

Social Fabric: Tubelet Compositions for Video Relation Detection

Shuo Chen

Zenglin Shi

Pascal Mettes

Cees G. M. Snoek

VIS Lab, University of Amsterdam

Goal: video relation detection

Input – video

Output – relation triplet subject trajectory with class predicate class object trajectory with class

Challenge

spatiotemporal localization modeling the interactions

Related works

Shang et al. MM 2017

Pose the problem and introduce first dataset

Leading approaches [Qian et al. MM 2019, Xie et al MM 2020, Su et al. MM 2020, etc.]

- 1. Generate object and subject proposals on short video snippets
- 2. Encode the proposals and predict their relation
- 3. Associate the relations over the entire video

Related works

Liu et al. CVPR 2020 forego the need for snippets.

- 1. Localize individual object and subjects tubelets throughout the entire video
- 2. Filter out unlikely pairs
- 3. Predict predicates for the remaining ones

All existing works on video relation prediction treat object proposals or tubelets as **single entities** and model their relations *a posteriori*.

All existing works on video relation prediction treat object proposals or tubelets as **single entities** and model their relations *a posteriori*.

We classify and detect predicates for **pairs** of object tublets *a priori*.

All existing works on video relation prediction treat object proposals or tubelets as **single entities** and model their relations *a posteriori*.

We classify and detect predicates for **pairs** of object tublets *a priori*. As a result, we only need two stages:

- 1. Generating interaction proposals from tubelet pairs
- 2. Predicting the appropriate predicate.

All existing works on video relation prediction treat object proposals or tubelets as **single entities** and model their relations *a posteriori*.

We classify and detect predicates for **pairs** of object tublets *a priori*. As a result, we only need two stages:

- 1. Generating interaction proposals from tubelet pairs
- 2. Predicting the appropriate predicate.

We call our tubelet representation 'social fabric'.

Two-stage network

Two-stage network

video

<u>}</u>

A

ነም እ ከተለ

Stage 1: Interaction proposals

Object detection and linking Consider all tubelet combinations Classify their 'interactivityness' per frame Watershed over all timesteps of the pair

Two-stage network

Stage 2: Predicate prediction

Encode each proposal (pair of tubelets) Final linear layer obtains predicate score Multiply with object and subject scores

Object detection and linking

Multi-modal features

Video-Language Features

Motion: spatial location features by [Su et al. MM 2020] Visual: Faster-R-CNN backbone followed by RoI pooling layer. Language: 600-dim word2vec, pre-trained on Google News. I3D: I3D with fixed dimension of 832.

Mask: generated based on bounding boxes of subject and object in tubelet pairs, following [Xie et al. MM 2020]

Social Fabric Encoding

Encoding

Layer normalize features plus linear layer Learn set of *K* interaction primitives Encode tubelet pair as primitive combination

Intuition behind encoding

We encode compositions of interaction primitives over tubelet pairs. Data-driven primitives may correspond to interactions like ``greet", ``clash" and ``fall".

an adult chasing a child

Social fabric – determine good proposals

Social fabric

Stage 2: Predicate prediction

Encode each proposal (pair of tubelets) Final linear layer obtains predicate score Multiply with object and subject scores

Shang et al, MM 2017

Datasets

ImageNet VidVRD dataset

training set: 800 videostesting set: 200 videos35 subject/object categories132 predicate categories

Ablating the features

Feature type					Rel	ation tag	ging	Relation detection			
motion	visual	language	I3D	mask	P@1	P@5	P@10	mAP	R@50	R@100	
\checkmark					50.97	39.57	31.58	6.14	6.74	8.70	
\checkmark	\checkmark				56.89	44.76	34.07	8.93	7.38	9.22	
\checkmark	\checkmark	\checkmark			59.24	47.24	35.99	9.54	8.49	10.17	
\checkmark	\checkmark	\checkmark	\checkmark		61.52	50.05	38.48	10.04	8.94	10.69	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	68.86	55.16	43.40	11.21	9.99	11.94	

Tubelet representation effectively captures multi-modal features

Ablating the Social Fabric Encoding

Clusters	1	8	32	64	128			
mAP	10.05	10.69	10.91	11.21	11.01			
	R	elation tag	gging	Relation detection				
Encoding		P@1		mAP				
average poo	oling	62.73		10.05				
transformer	ſ	63.86		10.07				
NetVLAD		65.34		10.15				
NetRVLAD)	66.80		10.55				
Social Fabr	ric	68.86		11.21				

interaction	predicate	rel	ation dete	ection	relation tagging			
proposal encoding	prediction encoding	mAP	R@50	R@100	P@1	P@5	P@10	
		6.14	6.74	8.7	50.97	39.57	31.58	
\checkmark		6.94	7.22	9.26	52.52	40.53	32.34	
\checkmark	\checkmark	8.93	9.15	11.13	54.57	43.58	34.55	

64 primitives good trade-off

Better than alternatives

Contribute to both two stages

Compared to SOTA

	ImageNet-VidVRD							VidOR				
	Relation tagging			Relation detection			Relation tagging		Relation detection			
	P@1	P@5	P@10	mAP	R@50	R@100	P@1	P@5	mAP	R@50	R@100	
Shang <i>et al</i> .	43.00	28.90	20.80	8.58	5.54	6.37	_	-	-	_	-	
Tsai <i>et al</i> .	51.50	39.50	28.23	9.52	7.05	8.67	-	-	-	-	-	
Qian <i>et al</i> .	57.50	41.00	28.50	16.26	8.07	9.33	-	-	-	-	-	
Sun <i>et al</i> .	-	-	-	-	-	-	51.20	40.73	6.56	6.89	8.83	
Su <i>et al</i> .	57.50	41.40	29.45	19.03	9.53	10.38	50.72	41.56	6.59	6.35	8.05	
Liu <i>et al</i> .	60.00	43.10	32.24	18.38	11.21	13.69	48.92	36.78	6.85	8.21	9.90	
Xie <i>et al</i> .	-	-	-	-	-	-	67.43	-	9.93	9.12	-	
This paper, features as Su et al.	57.50	43.40	31.90	19.23	12.74	16.19	54.57	43.58	8.93	9.15	11.13	
<i>This paper</i> , features as Liu <i>et al</i> .	61.00	47.50	36.60	19.77	12.91	16.32	55.40	45.74	9.13	9.36	11.30	
<i>This paper</i> , features as Xie <i>et al</i> .	-	-	-	-	-	-	68.62	53.34	11.05	9.91	11.89	
This paper, our features	62.50	49.20	38.45	20.08	13.73	16.88	68.86	55.16	11.21	9.99	11.94	

We outperform all snippet-methods as well as Liu et al. using their features Further improvements with our video-language feature set

Comparison along relation duration on VidOR

The longer the video relation, the more our performance improves.

panda chase panda

chicken in_front_of child

Conclusions

- We propose a two-stage method for video relation detection.
- We encode subjects and objects as interactions from the start.
- The social fabric encoding captures shared interaction primitives.
- Experiments show the effectiveness of our method.

Email: s.chen3@uva.nl

https://github.com/shanshuo/Social-Fabric