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Video Analysis on Mobile Devices

e A large number of videos are captured on
mobile phones each day that are shared
various short video platforms like tik-tok,
snapchat, reels.

e In current scenario there are a range of
tools available where the user has to
manually select and try of the filters

e Theiris a necessity of automated tools to
edit the videos on mobile devices to
make them more shareable

e Intelligence capability for mobile devices

[1] Best Short Video Apps for Socializing 2021
https://www.apowersoft.com/best-short-video-apps.html




Current State of Video Understanding
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Motion Classification

Every common world human actions can be categorized into one of the following five
primitive motion type classes: linear, projectile, oscillatory, local and random - mHMDB51




Motion Classifier Architecture

e Our model architecture is inspired by Temporal Segment Networks with TSM blocks

e We sample T frames from the video and process them through a MobileNet based TSN
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[1] Temporal Segment Networks: Towards Good Practices for Deep Action Recognition

https://arxiv.org/abs/1608.00859
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Motion Classification Results

Tablel. Model Performance Comparison

Method Accuracy
Flow Baseline Classifier | 25.64
Oursseratch 38.56
OursimageNet 57.58
Ourskinetics 72.68

Table2. Ablation on number of input frames

Segments | Accuracy | MACs
1 61.76 041G
2 71.05 0.82G
3 72.68 1.23G
8 68.17 3.28G




Results on the Downstream Task of Video Retrieval
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Video Playback Style Recommendation
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Conclusions

- A novel direction for video understanding by motion type classification

- Inference time of 200ms for a 10s video clip on a Samsung S20 phone

- Learned rich motion representations that generalize well to
downstream task of video retrieval

- An application of Video Playback style recommendation system based

on predicted motion type classification



