionality of X̂0 and X̃0. Even if PCA is a linear
operator and for small sets of high-dimensional vectors dual
PCA could be more appropriate [56], we found it sufficient
here for initializing the algorithm. The initial graph G̃0 in the
embedding space is then given by G̃0 = Sl̃(X̃0).

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 5

C. DGE core alternating steps

Given the initial embedding X̃0 and graphs G0 and G̃0, the
main loop of our DGE alternates over the following two steps:

1) Assuming that G̃i−1 is fixed, update the node represen-
tations X̃i.

2) Assuming that X̃i is fixed, update the graph G̃i.
Step (1) is inspired from graph embedding methods, such as
the ones reviewed in Section II-A, which have proved to be
very good at encoding a given graph structure. Step (2) aims
at enforcing temporal constraints and at fostering semantic
similarity in the graph structure.
Graph embedding update. To estimate the graph embed-
ding X̃i at iteration i assuming that G̃i−1 is given, we solve

X̃i=argmin
X̃

(1−α)L1(Sl̃(X̃), G̃i−1) +αL2(Sl̃(X̃),G0). (5)

Here L1 and L2 are cross-entropy losses and Sl̃(·, ·) is the
cosine-distance based similarity defined in (3). The first loss
term controls the fit of the representation X̃ with the learnt
graph G̃i in low-dimensional embedding space. The second
loss term quantifies the fit of the representation X̃ with
the fixed initial graph G0 in high dimensional space and is
reminiscent of shallow graph embedding. The regularization
parameter α ∈ [0, 1] controls the relative weight of each
loss. Standard gradient descent can be used to solve (5). In
the numerical experiments reported below, 150 iterations of
gradient descent with Barzilai-Borwein adaptive step size [57]
were used.
Graph structure update. To obtain an estimate of the graph
structure at the i-th iteration, say G̃i, assuming that X̃i is given,
we start from an initial estimate for G̃i as G̃i = Sl̃(X̃i), and
then make use of the model assumptions described in Section
III-A to modify the graph: temporal adjacency, and semantic
similarity.

i) To foster similarity for temporally adjacent nodes, we
apply two operations. First, local averaging of the edge weights
defined as G̃i ← G̃i ∗Kp, where ∗ is the 2D convolution oper-
ator and Kp a p× p kernel that is here simply the normalized
bump function. Second, application of the shrinkage operation

(G̃i)kj ← (fη(G̃i))kj =

{
(1− η)(G̃i)kj if |k − j|>1

(1− η)(G̃i)kj otherwise,
(6)

which leaves the similarities of directly temporally adjacent
nodes of G̃i unchanged, but shrinks the weights of edges
between nodes k and j that are not direct temporal neighbors
by a factor η, 0 < η < 1, thus strengthens the temporal
adjacency of the graph.

ii) To reinforce the semantic similarity of X̃i, we first obtain
a coarse estimate of the community structure of the graph G̃i.
To this end, we apply a clustering algorithm on X̃i, which
yields estimated cluster labels C = (cj)

NC
j=1, cj ∈ {1, ..., NC},

for each frame, that roughly correspond to semantic contexts,
i.e., communities. Then we modify G̃i using the non-linear
operation defined by

(G̃i)kj ← (gµ(G̃i, C))kj =
{
(1− µ)(G̃i)kj if cj 6= ck

(1− µ)(G̃i)kj otherwise.
(7)

This graph update reduces the similarity between nodes k and
j that do not belong to the same cluster, cj 6= ck, by a factor
µ, 0 < µ < 1, and does not change similarities within clusters,
hence reinforces within-event semantic similarity.

Thus, both the embedding step and the clustering jointly
contribute to learn representations that account for the seman-
tics encoded by the initial CNN features. DGE aims at reveal-
ing the temporal and semantic relatedness for each pair of data
vectors, and therefore the estimated graphs G̃i, i = 0, . . . ,K,
are fully connected at each stage. A high-level overview of
our DGE approach can be found on ALGORITHM 1.

D. Graph post-processing: Event boundary detection

Depending on the problem, applicative context and objec-
tive, different standard and graph signal processing tools can
be applied to the estimated graph G̃K in order to extract
the desired information or to transform G̃K [24], [58]. To
evaluate the effectiveness of the learnt representation X̃K

corresponding to G̃K for event segmentation, we use it as the
input of a boundary detector.
Boundary detector. To ensure a fair comparison of the
learnt event representations with [12], we use the same bound-
ary detector as therein, with the same parameter values and
thresholds. It is based on the idea that when a vector X̃(k)
representing frame k corresponds to an event boundary, the
distance between the predictions computed for it from past
(j < k) and future (j > k) representation vectors is likely to
be large. Consequently, [12] defines the boundary prediction
function as the (cosine) distance between these contextual
forward and backward predictions for frame k. Those frames
for which the values of the boundary prediction function
exceed a threshold are the detected event boundaries, see [12]
for details.

Hereafter we call our temporal segmentation model relying
on the features learnt by using the proposed DGE approach
CES-DGE, in analogy with CES-VCP in [12] (where CES
stands for contextual event segmentation and VCP for visual
context prediction).

E. Numerical illustration of CES-DGE on synthetic data

To illustrate the main idea behind our modeling, we show
with a synthetic example in n = 2 dimensions how the original
data X and the associated initial graph G̃0 change over K = 10
iterations of the DGE algorithm (here, d = n = 2, and we
assume X̃0 = X̂0 = X , i.e., no preprocessing). The data
consist of a temporal sequence of N = 350 feature vectors
that are drawn from four different Gaussian distributions with
mean vectors (−7.8 5.1), (−1.4 2.8), (−2.9 12.1), (2.5 3.4)
and diagonal covariance matrix σI with σ = 3.7. The different
distributions are selected according to a Markov switching
model in which the probability to remain in a state decreases
from 1 at its onset at an exponential rate with time. This makes
it likely that a reasonable number of temporally adjacent
vectors are drawn from the same distribution, thus modeling
a community corresponding with a semantic context.

Results are plotted in Figure 3 as scatter plots of the learnt
representations X̃i (panel (a)) and as time series X̃i (panel (b))

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 6SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 6

iteration i = 0 iteration i = 1 iteration i = 3 iteration i = 10

(a) F-score 0.59 . F-score 0.62 F-score 0.64 F-score 0.67

(b) Data & representation. (e)

. . . .
G̃i=0 . G̃i=1 . G̃i=3 . G̃i=10 .

(c) Graphs G̃i .

. . . .
G̃i=0 . G̃i=1 . G̃i=3 . G̃i=10 .

(d) Graphs G̃i (pruned) .
Fig. 3. Illustration of DGE on synthetic data modeling 4 communities in d = 2 dimensions: (a) scatter plot of features X̃i for iterations i = (0, 1, 3, 10)
(left to right column, respectively); color indicates community ground truth, solid lines indicate temporal adjacency; (b) the features X̃i plotted as time series,
with estimated segment boundaries (vertical dashed lines) and community ground truth (solid black); (c) the corresponding graphs G̃i and (d) G̃i after removal
of edges with weight smaller than 0.7 times that of the strongest edge (yellow and blue color correspond with strong and weak similarity, respectively); (e)
F-score, precision and recall for estimated segmentation as a function of iteration number i.

for iterations i = (0, 1, 3, 10). Clearly, it is difficult to obtain
a good segmentation for the initial, cleaned data (iteration
i = 0, left column). Yet, after a few DGE iterations the learnt
representation vectors X̃i that belong to the same context
are aggregated at similar values (Figure 3 (a-b), columns
2 to 4, respectively). At the same time, those vectors that
belong to different contexts are pushed away from each other
in the representational space. This effectively increases the
similarity within each semantic context. An alternative view
is provided by the corresponding learnt graphs G̃i that are
plotted in panels (c-d) in Figure 3. It can be observed how
increasingly homogeneous diagonal and off-diagonal blocks
with clear boundaries emerge with progressing iteration num-
ber i, reflecting the temporal community structure underlying
the data. This improved representation leads in turn to signif-
icantly better event segmentation results, with F-score values
increasing from initially 0.59 to 0.62, 0.64, 0.67 for iterations
i = 1, 3, 4� 10, respectively (cf., Figure 3, panel (e)).

IV. PERFORMANCE EVALUATION

A. Datasets and experimental setup
Datasets. We used two temporal segmentation benchmark
datasets for performance evaluation. The EDUBSeg dataset,

introduced in [11], consists of 20 first-person image sequences
acquired by seven people with a total of 18,735 images. The
dataset has been used to validate image sequence temporal
segmentation in several recent works [8], [11]–[13]. For each
image sequence, three manual segmentations have been ob-
tained by three different persons. In line with previous works,
the first segmentation was used here as the ground truth. The
average performance of the two remaining segmentations is
used as an estimate of the manual segmentation performance.
The second dataset is the larger and more recent EDUBSeg-
Desc dataset [20], with 46 sequences (42,947 images) acquired
by eight people.

On average, the sequences of both datasets contain roughly
the same number of ground truth event boundaries (28 for the
former vs. 26 for the latter). However, those of EDUBSeg-
Desc consist of 25% longer continuously recorded segments
than EDUBSeg (3h46m25s vs. 3h1m29s continuous “camera
on” time, and 3.0 vs. 3.55 continuously recorded segments
per sequence). Since EDUBSeg-Desc is 50% larger than
EDUBSeg and event transitions within the increased number
of continuously recorded segments are more difficult to detect,
EDUBSeg-Desc is considered more challenging [20].

Other publicly available datasets of egocentric image se-

Fig. 3. Illustration of DGE on synthetic data modeling 4 communities in d = 2 dimensions: (a) scatter plot of features X̃i for iterations i = (0, 1, 3, 10)
(left to right column, respectively); color indicates community ground truth, solid lines indicate temporal adjacency; (b) the features X̃i plotted as time series,
with estimated segment boundaries (vertical dashed lines) and community ground truth (solid black); (c) the corresponding graphs G̃i and (d) G̃i after removal
of edges with weight smaller than 0.7 times that of the strongest edge (yellow and blue color correspond with strong and weak similarity, respectively); (e)
F-score, precision and recall for estimated segmentation as a function of iteration number i.

for iterations i = (0, 1, 3, 10). Clearly, it is difficult to obtain
a good segmentation for the initial, cleaned data (iteration
i = 0, left column). Yet, after a few DGE iterations the learnt
representation vectors X̃i that belong to the same context
are aggregated at similar values (Figure 3 (a-b), columns
2 to 4, respectively). At the same time, those vectors that
belong to different contexts are pushed away from each other
in the representational space. This effectively increases the
similarity within each semantic context. An alternative view
is provided by the corresponding learnt graphs G̃i that are
plotted in panels (c-d) in Figure 3. It can be observed how
increasingly homogeneous diagonal and off-diagonal blocks
with clear boundaries emerge with progressing iteration num-
ber i, reflecting the temporal community structure underlying
the data. This improved representation leads in turn to signif-
icantly better event segmentation results, with F-score values
increasing from initially 0.59 to 0.62, 0.64, 0.67 for iterations
i = 1, 3, 4− 10, respectively (cf., Figure 3, panel (e)).

IV. PERFORMANCE EVALUATION

A. Datasets and experimental setup

Datasets. We used two temporal segmentation benchmark
datasets for performance evaluation. The EDUBSeg dataset,
introduced in [11], consists of 20 first-person image sequences

acquired by seven people with a total of 18,735 images. The
dataset has been used to validate image sequence temporal
segmentation in several recent works [8], [11]–[13]. For each
image sequence, three manual segmentations have been ob-
tained by three different persons. In line with previous works,
the first segmentation was used here as the ground truth. The
average performance of the two remaining segmentations is
used as an estimate of the manual segmentation performance.
The second dataset is the larger and more recent EDUBSeg-
Desc dataset [20], with 46 sequences (42,947 images) acquired
by eight people.

On average, the sequences of both datasets contain roughly
the same number of ground truth event boundaries (28 for the
former vs. 26 for the latter). However, those of EDUBSeg-
Desc consist of 25% longer continuously recorded segments
than EDUBSeg (3h46m25s vs. 3h1m29s continuous “camera
on” time, and 3.0 vs. 3.55 continuously recorded segments
per sequence). Since EDUBSeg-Desc is 50% larger than
EDUBSeg and event transitions within the increased number
of continuously recorded segments are more difficult to detect,
EDUBSeg-Desc is considered more challenging [20].

Other publicly available datasets of egocentric image se-
quences, such as CLEF [59], NTCIR [60] and the more recent
R3 [12], do not have ground truth event segmentations. They

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 7

can therefore not be used for performance evaluation. These
datasets with more than 1.2 million images were used for
training in [12]. We emphasize that in contrast, our algorithm
operates without training dataset.
Feature extraction. As in [12], each frame of the egocentric
image sequences was described here using the output of the
pre-pooling layer of InceptionV3 [61] pretrained on ImageNet,
resulting in n = 2048 raw features X(k) per frame k.
Performance evaluation. Following previous work [8],
[11]–[13], we consider a detected event boundary to be correct
when it falls within a range of ±τ around the position of a true
boundary. We use F-score, Precision (Prec) and Recall (Rec)
to evaluate the performance of our approach. While previous
work considered only a single level of tolerance τ = 5, we
here report results for several values τ ∈ (1, 2, 3, 4, 5).
DGE hyperparameters. The hyperparameter values for the
graph initialization and embedding (i.e., for the non-local self-
similarity kernel (1) and for the similarity (3)) have been
chosen a priori based on visual inspection of the similarity
matrices of X̂0 and X̃0 for a few sequences of EDUBSeg.
The values are fixed to L = 3, M = 1, h = 0.25 for Eq. (1),
and l̂ = 0.0025, l̃ = 0.02d for Eq. (3). The embedding
dimension is set to d = 15, which is found sufficient for
the representation to faithfully reproduce the graph topology
underlying the data. The influence of d is reported in the
next section. The DGE core loop hyperparameters are set to
K = 2 (DGE iterations), α = 0.1 (graph embedding update),
p = 3, η = 0.3 (temporal prior), and µ = 0.1, NC = 10
(semantic prior; a k-means algorithm is used to estimate cluster
labels). These hyperparameter values have been selected by
a grid search using the EDUB-Seg dataset. Our grid search
strategy consisted in first tuning the embedding dimension d
based on the quality of the initial embedding, and to perform
preliminary individual line searches to determine search ranges
and granularity for the remaining hyperparameters. The values
retained by the grid search for the EDUB-Seg dataset are also
used for the EDUB-SegDesc dataset, without modification;
robustness of these choices is also investigated in the next
section.

B. Robustness to changes in hyperparameter values
Table I reports F-score values obtained on the EDUBSeg

dataset when the embedding dimension d, the DGE iterations
K and the DGE core parameters α, p, η, µ and NC are varied
each individually. It can be appreciated that the performance
of CES-DGE is overall robust w.r.t. precise hyperparameter
values. As long as the embedding dimension d is chosen not
too small and not too large, F-score values vary little (no
more than 3 percentage points below the best observed F-score
values for the range of embedding dimensions 10 < d < 50) ;
this corroborates similar findings on the existence of a trade-off
between low-dimensionality and fidelity to the graph structure
for node embedding in different contexts, cf., e.g., [27]–[38].
The highest sensitivity to DGE core loop hyperparameters is
observed for the DGE iteration number K, whose optimal
value is a compromise between increasing the similarity (i.e.,
choosing K large) between X̃i within correctly detected com-
munities but not increasing it too much (i.e., K small) within

Parameter F-score

d 5 7 10 15 20
0.59 0.61 0.65 0.70 0.69

(embedding dimension) 25 35 45 100 150
0.68 0.67 0.68 0.65 0.64

K 1 2 3 4 5
(DGE iterations) 0.66 0.70 0.68 0.67 0.66

α 0.05 0.1 0.2 0.3 0.4
(graph embedding update) 0.679 0.70 0.69 0.69 0.68

p 2 3 4 5 6
(2D local average size) 0.69 0.70 0.69 0.69 0.68

η 0.01 0.1 0.3 0.4 0.6
(graph temporal regularization) 0.69 0.69 0.70 0.69 0.67

µ 0.03 0.05 0.1 0.2 0.3
(extra-cluster penalty) 0.68 0.70 0.70 0.69 0.67

NC 3 4 6 8 10
0.65 0.66 0.67 0.68 0.70

(cluster number) 12 14 16 18 20
0.69 0.69 0.68 0.67 0.68

TABLE I
ROBUSTNESS OF CES-DGE WITH RESPECT TO HYPERPARAMETER

VALUES (EDUBSEG, TOLERANCE τ = 5): F-SCORES OBTAINED WHEN
VARYING THE DGE HYPERPARAMETER INDICATED IN THE FIRST

COLUMN, WITH ALL OTHERS HELD FIXED (BEST RESULTS IN BOLD).

Method F-score Rec Prec
k-Means smoothed 0.51 0.39 0.82

AC-color 0.38 0.25 0.90
SR-ClusteringCNN 0.53 0.68 0.49

KTS 0.53 0.40 0.87
CES-TSC 0.66 0.69 0.67
CES-VCP 0.69 0.77 0.66
CES-DGE 0.70 0.70 0.72

Manual segmentation 0.72 0.68 0.80
TABLE II

COMPARISON OF CES-DGE WITH STATE-OF-THE-ART METHODS &
MANUAL SEGMENTATION FOR EDUBSEG AND TOLERANCE τ = 5.

incorrectly alienated communities. If chosen as 1 < K < 5,
F-score values are at most 3 percentage points below the best
observed F-score. Results are also very robust w.r.t. temporal
regularization for reasonably small parameter values of p ≤ 5
and η ≤ 0.4. For larger values the learnt representation is over-
smoothed. Similarly, F-score values vary little when changing
the semantic similarity parameter as long as 0 < µ ≤ 0.2.
Note that these variations are significant because η, µ ∈ (0, 1).
Finally, F-score values drop by less than 3 percentage points
when the number of clusters is selected within a reasonably
large range NC ∈ (6, . . . , 20). Overall, these results suggest
that CES-DGE is quite insensitive to hyperparameter tuning
and yields robust segmentation results for a wide range of
hyperparameter values.

C. Comparative results for EDUBSeg dataset

Table II reports comparisons with five state-of-the-art meth-
ods for a fixed value of tolerance (τ = 5, results reproduced
from [12]). The first four (k-means smoothed with k = 30, AC-
color [53], SR-Clustering [11], KTS [62]) are standard/generic
approaches and achieve modest performance, with F-scores no
better than 0.53. CES-VCP of [12] yields significantly better
F-score of 0.69, thanks to the use of a large training set for
learning the event representation. The proposed CES-DGE
approach further improves on this state-of-the-art result and
yields F-score of 0.70. Interestingly, CES-DGE also achieves

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 8SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 8

data X . NLmeans X̂0 embedded X̃0 DGE X̃i iteration i = 1 DGE X̃i iteration i = 2

(a) Data & representation. F-score 0.54 F-score 0.71 F-score 0.74 F-score 0.79

.
G0 . Ĝ0 . G̃0 . G̃i=1 . G̃i=2 .

(b) Graphs G .

.
G0 . Ĝ0 . G̃0 . G̃i=1 . G̃i=2 .

(c) Graphs G (pruned) .
Fig. 4. Illustration of DEG on Subject 1 Day 3 of EDUBSeg. Panel (a): Data and learnt representations with boundary estimates (red dashed vertical bars),
ground truth (blue solid vertical bars) and resulting F-score values; from left to right initial features X (1st column), denoised features X̂0 (2nd column),
initial embedded features X̃i=0 (3rd column), learnt representation X̃i at iterations i = 1 and i = 2 (4th & 5th column, respectively). Panel (b) plots the
corresponding graphs G0, Ĝ0 and G̃i (from left to right). Panel (c) shows the graph after edges with weight smaller than 0.3 times the strongest edge have
been removed (dark blue corresponds with small weights and yellow corresponds with large weights, respectively).

Method CES-VCP CES-DGE
Tolerance F-score Rec Prec F-score Rec Prec
⌧ = 5 0.69 0.77 0.66 0.70 0.70 0.72
⌧ = 4 0.67 0.75 0.63 0.68 0.69 0.70
⌧ = 3 0.64 0.62 0.71 0.65 0.64 0.68
⌧ = 2 0.59 0.67 0.56 0.59 0.59 0.61
⌧ = 1 0.44 0.44 0.49 0.48 0.48 0.50

TABLE III
COMPARISON OF CES-DGE WITH STATE-OF-THE-ART CES-VCP FOR

DIFFERENT VALUES OF TOLERANCE FOR EDUBSEG.

learning the event representation. The proposed CES-DGE
approach further improves on this state-of-the-art result and
yields F-score of 0.70. Interestingly, CES-DGE also achieves
more balanced Rec and Prec values of 0.70 and 0.72, as
compared to 0.77 and 0.66 for CES-VCP. Moreover, even
when compared to average manual segmentation performance
our results are only 2 percentage points below. Finally, we
report results obtained by combining the Temporal Subspace
Clustering (TSC) algorithm of [63] with the CES segmentation
of [12] (CES-TSC), yielding F-score values 4 percentage
points below the proposed CES-DGE.

In Table III, we provide comparisons between our proposed
approach and CES-VCP for different values of tolerance.
We can observe that CES-DGE achieves systematically better
results than CES-VCP in terms of F-score for all values of
tolerance. These improvements with respect to the state of the

art reach up to 4 percentage points. Besides, Rec/Prec values
for CES-DGE are more balanced and within ±3 percentage
points of the values for F-score for all tolerance levels (±8
percentage points of F-score for CES-VCP).

Overall, this leads to conclude that the proposed CES-
DGE approach is effective in learning event representations for
image sequences and yields robust segmentation results. These
results are even more remarkable considering that CES-DGE
learns the feature representation from the image sequence
itself, without relying on any training dataset.

D. Comparative results for EDUBSeg-Desc dataset

Table IV summarizes the event boundary detection per-
formance of the proposed CES-DGE approach and of CES-
VCP for the larger EDUBSeg-Desc dataset. Since CES-VCP
reported state-of-the-art results with F-score values 16 per-
centage points above other methods, cf., Table II, we omit
comparison with other methods in what follows for space
reasons. The same (hyper)parameter values as for EDUBSeg
are used, without any modification. It can be observed that the
performance for both CES-VCP and CES-DGE are inferior
to those reported for the EDUBSeg dataset in the previous
section, for all tolerance values. These results corroborate that
EDUBSeg-Desc contains more difficult image sequences than
EDUBSeg (see Section IV-A and [20]). Interestingly, while the

Fig. 4. Illustration of DEG on Subject 1 Day 3 of EDUBSeg. Panel (a): Data and learnt representations with boundary estimates (red dashed vertical bars),
ground truth (blue solid vertical bars) and resulting F-score values; from left to right initial features X (1st column), denoised features X̂0 (2nd column),
initial embedded features X̃i=0 (3rd column), learnt representation X̃i at iterations i = 1 and i = 2 (4th & 5th column, respectively). Panel (b) plots the
corresponding graphs G0, Ĝ0 and G̃i (from left to right). Panel (c) shows the graph after edges with weight smaller than 0.3 times the strongest edge have
been removed (dark blue corresponds with small weights and yellow corresponds with large weights, respectively).

Method CES-VCP CES-DGE
Tolerance F-score Rec Prec F-score Rec Prec
τ = 5 0.69 0.77 0.66 0.70 0.70 0.72
τ = 4 0.67 0.75 0.63 0.68 0.69 0.70
τ = 3 0.64 0.62 0.71 0.65 0.64 0.68
τ = 2 0.59 0.67 0.56 0.59 0.59 0.61
τ = 1 0.44 0.44 0.49 0.48 0.48 0.50

TABLE III
COMPARISON OF CES-DGE WITH STATE-OF-THE-ART CES-VCP FOR

DIFFERENT VALUES OF TOLERANCE FOR EDUBSEG.

more balanced Rec and Prec values of 0.70 and 0.72, as
compared to 0.77 and 0.66 for CES-VCP. Moreover, even
when compared to average manual segmentation performance
our results are only 2 percentage points below. Finally, we
report results obtained by combining the Temporal Subspace
Clustering (TSC) algorithm of [63] with the CES segmentation
of [12] (CES-TSC), yielding F-score values 4 percentage
points below the proposed CES-DGE.

In Table III, we provide comparisons between our proposed
approach and CES-VCP for different values of tolerance.
We can observe that CES-DGE achieves systematically better
results than CES-VCP in terms of F-score for all values of
tolerance. These improvements with respect to the state of the
art reach up to 4 percentage points. Besides, Rec/Prec values
for CES-DGE are more balanced and within ±3 percentage

points of the values for F-score for all tolerance levels (±8
percentage points of F-score for CES-VCP).

Overall, this leads to conclude that the proposed CES-
DGE approach is effective in learning event representations for
image sequences and yields robust segmentation results. These
results are even more remarkable considering that CES-DGE
learns the feature representation from the image sequence
itself, without relying on any training dataset.

D. Comparative results for EDUBSeg-Desc dataset

Table IV summarizes the event boundary detection per-
formance of the proposed CES-DGE approach and of CES-
VCP for the larger EDUBSeg-Desc dataset. Since CES-VCP
reported state-of-the-art results with F-score values 16 per-
centage points above other methods, cf., Table II, we omit
comparison with other methods in what follows for space
reasons. The same (hyper)parameter values as for EDUBSeg
are used, without any modification. It can be observed that the
performance for both CES-VCP and CES-DGE are inferior
to those reported for the EDUBSeg dataset in the previous
section, for all tolerance values. These results corroborate that
EDUBSeg-Desc contains more difficult image sequences than
EDUBSeg (see Section IV-A and [20]). Interestingly, while the
F-scores achieved by CES-VCP are up to 12 percentage points
(and more than 11 percentage points on average) below that

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 9

Method CES-VCP CES-DGE
Tolerance F-score Rec Prec F-score Rec Prec
τ = 5 0.57 0.59 0.60 0.65 0.67 0.65
τ = 4 0.56 0.58 0.58 0.63 0.66 0.63
τ = 3 0.52 0.54 0.54 0.60 0.62 0.60
τ = 2 0.49 0.50 0.50 0.54 0.56 0.54
τ = 1 0.43 0.44 0.45 0.45 0.46 0.45

TABLE IV
COMPARISON OF CES-DGE WITH STATE-OF-THE-ART CES-VCP FOR

DIFFERENT VALUES OF TOLERANCE FOR EDUBSEG-DESC.

reported for EDUBSeg, the F-scores of the proposed CES-
DGE approach are at worst 5 percentage points smaller. In
other words, CES-DGE yields up to 8 percentage points (on
average 6 percentage points) better F-score values than the
state of the art for the EDUBSeg-Desc dataset. Our CES-
DGE also yields systematically better Rec and Prec values,
for all levels of tolerance. Overall, these findings corroborate
those obtained for the EDUBSeg dataset and confirm the
excellent practical performance of the proposed approach.
In particular, the results suggest that the proposed approach
effectively avoids domain adaptation problems since it does
not rely on a training dataset. It is interesting to note that
CES-TSC also yields quite robust results (F-score/Rec/Prec
values 0.63/0.60/0.70 for τ = 5) for similar reasons, yet with
performance significantly below our CES-DGE.

E. Ablation study
Graph initialization. We investigate performance obtained
by applying the boundary detector to the features obtained
at different stages of our method. First, the original features
X (denoted CES-raw) and the features X̂0 obtained by ap-
plying NLmeans on the temporal dimension (denoted CES-
NLmeans-1D), both of dimension n = 2048. Second, the
initial embedded features X̃0 (denoted CES-Embedding) and
the features obtained after running the DGE main loop for
K = 2 iterations (denoted CES-DGE), both of dimension
d = 15. The results obtained for the EDUBSeg dataset are
reported in Table V. They indicate that CES-NLmeans-1D
increases F-score by 8 percentage points w.r.t. CES-raw, and
CES-Embedding adds another 1 percentage points in F-score.
This confirms that the graph initialization and the reduction of
the dimension of the graph representation is beneficial. CES-
DGE gains an additional 9 percentage points in F-score value,
hence significantly improves upon this initial embedding. An
illustration of the effect of the graph initialization and of the
DGE steps for EDUBSeg Subject 1 Day 3 is provided in
Figure 4. It can be observed how the boundaries between
temporally adjacent frames along the diagonal in the graph
are successively enhanced as the original features X (column
1) are first replaced with the denoised version X̂0 (column
2), then with the embedded features X̃0 (column 3), and
finally with the DGE representation estimates (columns 4 &
5 for DGE iterations i = 1, 2, respectively). Moreover, the
boundaries of off-diagonal blocks, which indicate frames at
different temporal locations that presumably belong to the
same community, are sharpened.
DGE core operations. In Table VI, we report the perfor-
mance that is obtained on the EDUBSeg dataset when the

Method F-score Rec Prec
CES-raw 0.52 0.56 0.56

CES-NLmeans-1D 0.60 0.63 0.61
CES-Embedding 0.61 0.61 0.65

CES-DGE 0.70 0.70 0.72
TABLE V

CES-DGE ABLATION STUDY FOR EDUBSEG AND TOLERANCE τ = 5.

Deactivated DGE parameter α = 0 p = 0 η = 0 µ = 0
F-score −0.69 −0.69 −0.68 −0.67

difference with full DGE (0.70) −0.01 −0.01 −0.02 −0.03
TABLE VI

F-SCORES OBTAINED WHEN SINGLE CORE STEPS ARE REMOVED FROM
DGE (INDICATED BY A ZERO VALUE FOR THE RESPECTIVE PARAMETER).

different operations in the DGE core iterations are removed
one-by-one by setting the respective parameter to zero: graph
embedding update regularization (α), edge local averaging (p),
temporal edge weighting (η), and extra-cluster penalization
(µ). It is observed that the overall DGE F-score drops by 1
to 3 percentage points when one single of these operations is
deactivated (versus a drop of 9 percentage points from 0.70 to
0.61 when no DGE operation is performed at all, as discussed
in the previous paragraph). The fact that removing any of the
operations individually does not lead to a knock-out of the
DGE loop suggests that the associated individual (temporal &
semantic) model assumptions are all and independently impor-
tant. Among all operations, the largest individual F-score drop
(3 percentage points) corresponds with deactivating the extra-
cluster penalization (i.e., µ = 0). This points to the essential
role of semantic similarity in the graph model. The graph
temporal edge weighting is also effective for encoding the
temporal prior (2 percentage points F-score drop if deactivated,
i.e., η = 0). The smallest F-score difference (1 percentage
point) is associated with edge local averaging (i.e., p = 0).
To improve this additional temporal regularization step, future
work could use nonlocal instead of local averaging, or learnt
kernels.

F. Generalization capabilities

Human Motion Segmentation. To study the generaliza-
tion capabilities of DGE to learn representations suitable for
temporal segmentation beyond first-person image sequences,
we applied it to two well established benchmark datasets for
Human Motion Segmentation (HMS), Keck [64] and MAD
[65]. These datasets consist of 3rd person shots with static
background of a single person acting short motions, captured
at high temporal resolution. Here, events correspond with
typical motions (e.g., jumping, walking), and our approach
models frames corresponding with a sequence of body poses
of a motion (e.g., squad+standing+squad+. . .) as semantically
related. The Keck and MAD datasets have been chosen among
the four HMS benchmarks used by the state-of-the-art works
because they are considered particularly challenging due to
variable background (Keck) and large number of motions
and subjects (MAD), respectively [66], [67]. The state of
the art for HMS has been reported in [66] using a Low
Rank Transfer subspace (LRT) model, and very recently in

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 10

Dataset Keck MAD
Method ACC NMI ACC NMI
TSC 0.48 0.71 0.56 0.77
LRT 0.55 0.82 0.60 0.82
MTS 0.60 0.83 0.62 0.83
DGE 0.72 0.83 0.67 0.82

TABLE VII
COMPARISON WITH STATE OF THE ART FOR HUMAN MOTION

SEGMENTATION FOR THE KECK AND MAD BENCHMARK DATASETS
(BASELINES TAKEN FROM [66] AND [67]).

[67] using a Multi-mutual transfer subspace learning (MTS)
model. We use the same HOG features as therein1. Unlike
[66] and [67], we use the same set of parameters for both
datasets. Moreover, with respect to the previous sections, we
only updated the embedding dimension and temporal prior
(to d = 35, and p = 50, using grid search) and maintain
the same values as above for the remaining hyperparameters
(K = 2, NC = 10, α = 0.1, η = 0.3, µ = 0.1). Results
are reported in Table VII in terms of Clustering Accuracy
(ACC) and Normalized Mutual Information (NMI). Our DGE
achieves state-of-the-art performance also for this different
problem. This shows that it is a general framework that can
be used in other contexts.
Computational cost. DGE has complexityO

(
N2
)

since all
of the operations in Algorithm 1 have at most that complexity.
To give a concrete example of execution time, it required
∼2 minutes on a standard Dell Precision 7920 Tower with
one NVIDIA Titan XP to process the EDUB-Seg dataset (20
sequences with a total of 18, 735 frames).

V. CONCLUSION

This paper proposed a novel approach to learn representa-
tions of events in low temporal resolution image sequences,
named Dynamic Graph Embedding (DGE). Unlike state-of-
the-art work, which requires (large) datasets for training the
model, DGE operates without any training set and learns the
temporal event representation for an image sequence directly
from the sequence itself.To this end, we introduced an original
model based on the assumption that the sequence can be
represented as a graph that captures both the temporal and the
semantic similarity of the images, which is understood here
as similarity in terms of high-level visual features. The key
novelty of our DGE approach is then to learn the structure of
this unknown underlying graph jointly with a low-dimensional
graph embedding. Experimental results have shown that DGE
yields robust and effective event representations for temporal
segmentation. It outperforms the state of the art in terms of
event boundary detection precision, improving F-score values
by 1 and 8 percentage points on the EDUBSeg and EDUBSeg-
Desc event segmentation benchmark datasets, respectively.
Moreover, we showed the generalization capabilities of the
proposed DGE to the problem of Human Motion Segmen-
tation. Future work will include exploring the use of more
sophisticated methods than the k-means algorithm in the
semantic similarity estimation step, and the study of extensions

1https://github.com/wanglichenxj/Low-Rank-Transfer-Human-Motion-
Segmentation

and applications in the field of video analysis such as video
and motion segmentation, action detection, and action proposal
generation.

REFERENCES

[1] I. Koprinska and S. Carrato, “Temporal video segmentation: A survey,”
Signal Processing: Image Communication, vol. 16, no. 5, pp. 477–500,
2001.

[2] A. G. Money and H. Agius, “Video summarisation: A conceptual
framework and survey of the state of the art,” Journal of Visual
Communication and Image Representation, vol. 19, no. 2, pp. 121–143,
2008.

[3] A. Garcia del Molino, C. Tan, J.-H. Lim, and A.-H. Tan, “Summarization
of egocentric videos: A comprehensive survey,” IEEE Transactions on
Human-Machine Systems, vol. 47, no. 1, pp. 65–76, 2017.

[4] W.-H. Lin and A. Hauptmann, “Structuring continuous video recordings
of everyday life using time-constrained clustering,” in Multimedia Con-
tent Analysis, Management, and Retrieval 2006, vol. 6073. International
Society for Optics and Photonics, 2006, p. 60730D.

[5] A. R. Doherty, C. Ó Conaire, M. Blighe, A. F. Smeaton, and N. E.
O’Connor, “Combining image descriptors to effectively retrieve events
from visual lifelogs,” in Proc. 1st ACM Int. Conf. on Multimedia
information retrieval, 2008, pp. 10–17.

[6] A. R. Doherty, D. Byrne, A. F. Smeaton, G. J. Jones, and M. Hughes,
“Investigating keyframe selection methods in the novel domain of
passively captured visual lifelogs,” in Proc. Int. Conf. on Content-based
image and video retrieval, 2008, pp. 259–268.

[7] E. Talavera, M. Dimiccoli, M. Bolanos, M. Aghaei, and P. Radeva, “R-
clustering for egocentric video segmentation,” in Proc. Iberian Conf.
Pattern Recognition and Image Analysis, 2015, pp. 327–336.

[8] F. Paci, L. Baraldi, G. Serra, R. Cucchiara, and L. Benini, “Context
change detection for an ultra-low power low-resolution ego-vision
imager,” in Proc. IEEE European Conf. Computer Vision Workshops
(ECCVW), 2016, pp. 589–602.

[9] J. Lin, A. G. del Molino, Q. Xu, F. Fang, V. Subbaraju, and J.-H. Lim,
“Vci2r at the ntcir-13 lifelog semantic access task,” Proc. NTCIR-13,
Tokyo, Japan, 2017.

[10] S. Yamamoto, T. Nishimura, Y. Akagi, Y. Takimoto, T. Inoue, and
H. Toda, “Pbg at the ntcir-13 lifelog-2 lat, lsat, and lest tasks,” Proc.
NTCIR-13, Tokyo, Japan, 2017.

[11] M. Dimiccoli, M. Bolaños, E. Talavera, M. Aghaei, S. G. Nikolov, and
P. Radeva, “Sr-clustering: Semantic regularized clustering for egocentric
photo streams segmentation,” Computer Vision and Image Understand-
ing, vol. 155, pp. 55–69, 2017.

[12] A. Garcia del Molino, J.-H. Lim, and A.-H. Tan, “Predicting visual con-
text for unsupervised event segmentation in continuous photo-streams,”
in Proc. 26th ACM Int. Conf. on Multimedia. ACM, 2018, pp. 10–17.

[13] C. Dias and M. Dimiccoli, “Learning event representations by encoding
the temporal context,” in Proc. IEEE European Conf. on Computer
Vision Workshops (ECCVW), 2018, pp. 587–596.

[14] M. Dimiccoli and H. Wendt, “Enhancing temporal segmentation by
nonlocal self-similarity,” in Proc. IEEE Int. Conf. on Image Processing
(ICIP), Taipei, Taiwan, 2019.

[15] G. Palou and P. Salembier, “Hierarchical video representation with
trajectory binary partition tree,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013, pp. 2099–
2106.

[16] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Proc. of the
IEEE International Conference on Computer Vision (ICCV), 2015, pp.
4489–4497.

[17] J. Wang, J. Jiao, L. Bao, S. He, Y. Liu, and W. Liu, “Self-supervised
spatio-temporal representation learning for videos by predicting motion
and appearance statistics,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 4006–4015.

[18] M. Bolanos, M. Dimiccoli, and P. Radeva, “Toward storytelling from
visual lifelogging: An overview,” IEEE Transactions on Human-Machine
Systems, vol. 47, no. 1, pp. 77–90, 2017.

[19] A. C. Schapiro, T. T. Rogers, N. I. Cordova, N. B. Turk-Browne, and
M. M. Botvinick, “Neural representations of events arise from temporal
community structure,” Nature Neuroscience, vol. 16, no. 4, p. 486, 2013.

[20] M. Bolaños, Á. Peris, F. Casacuberta, S. Soler, and P. Radeva, “Egocen-
tric video description based on temporally-linked sequences,” Journal of
Visual Communication and Image Representation, vol. 50, pp. 205–216,
2018.

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, AUG 2019 11

[21] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[22] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein, “Learning shape
correspondence with anisotropic convolutional neural networks,” in
Advances in Neural Information Processing Systems, 2016, pp. 3189–
3197.

[23] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst, “Geodesic
convolutional neural networks on riemannian manifolds,” in Proc. of the
IEEE international conference on computer vision workshops (ICCVW),
2015, pp. 37–45.

[24] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Pro-
ceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[25] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in Proc. Int. Conf. on Machine Learning (ICML),
2016, pp. 2014–2023.

[26] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc.
Advances in Neural Information Processing Systems (NeurIPS), 2016,
pp. 3844–3852.

[27] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning
on graphs: Methods and applications,” IEEE Data Engineering Bulletin,
2017.

[28] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J.
Smola, “Distributed large-scale natural graph factorization,” in Proc.
22nd Int. Conf. on World Wide Web. ACM, 2013, pp. 37–48.

[29] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding,” in Proc. 22nd ACM SIGKDD Int. Conf.
on Knowledge discovery and data mining, 2016, pp. 1105–1114.

[30] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in Proc. 24th ACM Int. Conf. on
information and knowledge management, 2015, pp. 891–900.

[31] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proc. 20th ACM SIGKDD Int. Conf. on
Knowledge discovery and data mining, 2014, pp. 701–710.

[32] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge
discovery and data mining, 2016, pp. 855–864.

[33] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in Proc. 24th Int. Conf. on World
Wide Web, 2015, pp. 1067–1077.

[34] H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical repre-
sentation learning for networks,” in Proc. 32nd AAAI Conf. on Artificial
Intelligence, 2018.

[35] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph
representations,” in Proc. 30th AAAI Conf. on Artificial Intelligence,
2016.

[36] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge discovery and data
mining, 2016, pp. 1225–1234.

[37] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[38] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2017, pp. 1024–1034.

[39] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[40] V. Garcia and J. Bruna, “Few-shot learning with graph neural networks,”
in Proc. Int. Conf. on Learning Representations (ICLR), 2018.

[41] M. Yeung, B.-L. Yeo, and B. Liu, “Segmentation of video by clustering
and graph analysis,” Computer vision and image understanding, vol. 71,
no. 1, pp. 94–109, 1998.

[42] J. Yuan, H. Wang, L. Xiao, W. Zheng, J. Li, F. Lin, and B. Zhang, “A
formal study of shot boundary detection,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 17, no. 2, pp. 168–186, 2007.

[43] V. Chasanis, A. Kalogeratos, and A. Likas, “Movie segmentation into
scenes and chapters using locally weighted bag of visual words,” in
Proc. ACM Int. Conf. on Image and Video Retrieval, 2009, p. 35.

[44] N. Liu, Y. Zhao, Z. Zhu, and H. Lu, “Exploiting visual-audio-textual
characteristics for automatic tv commercial block detection and segmen-
tation,” IEEE Transactions on Multimedia, vol. 13, no. 5, pp. 961–973,
2011.

[45] C. Liu, D. Wang, J. Zhu, and B. Zhang, “Learning a contextual multi-
thread model for movie/tv scene segmentation,” IEEE Transactions on
Multimedia, vol. 15, no. 4, pp. 884–897, 2013.

[46] W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank, “A survey on
visual content-based video indexing and retrieval,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 41, no. 6, pp. 797–819, 2011.

[47] K. Tang, L. Fei-Fei, and D. Koller, “Learning latent temporal structure
for complex event detection,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), 2012, pp. 1250–1257.

[48] L. H. Iwan and J. A. Thom, “Temporal video segmentation: detecting
the end-of-act in circus performance videos,” Multimedia Tools and
Applications, vol. 76, no. 1, pp. 1379–1401, 2017.

[49] V. Bettadapura, D. Castro, and I. Essa, “Discovering picturesque high-
lights from egocentric vacation videos,” in Proc. IEEE Winter Conf.
Applications of Computer Vision (WACV), 2016, pp. 1–9.

[50] J. Xu, L. Mukherjee, Y. Li, J. Warner, J. M. Rehg, and V. Singh, “Gaze-
enabled egocentric video summarization via constrained submodular
maximization,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 2235–2244.

[51] S. Huang, W. Wang, S. He, and R. W. Lau, “Egocentric temporal action
proposals,” IEEE Transactions on Image Processing, vol. 27, no. 2, pp.
764–777, 2017.

[52] E. H. Spriggs, F. De La Torre, and M. Hebert, “Temporal segmentation
and activity classification from first-person sensing,” in Proc. IEEE Int.
Conf. Computer Vision and Pattern Recognition Workshops (CVPRW),
2009, pp. 17–24.

[53] Y. J. Lee and K. Grauman, “Predicting important objects for egocentric
video summarization,” International Journal of Computer Vision, vol.
114, no. 1, pp. 38–55, 2015.

[54] Y. Poleg, C. Arora, and S. Peleg, “Temporal segmentation of egocentric
videos,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recog-
nition (CVPR), 2014, pp. 2537–2544.

[55] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Int. Conf. Computer Vision and Pattern
Recognition (CVPR), vol. 2, 2005, pp. 60–65.

[56] G. B. Giannakis, Y. Shen, and G. V. Karanikolas, “Topology identi-
fication and learning over graphs: Accounting for nonlinearities and
dynamics,” Proceedings of the IEEE, vol. 106, no. 5, pp. 787–807, 2018.

[57] J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,”
IMA Journal of Numerical Analysis, vol. 8, no. 1, pp. 141–148, 1988.

[58] X. Wang, Y. Tang, S. Masnou, and L. Chen, “A global/local affinity
graph for image segmentation,” IEEE Transactions on Image Processing,
vol. 24, no. 4, pp. 1399–1411, 2015.

[59] D.-T. Dang-Nguyen, L. Piras, M. Riegler, G. Boato, L. Zhou, and
C. Gurrin, “Overview of imagecleflifelog 2017: Lifelog retrieval and
summarization.” in CLEF (Working Notes), 2017.

[60] C. Gurrin, H. Joho, F. Hopfgartner, L. Zhou, R. Gupta, R. Albatal,
D. Nguyen, and D. Tien, “Overview of NTCIR-13 lifelog-2 task,” in
Proc. 13th Conf. on Evaluation of Information Access Technology, 2017.

[61] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Computer vision and pattern recognition (CVPR), 2016, pp. 2818–2826.

[62] D. Potapov, M. Douze, Z. Harchaoui, and C. Schmid, “Category-specific
video summarization,” in Proc. European Conf. on Computer Vision
(ECCV), 2014, pp. 540–555.

[63] S. Li, K. Li, and Y. Fu, “Temporal subspace clustering for human
motion segmentation,” in Proc. of the IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 4453–4461.

[64] Z. Lin, Z. Jiang, and L. S. Davis, “Recognizing actions by shape-
motion prototype trees,” in Proc. of the IEEE International Conference
on Computer Vision (ICCV). IEEE, 2009, pp. 444–451.

[65] D. Huang, S. Yao, Y. Wang, and F. De La Torre, “Sequential max-margin
event detectors,” in Proc. European Conf. on Computer Vision (ECCV).
Springer, 2014, pp. 410–424.

[66] L. Wang, Z. Ding, and Y. Fu, “Low-rank transfer human motion
segmentation,” IEEE Transactions on Image Processing, vol. 28, no. 2,
pp. 1023–1034, 2018.

[67] T. Zhou, H. Fu, C. Gong, J. Shen, L. Shao, and F. Porikli, “Multi-
mutual consistency induced transfer subspace learning for human motion
segmentation,” in Proc. IEEE Int. Conf. Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 10 277–10 286.

