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Disentangle the visual world

Movement Depth Structure and viewpoint
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Prior work
From the very beginnings of computer vision, … 
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Barrow and Tenenbaum, Comput. Vis. Syst., 1978 Tomasi and Kanade, IJCV, 1992



Prior work
Learning disentangled visual representation from auto-encoders

Park et al., NeurIPS, 2020Liu et al., ECCV, 2020

Kulkarni et al., NIPS, 2015 Kim et al., ICML, 2018
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Prior work

Tung et al., CVPR, 2019 Nguyen-Phuoc et al., ICCV, 2019

Wiles et al., CVPR, 2020

Learning 3D from 2D supervisions
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Objective
In this work, we learn to separate 3D structure from Camera 
Motion without any human annotations
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Test time
The features obtained (3D structure, Camera Motion) can be used 
for several downstream tasks:
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Novel view synthesis Pose estimation in video Video following
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Single image Raw video Single image + Raw video

*Actual results



Learning from temporal continuity of videos
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Spatio-temporal continuity No spatio-temporal continuity



Learning from temporal continuity of videos
Assume that a local snippet of video is capturing a static scene

9

Video snippet

Frame 1

Frame 2
Frame 3

Frame 4
Frame 5

Static scene



Learning from temporal continuity of videos
Assume that a local snippet of video is capturing a static scene
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Learning from temporal continuity of videos
Assume that a local snippet of video is capturing a static scene
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3D Encoder
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Model architecture
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Model architecture
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Training loss

• Reconstruction loss: 


• 


• GAN loss:


• 


• Consistency loss between deep voxels:


•

Lr(It, ̂It) = ∥It − ̂It∥1 + Lp(It, ̂It)

Lg( ̂It) = − FD( ̂I)

Lc(Vt1, Vt2) = ∥Vt1 − R(Vt2, Pt2→t1)∥1

16



Video Autoencoder
Results 

17



Datasets
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RealEstate10K Matterport3D Replica



Results
Novel view synthesis
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Single input image Output video

RealEstate10K dataset



A Japanese living room (out-of-distribution)

Single input image Output video

Novel view synthesis (Out-of-domain results)
Results
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Novel view synthesis (Out-of-domain results)
Results

Single input image Output video

“Spirited Away”



Bedroom in Arles, Vincent van Gogh

Single input image Output video

Novel view synthesis (Out-of-domain results)
Results
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Comparison with previous methods
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Wiles et al. Ours Ground truth
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Wiles et al.
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Results
Novel view synthesis (RealEstate10K)
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Novel view synthesis task with RealEstate10K

PS
N

R

2

6

10

14

18

22

26

30

StereoMag
Single-view MPIs

SynSinSynSin (w/ voxel)
GRNN

Appearance Flow GQN

Dosovisky et al.

P^2-NetMonoDepth2
SfMLearner

Ours

SSV

Methods without  
any camera supervision

Methods trained with 
camera intrinsics

Methods trained with 
full camera poses

191.9 %



Results
Novel view synthesis (Matterport3D & Replica)
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Matterport 3D MP3D → Replica

Method Pose PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Methods without any camera supervision

Ours × 20.58 0.64 21.72 0.77

Methods with full camera supervision

Dosovisky et al. √ 14.79 0.57 14.36 0.68

Appearance Flow √ 15.87 0.53 17.42 0.66

SynSin (w/ voxel) √ 20.62 0.70 19.77 0.75

SynSin (w/ point cloud) √ 20.91 0.72 21.94 0.81



Input video Trajectory Prediction

27

Results
Camera pose estimation



Results
Camera pose estimation
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Comparisons on 30-frame videos
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Input image Followed Video Result

Camera Shaking

Video following
Results
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Input image Followed Video Result

Rotating Right

Video following
Results

30



Thanks!

Please see paper and website for details
https://zlai0.github.io/VideoAutoencoder 31


