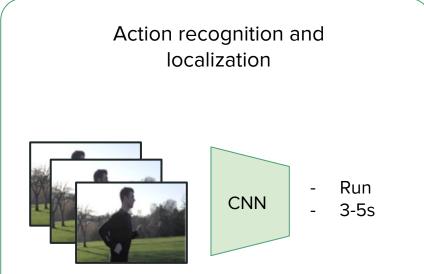
ICCV 2021 Workshop - SRVU

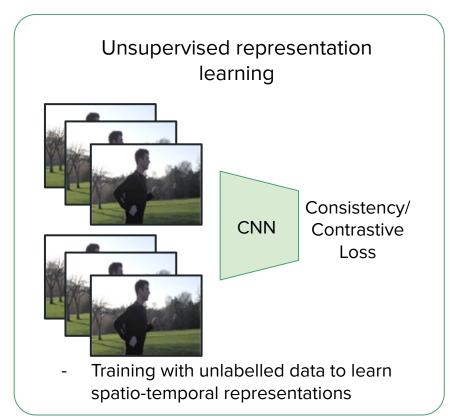
Spatio-Temporal Video Representation Learning for AI Based Video Playback Style Prediction

Rishubh Parihar, Gaurav Ramola, Ranajit Saha, Raviprasad kini, Aniket Rege, Sudha Velusamy, Samsung Bangalore

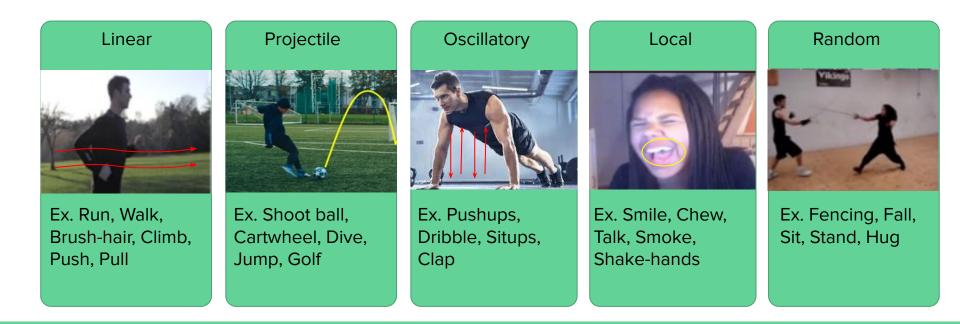
Agenda


- 1) The Relevance of Video understanding for Mobile Devices
- 2) Current State of Video understanding approaches
- 3) Motion patterns in human action videos mHMDB51 dataset
 - a) Motion Type Classifier Architecture
 - b) Quantitative Results
 - c) Video playback style recommendation
- 4) Conclusion

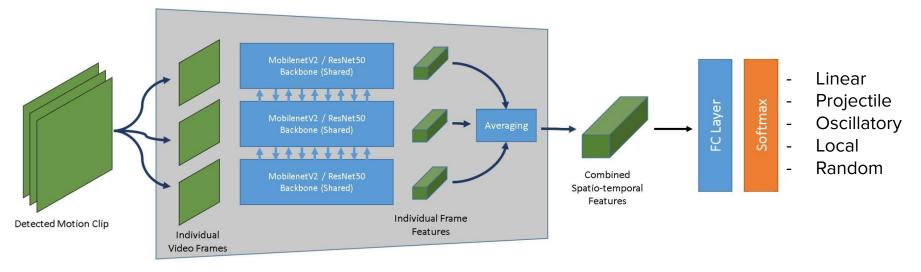
Video Analysis on Mobile Devices


- A large number of videos are captured on mobile phones each day that are shared various short video platforms like tik-tok, snapchat, reels.
- In current scenario there are a range of tools available where the user has to manually select and try of the filters
- Their is a necessity of automated tools to edit the videos on mobile devices to make them more shareable
- Intelligence capability for mobile devices

Current State of Video Understanding



- Training with large scale labeled datasets
- Supervised Training with 3D CNNs


Motion Classification

Every common world human actions can be categorized into one of the following five primitive motion type classes: linear, projectile, oscillatory, local and random - mHMDB51

Motion Classifier Architecture

- Our model architecture is inspired by Temporal Segment Networks with TSM blocks
- We sample T frames from the video and process them through a MobileNet based TSN backbone

[1] Temporal Segment Networks: Towards Good Practices for Deep Action Recognition https://arxiv.org/abs/1608.00859

Motion Classification Results

Method	Accuracy	
Flow Baseline Classifier	25.64	
Ours _{Scratch}	38.56	
OursImageNet	57.58	
Ours _{Kinetics}	72.68	

Table1. Model Performance Comparison

Table2. Ablation on number of input frames

	-	1 U	
Segments	Accuracy	MACs	
1	61.76	0.41G	
2	71.05	0.82G	
3	72.68	1.23G	
8	68.17	3.28G	

Results on the Downstream Task of Video Retrieval

Query

a)

b)

c)

d)

Top-3 retrieved results

Video Playback Style Recommendation

	Input Video Clip	Motion Type Predicted	Playback Style Assigned
Jogging		Linear	Reverse
Diving		Projectile	Boomerang
Drinking		Local	Loop
Fencing		Random	Forward

Conclusions

- A novel direction for video understanding by motion type classification
- Inference time of 200ms for a 10s video clip on a Samsung S20 phone
- Learned rich motion representations that generalize well to downstream task of video retrieval
- An application of Video Playback style recommendation system based on predicted motion type classification