Semantic Role Aware Correlation Transformer For Text To Video Retrieval

Hongyuan Zhu¹

Xavier Bresson³

Joo Hwee Lim^{1,2}

¹Institute for Infocomm Research, A*STAR

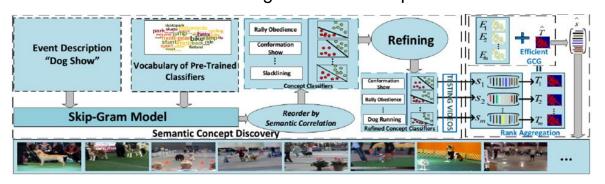
²School of Computer Science and Engineering, NTU

³Department of Computer Science, NUS

Research Problem

Background

- The amount of video available online is increasing.
 - 34K hours of video upload every day at Youtube
 - Surveillance cameras, car cameras, personal cameras
- Conventional models* are based on keywords query.
 - Limited and insufficient to retrieve fine-grained and compositional events.



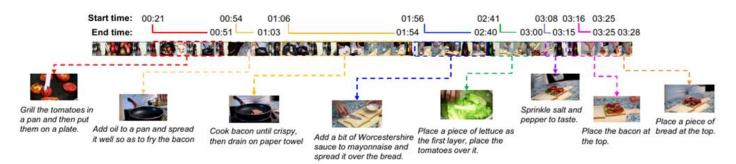
^{*} Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection, Chang et al., IJCAI'15

^{*} Composite Concept Discovery for Zero-Shot Video Event Detection, Habibian et al., ICMR'14

Task: Text to Video Retrieval

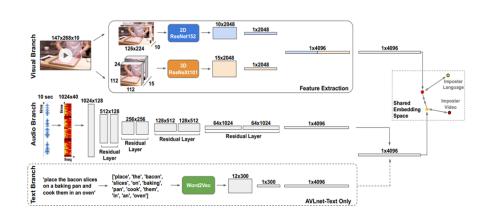
• Given a textual query, ranking all the video candidates such that the video associated with the textual query is ranked as high as possible.

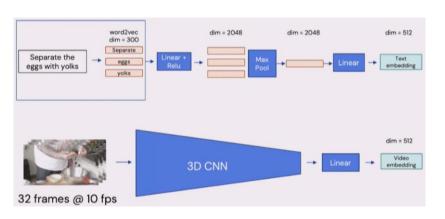
Dataset: YouCook2



- While the training set includes ~9.5k clips, the validation set has ~3.3k clips.
- Validation set is used for evaluation since the test set has no annotations.

Background Results Conclusion

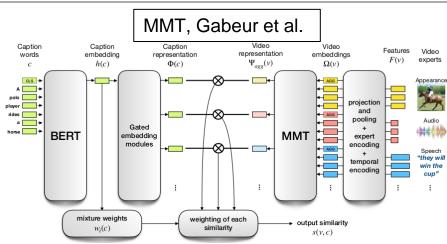




- Having only one joint embedding space causes losing fine-grained details.
- Some other papers try both global and local; however, still a semantic gap.

Attention-based

Graph Reasoning



Entities 5

Hierarchical

Textual Embedding

6

Entities

Hierarchical

Video Embedding

water

Semantic Role Graph Construction

direction

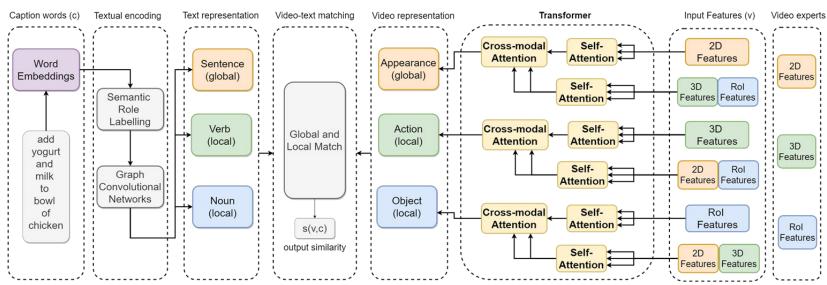
pan - LSTM

Word Contextual

Embedding

location

in the sauce pan



Task: Text-to-video retrieval

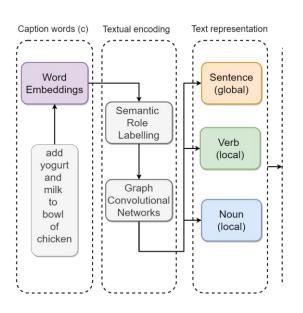
Dataset: YouCook2

Background Related Work Method Results Conclusion

Textual Encoding Part

Semantic Role Labelling

```
cut the roll with a sharp knife":
      "R00T": {
          "words": ["cut", "the", "roll", "with", "a", "sharp", "knife"],
          "spans": [0, 1, 2, 3, 4, 5, 6],
          "role": "R00T"
      "1": {
          "role": "V",
          "spans": [0],
          "words": ["cut"]
      "2": {
          "role": "ARG1",
          "spans": [1, 2],
          "words": ["the", "roll"]
      "3": {
          "role": "ARGM-MNR",
           "spans": [3, 4, 5, 6],
          "words": ["with", "a", "sharp", "knife"]
      ["1", "2", "ARG1"],
      ["1", "3", "ARGM-MNR"]
```



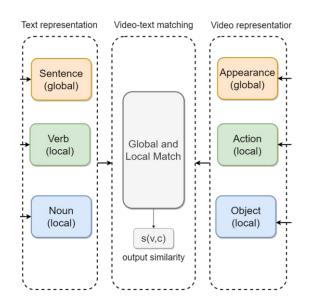
Text-Video Matching Part

Cosine similarity score for each level.

$$s(V,C) = \frac{\langle v, c \rangle}{||v||_2 ||c||_2}$$

 We average similarities and utilize contrastive ranking loss as a training objective.

$$L(v_p, c_p) = [\Delta + s(v_p, c_n) - s(v_p, c_p)] + [\Delta + s(v_n, c_p) - s(v_p, c_p)]$$



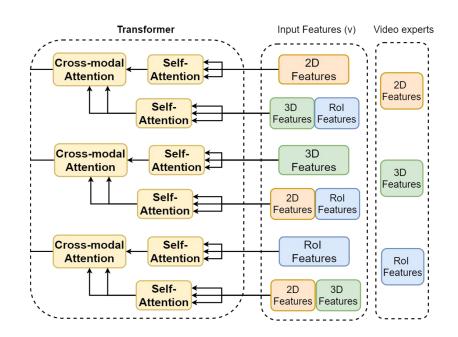
Visual Encoding Part

```
f_e = \text{Concat}(F_T, F_O)

z_e = \text{Norm}(\text{MultiHead}(f_e, f_e, f_e) + f_e)

s_e = \text{Norm}(\text{FF}(z_e) + z_e)
```

$$\begin{aligned} z_s &= \text{Norm} \big(\text{MultiHead}(F_S, F_S, F_S) + F_S \big) \\ c_e &= \text{Norm} \big(\text{MultiHead}(z_s \,,\, s_e \,,\, s_e \,) + z_s \big) \\ E_S &= \text{Norm} \big(\text{FF}(c_e) + c_e \big) \end{aligned}$$



Result

Method	Pre-training	Visual Backbone	Batch Size	R@1↑	R@5↑	R@10↑	MedR↓
Random	No	-	-	0.03	0.15	0.3	1675
Miech et al [6]	No	ResNeXt-101	-	4.2	13.7	21.5	65
HGLMM [28]	No	-	-	4.6	14.3	21.6	75
HGR [3]	No	ResNeXt-101	32	4.7	14.1	20.0	87
Ours	No	ResNeXt-101	32	5.3	14.5	20.8	77
Miech et al+FT 6	HowTo100M	ResNeXt-101	-	8.2	24.5	35.3	24
ActBert [17]	HowTo100M	ResNet-3D	-	9.6	26.7	38.0	19
MMV FAC [18]	HowTo100M+AudioSet	TSM-50	4096	11.5	30.2	41.5	16
MIL-NCE [7]	HowTo100M	S3D	8192	15.1	38.0	51.2	10

- Text-to-video retrieval comparison with SOTA approaches on YouCook2 validation set.
- Our method surpasses the SOTA methods in the first two parameters without pre-training.

Ablation

	Method	Visual Features			Feature	R@1↑	R@5↑	R@10↑	MedR↓
		Appearance	Action	Object	Dimension	K@1	K@5	K@10	Micury
	HGR [3]: Ours	2D	2D	2D	2048	4.7:4.2	13.8:13.7	19.7:19.4	86:86
	HGR 3 : Ours	2D + 3D	2D + 3D	2D + 3D	2048	4.8:4.5	14.0:13.2	20.3:20.0	85:85
	HGR 3 : Ours	2D + 3D	2D + 3D	2D + 3D	4096	4.8:4.5	14.0:13.2	20.3:20.0	85:85
Π	HGR 3 : Ours	2D	3D	RoI	2048	4.7 : 5.3	14.1 : 14.5	20.0 : 20.8	87 : 77

- Ablation studies to investigate the contributions of various feature experts at different levels.
- This confirms our insight that inter-modal correlation can be exploited with our proposed cross-modal attention mechanism to achieve better results.

Summary

- Our model surpasses a strong baseline with a high margin in all metrics.
- It also overpasses other SOTA methods in R@1, R@5 metrics.
- We think that modality-specific and modality-complement features improve accuracy at R@1 and R@5, which are more demanding and useful for real-world applications.

Thank you for watching!

https://buraksatar.github.io/

Hongyuan Zhu

Xavier Bresson

Joo Hwee Lim

