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Self-supervision: Color reconstruction

Self-Supervision: Cycle-consistency in time

Time-cycle
Wang et al. CVPR 2019

Contrastive random walk (CRW)
Allan et al. NeurIPS 2020

MAST
Lai et al. CVPR 2020

Self-supervised Learning: A New Trend



Testing pipeline of self-supervised video object segmentation



Bridge the inconsistency between training and testing

Can we apply a fully convolutional network (FCN) method 
rather than the patch-based one during the training process?

[1] CRW, Allan et al. NeurIPS 2020

FCN has a larger receptive field
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Motivation

CRW [1] Uses patch-based method (left) to perform cycle-consistency learning (right)



CRW [1] Uses patch-based method (left) to perform cycle-consistency learning (right)

[1] CRW, Allan et al. NeurIPS 2020
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Vanilla fully convolutional cycle-consistency (FC3) learning method

Can we apply a fully convolutional network (FCN) method 
rather than the patch-based one during the training process?



Input Image Vanilla FC3 

Training loss curve

Vanilla FC3 and its Shortcut

Visualization of feature map

Affinity Matrix of 
Vanilla FC3
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Visualization of affinity matrices



Spatial transformation fully convolutional cycle-consistency learning (STFC3)
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(a) Spatial transformation and feature extraction

(b) Feature warping [2]
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[2] Spatial transformer networks, Jaderberg et al. NeurIPS 2015



Experiment

DatasetDownstream Task Number of Videos Evaluation Metrics

Pose Tracking J-HMDB 268 PCK@α

Face Landmark
Tracking 300VW 31

RMSE
(the lower is the better)

Video Object
Segmentation DAVIS2017 30 J&F

Pretrained on the unlabeled Kinetics dataset
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Experiment

CRW learns invariant patch-level region features (smooth), better for segmentation

STFC3 (ours) performs pixel-level learning (distinctive), better for keypoint tracking

Visualization of the top three PCA components of the feature map 
learned by different self-supervisedly pretrained models.



Experiment

Qualitative results of our method on J-HMDB for pose tracking



Experiment

Qualitative results of our method on 300VW for face landmark tracking 
and DAVIS-2017 for video object segmentation
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Experiment

Visualization comparison of our method with CRW

J-HMDB

300VW



Conclusion

Explore various fully convolutional cycle-consistency methods for self-
supervised video correspondence learning

Analyze the shortcut issue caused by position encoding, and propose a
spatial transformation approach to address it

Achieve state-of-the-art results on pose tracking and face landmark tracking

Future work

Contrastive learning: pixel level (ours) + frame level [1,2]

[1] DINO, Caron et al. ICCV 2021 [2] VFS, Xu et al. ICCV 2021


