Video Autoencoder: self-supervised disentanglement
of static 3D structure and motion
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Disentangle the visual world

Movement Structure and viewpoint



Prior work

From the very beginnings of computer vision, ...

(s} ORIGINAL SCENE

FIGURE 3 A SET OF INTRINSIC IMAGES DERIVED
FROM A SINGLE MONOCHROME INTEN-
SITY IMAGE

The images are depicted as line drawings, but, in fact, would con-
tain values 3t every point, The solid lines in the Intringic images
represent discontinuities in the scene characteric: the dashed lines
represent discontinuities in its derivative. In the input image, in-
tensities correspond to the refiected light Hlux received from the
visible points in the scone. The distance image gives the range
along the line of sight from the center of projection to each vis-
ible point in the scene, The orientation image gives a vector rep-
resenting the direction of the surface normal at each point. The
reflectance image gives the albedo (the ratio of total refiected to
toral incident iflumination) at each point,

Barrow and Tenenbaum, Comput. Vis. Syst., 1978
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Prior work

Learning disentangled visual representation from auto-encoders

Convolution + Pooling

-

Unpooling (Nearest Neighbor) +
Convolution

Kulkarni et al., NIPS, 2015
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Prior work
Learning 3D from 2D supervisions
r 3D GRU memory

View Prediction

3D MaskRCNN
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Objective
In this work, we learn to separate 3D structure from Camera
Motion without any human annotations

1 3D Structure

I"pUt raw video - \/ ! Camera trajectory



Test time

The features obtained (3D structure, Camera Motion) can be used
for several downstream tasks:
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Single image

Novel view synthesis

a _ )
Raw video
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\_ Pose estimation in video )
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Single image + Raw video

Video following

*Actual results



Learning from temporal continuity of videos

Spatio-temporal continuity No spatio-temporal continuity




Learning from temporal continuity of videos

Assume that a local snippet of video is capturing a static scene

Static scene

| /)7@ (‘@6\,, .
Video snippet



Learning from temporal continuity of videos

Assume that a local snippet of video is capturing a static scene

" Video snippet
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Learning from temporal continuity of videos

Assume that a local snippet of video is capturing a static scene

Decode

" Video snippet
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Model architecture
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Model architecture

3D Encoder Traj. Encoder Decoder
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Model architecture
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Model architecture

Camera pose

3D deep voxels

Decoder
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Output image
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Training loss

 Reconstruction loss:

° Lr(Ita It) — Hlt T It”l + Lp(lta It)
 GAN loss:

. L,(1)) = — Fp(I)
* Consistency loss between deep voxels:

: Lc(th’ Vt2) = Hth o R(Vt2’ Pt2—>t1)H1
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Video Autoencoder

Results



Datasets

Replica
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Results

Novel view synthesis

Single input image
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Results

Novel view synthesis (Out-of-domain results)

Single input image Output video

A Japanese living room (out-of-distribution)
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Results

Novel view synthesis (Out-of-domain results)

Single input image Output video

“Spirited Away”
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Results

Novel view synthesis (Out-of-domain results)

Single input image Output video
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RGSUltS Comparison with previous methods
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Results Comparison with previous methods

Input image
RealEstate10K dataset é

Wiles et al.



Results

Novel view synthesis (RealEstate10K)
Novel view synthesis task with RealEstate10K
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Methods trained with
full camera poses
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Results

Novel view synthesis (Matterport3D & Replica)

Methods without any camera supervisipi

Ours

X 20.58 0.64

Methods with full camera supervision

Dosovisky et al. J 14.79 0.57 14.36 0.68
Appearance Flow J 15.87 0.53 17.42 0.66
SynSin (w/ voxel) J 20.62 0.70 19.77 0.75

SynSin (w/ point cloud) J 20.91 0.72 21.94 0.81
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Results

Camera pose estimation

Input video Trajectory Prediction
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Results

Camera pose estimation
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Comparisons on 30-frame videos
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Results

Video following

Input Image

Followed Video

Camera Shaking

Result
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Results

Video following

Input Image

.......

Followed Video

Rotating Right

Result
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Thanks!

Please see paper and website for detalls

https://zlail0.github.io/VideoAutoencoder
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