Video Autoencoder: self-supervised disentanglement of static 3D structure and motion

3D Trajectory

Zihang Lai CMU

Sifei Liu **NVIDIA**

Alexei A. Efros UC Berkeley

Xiaolong Wang UC San Diego

Disentangle the visual world

Depth

Structure and viewpoint

Prior work From the very beginnings of computer vision, ...

FIGURE 3 A SET OF INTRINSIC IMAGES DERIVED FROM A SINGLE MONOCHROME INTEN-SITY IMAGE

The images are depicted as line drawings, but, in fact, would contain values at every point. The solid lines in the intrinsic images represent discontinuities in the scene characteric; the dashed lines represent discontinuities in its derivative. In the input image, intensities correspond to the reflected light flux received from the visible points in the scene. The distance image gives the range along the line of sight from the center of projection to each visible point in the scene. The orientation image gives a vector representing the direction of the surface normal at each point. The reflectance image gives the albedo (the ratio of total reflected to total incident illumination) at each point.

(c) REFLECTANCE

(a) ORIGINAL SCENE

FIGURE 3 A SET OF INTRINSIC IMAGES DERIVED FROM A SINGLE MONOCHROME INTEN-SITY IMAGE

The images are depicted as line drawings, but, in fact, would contain values at every point. The solid lines in the intrinsic images represent discontinuities in the scene characteric; the dashed lines represent discontinuities in its derivative. In the input image, intensities correspond to the reflected light flux received from the visible points in the scene. The distance image gives the range along the line of sight from the center of projection to each visible point in the scene. The orientation image gives a vector representing the direction of the surface normal at each point. The reflectance image gives the albedo (the ratio of total reflected to total incident illumination) at each point.

Barrow and Tenenbaum, Comput. Vis. Syst., 1978

Prior work Learning disentangled visual representation from auto-encoders

Prior work Learning 3D from 2D supervisions

Objective In this work, we learn to separate 3D structure from Camera Motion without any human annotations

Input raw video

3D Structure

Camera trajectory

Test time The features obtained (3D structure, Camera Motion) can be used for several downstream tasks:

*Actual results

Learning from temporal continuity of videos

Spatio-temporal continuity

No spatio-temporal continuity

Learning from temporal continuity of videos Assume that a local snippet of video is capturing a static scene

Learning from temporal continuity of videos Assume that a local snippet of video is capturing a static scene

Learning from temporal continuity of videos Assume that a local snippet of video is capturing a static scene

11

3D Encoder

Input image

3D Encoder

Stacked image pair

Training loss

- Reconstruction loss:
 - $L_r(I_t, \hat{I}_t) = ||I_t \hat{I}_t||_1 + L_p(I_t, \hat{I}_t)$
- GAN loss:

•
$$L_g(\hat{I}_t) = -F_D(\hat{I})$$

- Consistency loss between deep voxels:
 - $L_c(V_{t1}, V_{t2}) = ||V_{t1} R(V_{t2}, P_{t2 \to t1})||_1$

Video Autoencoder

Results

17

Datasets

RealEstate10K

Matterport3D

Replica

Results **Novel view synthesis**

Single input image

Output video

RealEstate10K dataset

Results Novel view synthesis (Out-of-domain results)

Single input image

A Japanese living room (out-of-distribution)

Output video

Results Novel view synthesis (Out-of-domain results)

Single input image

Output video

"Spirited Away"

Results Novel view synthesis (Out-of-domain results)

Single input image

Bedroom in Arles, Vincent van Gogh

Output video

Results Comparison with previous methods

Input image RealEstate10K dataset

Mustikovela et al.

More artefacts

Wiles et al.

Tung et al.

Yu et al.

Ours

Ground truth 23

Results Comparison with previous methods

Input image RealEstate10K dataset

Mustikovela et al.

Wiles et al.

Tung et al.

Yu et al.

Ours

Ground truth²⁴

Results **Novel view synthesis (RealEstate10K)** Novel view synthesis task with RealEstate10K

camera intrinsics

Methods trained with full camera poses

Results Novel view synthesis (Matterport3D & Replica)

		Matterport 3D		MP3D → Replica	
Method	Pose	PSNR 1	SSIM 1	PSNR 1	SSIM 1
Methods without any camera supervision					
Ours	×	20.58	0.64	21.72	0.77
Methods with full camera supervision					
Dosovisky et al.	\checkmark	14.79	0.57	14.36	0.68
Appearance Flow	\checkmark	15.87	0.53	17.42	0.66
SynSin (w/ voxel)	\checkmark	20.62	0.70	19.77	0.75
SynSin (w/ point cloud)	√	20.91	0.72	21.94	0.81

Results Camera pose estimation

Input video

Trajectory Prediction

Results **Camera pose estimation**

Comparisons on 30-frame videos

Results Video following

Input image

Followed Video

Result

Camera Shaking

Results Video following

Input image

Followed Video

Result

Rotating Right

Please see paper and website for details

https://zlai0.github.io/VideoAutoencoder

Thanks!

