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Diversely-Supervised Visual Product Search

WILLIAM THONG and CEES G. M. SNOEK, University of Amsterdam, the Netherlands

This article strives for a diversely supervised visual product search, where queries specify a diverse set of la-

bels to search for. Where previous works have focused on representing attribute, instance, or category labels

individually, we consider them together to create a diverse set of labels for visually describing products. We

learn an embedding from the supervisory signal provided by every label to encode their interrelationships.

Once trained, every label has a corresponding visual representation in the embedding space, which is an ag-

gregation of selected items from the training set. At search time, composite query representations retrieve

images that match a specific set of diverse labels. We form composite query representations by averaging

over the aggregated representations of each diverse label in the specific set. For evaluation, we extend exist-

ing product datasets of cars and clothes with a diverse set of labels. Experiments show the benefits of our

embedding for diversely supervised visual product search in seen and unseen product combinations and for

discovering product design styles.
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1 INTRODUCTION

The objective of this article is to retrieve specific images of products, such as cars or clothes.
Searching for product images has a long tradition in computer vision and multimedia, cover-
ing query-by-instance [5, 23, 28, 40, 60], query-by-category [6, 9, 12, 16], query-by-attribute
value [32, 47, 64, 74, 81], or query-by-description [27, 37, 68]. A more targeted search strategy has
been proposed recently, in which a query-by-sentence aims to modify attribute values [1, 19, 66, 80]
or to generate product instances [2, 82]. While these previous works consider the similarity of in-
stance, category, and attribute labels individually, we aim to integrate them altogether to enable a
more expressive product search.

We are inspired by recent works on diverse supervision [53, 73], which define auxiliary labels in
separate branches to benefit a primary task. Ruder et al. [53] show the benefits of part-of-speech
tagging as auxiliary labels for several natural language processing problems. Ye et al. [73] leverage
image-level, box-level, and pixel-level annotations jointly for instance segmentation. Encouraged
by these seminal works, we introduce diverse supervision to visual product search. We define
the search for a given diverse set of labels as our primary task. To achieve this, we learn visual
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representations for attribute, instance, and category labels altogether in an integrated embedding
space for a product retrieval task.

Our main contribution is the introduction of diversely supervised visual product search, where
the objective is to search for product images that match to a specific set of diverse labels. For ex-
ample, we may want to retrieve images of “a shirt with long sleeves and a stripe print,” which
composes a set of three different labels. For this purpose, we derive an embedding space where
interrelations among labels result in interrelated representations. Training relies on a diverse su-
pervision of attribute, instance, and category labels to describe images through a diverse represen-
tation. For every label, we compute a representation by aggregating the corresponding items in
the training set. We propose an evaluation based on composite queries for diversely supervised
product search. We represent composite queries by averaging the aggregated visual representa-
tions of each diverse label of the specific set. As such, we create two diversely labeled datasets,
which build upon existing clothes [40] and cars datasets [33, 72]. Evaluation on these two datasets
shows the benefits of our embedding for diversely supervised product search in seen and unseen
settings and for discovering the typicality effect of product styles. All source code and setups are
released to foster further research in diversely supervised visual product search.1

2 RELATED WORK

2.1 Visual Product Search

Visual product search has attracted a lot of interest from social media platforms [25, 76, 78] or
online e-retailers [71, 79], as they need to recommend products to users. In multimedia and com-
puter vision applications, this interest in visual product search has been translated into different
retrieval problems. Each problem comes with its own challenge and offers new ways to search for
products.

One line of work follows the traditional instance retrieval problem where an example image is
used as a query. The objective is to retrieve images of the same product in a gallery set within
the same domain [40, 60] or across domains [5, 23, 28, 38, 40]. Product categories can also be
related to each other to retrieve complementary products for recommendation by capturing a
global description of style [22, 29, 45, 65].

Another line of work covers image captioning where a description is matched to an im-
age [27, 37, 68]. The idea is to learn a multimodal embedding where text and image representations
are aligned together [27]. Grounding words in the image is particularly important to capture the
interactions between both modalities [37, 68]. In this article, the search task is complementary to
text-image retrieval, as we consider an unordered set with a varying number of labels instead of a
fixed description sentence.

Finally, another line of work explores relevance feedback to integrate input from the user. This
can consist of a comparison of product pairs to assess the relative strength of attributes [32, 47, 74],
to verify that they exhibit the same attribute value [64, 81], or indicate a location of attribute
interest [24]. Alternatively, the user can manipulate one attribute value to retrieve [1, 19, 66, 80]
or to generate [2, 82] the targeted product. In this article, we introduce a complementary problem:
we search for products that match to a specific, yet diverse, set of labels.

2.2 Diverse Labels

Searching for a diverse set of labels has mainly focused on describing images with multiple binary
attributes. Multi-attribute queries are used to search for images of faces [34, 56, 58] by describing

1https://github.com/twuilliam/diverse-search.
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the absence or presence of facial traits. The conjunction of positive binary attribute values has
also proven to be useful in animal categorization, in a retrieval setting [49] or a zero-shot classifi-
cation setting [3, 14, 35]. While attributes are important to describe objects, they are not specific
enough for producing a product search [15]. Different from these works, we aim to learn (a) im-
age similarities through a diverse set of labels that go beyond attributes by including category
and instance labels; and (b) an embedding space that encodes every label with real-valued vector
representations rather than binary representations.

Structured queries have also been proposed to capture a diverse set of relations for complex
scene retrieval. Sentence queries go beyond simple keywords to capture relations among ob-
jects [17, 55, 66, 67]. Graph queries structure explicitly these relations [8, 26, 36]. Paragraph queries
enable the retrieval of an image sequence to illustrate a story [30, 50]. In this work, we rely on a
diverse set of label vocabularies to structure product retrieval. We form composite query represen-
tations by averaging over the visual representations of the desired labels to search for.

2.3 Diverse Representations

Encoding multiple labels into an embedding space is usually done through two different ap-
proaches. One approach is to learn a global representation of images [40, 72] to classify categories
and attribute values. An alternative approach is to learn a subspace for each attribute to create dis-
tinct and disentangled similarities [64]. Variants of this approach enhance the backbone network
to modulate channels either with a learned real-valued vector to promote constructive interfer-
ence [81] or by a fixed binary mask to model task relationships in a non-parametric manner [62].
Yet, these approaches are restricted to comparing attribute [64, 64] or instance [40, 72] labels. In
this article, we propose to encode attribute, instance, and category labels in an integrated manner
by explicitly establishing their interrelationships.

3 METHOD

3.1 Problem Statement

During the training, we are given a training set of product images Xtr ain . Each image x in the
training set comes along with a diverse set of labels. In particular, we are interested in the cat-
egory label y ∈ C, the label v of attribute k ∈ Ak , and the instance label i ∈ Itr ain . C is the
category vocabulary ofC product categories. As products can express multiple attributes, we con-
sider K different attribute vocabulariesAk withAk attribute values each. Hence, images also have
multiple attribute labels, forming multiple tuples (k,v ) with k = 1, . . . ,K and v = 1, . . . ,Ak .
Itr ain is the set of instances in the training set. Instances are an integral part of visual products.
Images of the same instance usually differ by a different viewpoint or background. Hence, the in-
stance label enforces images of the same product to be close to each other. Overall, we leverage all
{C,A1, . . . ,AK ,Itr ain } labels to provide a diverse supervisory signal to the model during training.

During the evaluation, we are given a gallery set of images Xдal , which originates from a sep-
arate set of products. Formally, Itr ain ∩ Iдal = ∅. The gallery set Xдal shares the same category
vocabulary C and K attribute vocabularies Ak with the training set Xtr ain . As such, these vocab-
ularies serve to build a set of labels for describing composite queries used for retrieving product
images. An example of such a search is to retrieve clothes images that match “a shirt with long

sleeves and a stripe print,” where the set of labels comprises one product category and values for
two different attributes. Separating the instances in the gallery setXдal from the training setXtr ain

allows to evaluate the generalization ability of the model on new products that express both seen
and unseen combinations of categorical and attribute values.
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3.2 Diversely Supervised Embedding

We propose to learn a diversely supervised embedding space where Euclidean distances capture
label similarities. The embedding space is motivated by the definition of attribute, instance, and
category for describing products: (a) products are instances of particular categories and (b) at-
tributes characterize visual properties of products. For example, a “3-Series sedan” is an instance
of the “BMW” car category with “4 doors” and “5 seats” attributes. In this context, attribute and
instance labels are highly interrelated to each other because attributes qualify instances. Our tech-
nical contribution lies in how to explicitly encode these label definitions in the diversely supervised
embedding space.

To learn a representation for each label, we rely on a cross-entropy loss with softmax embed-
ding [39, 46, 59]. While originally proposed for either instance retrieval [39, 46] or few-shot learn-
ing [59], we develop a variant for learning a representation from a diverse set of labels. Different
from the commonly used contrastive [11, 18] or triplet [57, 69] losses, the proposed loss does not
require any intricate sampling, which makes the training with diverse supervision much simpler.
We derive below how to learn representations for each label type in the embedding space.

Attribute representations. We encode attribute labels in subspaces, one per attribute. A dataset
with K attributes results in an embedding with K subspaces. Let h = fθ (x) be the features h of an
image x from a convolutional network f with trainable parameters θ . The idea is to learn a linear
projection of the features h in multiple separate subspaces to encode the representation for each
attribute k = 1, . . . ,K in a representation zAk

∈ Rd :

zAk
=Wk h + bk , (1)

where Wk and bk are the weights and biases, respectively. We learn the attribute representation
based on the cross-entropy loss with softmax embedding:

LAk
= − log

exp(−‖zAk
− ak,v ‖)∑

z∈ZAk

exp(−‖zAk
− ak,z ‖)

, (2)

where ‖ · ‖ is the Euclidean distance, ZAk
denotes the set of all the latent prototypes ak,v ∈ Rd

of attribute k . The softmax embedding function provides a probability of the attribute represen-
tation zAk

to be recognized as the value v of attribute k . At each step, the model pulls zAk
to its

corresponding latent prototype ak,v , and pushes it away from the prototypes of other values ak,z .

Instance representations. We establish an interrelation between instance and attribute represen-
tations. As attribute labels qualify product instances, we encode this property in the embedding
space. The instance representation zI ∈ RD with D = K ·d corresponds to the concatenation of all
attribute subspaces:

zI =

K⋃

k=1

[zAk
], (3)

where
⋃

[·] is the vector concatenation operator. Similarly, we learn the instance representation
based on the cross-entropy loss with softmax embedding:

LI = − log
exp(−‖zIk − pi ‖)∑

z∈ZI
exp(−‖zIk − pz ‖)

, (4)

where ZI denotes the set of all the latent instance prototypes pi ∈ RD .
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Fig. 1. Diversely supervised embeddings. We consider attributes (blue), category (yellow), and instance (pink)

representations. Given the output features of a convolutional network, we learn multiple linear projections

W to an embedding space. (a) The triple grouping makes the embedding axis-aligned on attributes for both

instances and categories. Average representations of instances form category representations. (b) The dual

grouping treats category representations in a separate subspace.

Category representations. We propose two different variants to encode the category labels, as il-
lustrated in Figure 1: (a) the triple grouping ensures that representations from instances of the same
category are close to each other (Figure 1(a)), while (b) the dual prefers to encode the category la-
bels separately (Figure 1(b)). We also learn the category representation based on the cross-entropy
loss with softmax embedding:

LC = − log
exp(−‖zC − cy ‖)∑

z∈ZC
exp(−‖zC − cz ‖)

, (5)

where ZC denotes the set of all latent category prototypes cy . In the triple grouping, category rep-

resentations are a concatenation of attribute subspaces zC ∈ RD . Hence, zC is also a concatenation
of a series of zAk

, just like zI . Though, we impose a constraint on ZC such that grouping instance
representations form category representations. In other words, without the loss on zC instance rep-
resentations would be free to organize themselves in the embedding space. Formally, the category
representation corresponds to:

cy =
1

|Y|
∑

i ∈Y
pi , (6)

where Y is the set of all latent instance prototypes of the category y. In the dual grouping, they
are linearly projected to their own subspace zC ∈ Rd .

The grouping motivation differs by the assumptions on how to relate instance, category, and
attribute labels. We assume that attributes qualify instances, and categories emerge by grouping
instances. This leads to the triple grouping, where all three types of labels are interrelated. The
dual grouping relaxes the category assumption by only interrelating attributes and instances. The
former incorporates the fact that categories and instances play opposite roles: Categories force
the embedding to be agnostic to instances, while instances force the embedding to focus on fine-
grained differences making categories harder to learn.

Training. The training objective of the diversely supervised embedding corresponds to a mini-
mization of a weighted sum of representations for each type of labels:

L = λILI +
λA

K

∑

k

LAk
+ λCLC + λR ‖z‖2, (7)

where λI , λA, and λC denote tradeoff hyperparameters to control the contribution of each type of
label. Some images might not express all attributes K defined in the dataset, e.g.,, a skirt does not
have a sleeves length attribute. In this case, the contribution of the missing attribute in Equation (7)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 18, No. 1, Article 13. Publication date: January 2022.



13:6 W. Thong and C. G. M. Snoek

is ignored. We also apply an �2 regularization on the final representation z, which encodes all label
types. In the triple grouping, the final representation is z = zI ∈ RD while in dual, z = [zI ; zC ] ∈
R

(K+1) ·d .

Prototype updates. To design the probabilistic model, we take inspiration from the prototype
literature [39, 46, 59], where the general idea is to apply a softmax over distances to prototypes.
Different from prototypical networks [59], we consider prototypes as latent parameters, which are
initialized randomly and updated throughout the training like any other neural network parame-
ters. In other words, the backward pass also includes the partial derivative of the loss with respect
to all latent prototypes. This differentiates us from prototypical networks [59]. Indeed, rather than
defining prototypes as the average of support image representations, our prototypes are latent
representations that are updated during training. Compared to a classification setting [59], no sup-
port images are present in retrieval, which is why we design prototypes as latent representations
as usually done in instance retrieval [46, 77].

Implementation details. The backbone network relies on ResNet50 [21] pre-trained on Ima-
geNet [54]. To produce the embedding space, the classification layer is removed and replaced by
the multiple linear projections with a random weight initialization. Latent prototypes are also ini-
tialized with random weights. During training, the model minimizes the loss function described
in Equation (7) using the Adam stochastic optimizer algorithm [31]. Images are cropped given
their bounding box labels and resized to 224×224 and augmented with horizontal flipping. Hyper-
parameters are the following: minibatch size of 128, learning rate of 1e−4, β1 = 0.9, β2 = 0.999,
weight decay of 5e−5, and subspaces are of size d = 50. We set the tradeoffs to λI = λC = λA = 1
and λR = 1e−3. Updates of the latent prototypes operate at a learning rate 10× higher. The learning
rate undergoes a cosine annealing decay without restart [41]. We set hyper-parameters according
to the classification accuracy of attributes on the validation set. The implementation relies on the
PyTorch framework [48].

3.3 Composite Queries Representations

During the evaluation, we query the gallery set Xдal with composite queries derived from the

training set. We represent composite queries by a real-valued vector q ∈ RD of M diverse labels.
In other words, given a composite query q, the idea is to retrieve product images in the gallery set
Xдal from their visual representations z that match a specific set of M labels. To form composite
query representations, we average the representations from the training set of each m ∈ M label
individually and take the overall average. Formally, this corresponds to a per-label averaging:

q =
1

M

M∑

m=1

1

|Mm |
∑

n∈Mm

z(n), (8)

whereMm is the set of training images that exhibits label m with m = 1, . . . ,M . The inner sum
averages the representations z of all images n ∈ Mm for each label m. The outer sum calculates
an average of averages to create a composite query representation q that includes all M labels.
If normalization is done globally (i.e., moving 1/|Mm | to the outer sum), it corresponds to a per-
sample averaging.

4 EVALUATING DIVERSELY SUPERVISED VISUAL PRODUCT SEARCH

4.1 Diversely Labeled Datasets

We introduce two datasets for diversely supervised visual product search: Diverse–Cars and
Diverse–Clothes. Both datasets include instance, category, and multiple attributes labels.
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Fig. 2. Diversely labeled examples from Diverse–Cars and Diverse–Clothes.

Diverse–Cars. We build upon Cars196 by Krause et al. [33] and CompCars by Yang et al. [72] to
create Diverse–Cars. The original datasets intend to tackle fine-grained categorization and verifica-
tion; we merge them for the task of diversely supervised product search. This creates a dataset that
covers car models sold in both North American and South Pacific regions. We manually annotate
Diverse–Cars to merge car model duplicates and to provide clean annotations for car makers and
car attributes. Diverse–Cars defines 97 car makers and 3 car attributes. Every attribute is further
defined with the specific values: 4 number of doors, 4 number of seats, and 12 type values. In total,
Diverse–Cars contains 28,423 images from 386 car models for training and 22,450 images from 305
separate car models for evaluation.

Diverse–Clothes. We build upon In-Shop Clothes by Liu et al. [40] to create Diverse–Clothes.
The original dataset provides a large number of clothing products along with multiple views and a
rich description of several sentences, but the provided labels are known to contain scarce attribute
values, duplicates, and incoherencies [75]. Hence, we manually re-annotate the dataset to provide
clean annotations for clothes categories and clothes attributes. Diverse–Clothes defines 12 clothes
categories and 8 clothes attributes. Every attribute comes with specific attribute values: 6 fabric,
7 frontal feature, 6 hemline, 13 neckline, 15 print, 4 shoulder line, 6 sleeves length, and 2 silhouette

values. In total, Diverse–Clothes contains 25,862 images from 3,996 fashion products for training
and 26,797 images from 3,982 separate fashion products for evaluation.

The annotation protocol is described in the Appendix. Data splits and diverse labels will be
released. Figure 2 illustrates some diversely labeled examples for each dataset.

4.2 From Diversely Labeled Images to Composite Queries

We leverage composite queries to retrieve images in the gallery set Xдal that share the same set
of labels. In this article, we define a composite query as a composite between a category label and
one or multiple attribute labels, for a total of M types of label. An example of composite query for
cars can be “a BMW with 2 doors, 5 seats and with a coupé type” (M = 4) while an example for
clothes can be “a shirt with long sleeves and a stripe print” (M = 3). To avoid searching a needle in
a haystack, we limit the number of attribute labels in composite queries to a maximum of three.

During the evaluation, we separate seen from unseen composite queries. If there is at least one
image in the training setXtr ain that corresponds to the composite query, then the composite query
is identified as seen. If the combination of category and attributes does not exist in the training set
Xtr ain , then the composite query is unseen. Unseen composite queries are more realistic and more
challenging than seen composite queries, because their combination has never been encountered
by the model during training.

For each dataset, we generate composite queries by considering all possible category and at-
tribute combinations and select the valid ones. A query is valid if there is at least one image
in the gallery set Xдal with this specific combination. Figure 3 presents the distribution of seen
and unseen composite queries for both datasets. Unseen composite queries constitute more than
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Fig. 3. Composite queries distribution per dataset. Unseen queries represent one-third of all queries. Diverse–

Clothes appears to be more challenging than Diverse–Cars given the very few images per query (in both seen

and unseen scenarios).

one-third of the total queries, which illustrates the difficulty of both benchmarks. Diverse–Clothes
provides a more challenging evaluation than Diverse–Cars. Indeed, there is a high number of
queries and very few images per query considering the large gallery size. For example, given an
unseen query, the median number of images per query is only 5, while the the gallery size is 26,797
images. Searching for new clothes products emerges as a more difficult task than searching for new
car models, given the large diversity of fashion items.

4.3 Evaluation

Evaluation is performed on the gallery set Xдal that contains separate instances from the training
setXtr ain , as defined in Section 3.1. In other words, while a diverse set of labels defined by the com-
posite query might have been seen or unseen during training, instances in the gallery have never
been seen before. This is the protocol commonly used in zero-shot instance retrieval (e.g., Refer-
ences [40, 60]), where no overlap exists in terms of images nor instances between the training
and the gallery sets. An �2 normalization is applied to the representations before measuring dis-
tances between the composite query q and the gallery Xдal . A retrieved image is considered as a
hit if it shares the set of labels with the composite query. We report the mean average precision

(mAP) [44] across seen, unseen combinations for composite queries, and the overall to measure
the performance.

5 RESULTS

5.1 Comparison with Alternatives

We adapt four existing methods, designed for a different purpose, in such a way that they become
applicable to our setting. For fair comparisons, we apply the same procedure on these alternative
models for both training and evaluation. We also use the same similarity loss based on the softmax
embedding loss with prototypes. Below, we detail how each selected method is repurposed:

• Global maps an image x to a global representation h, of the same dimension as our model
with partial grouping. Inspired by Liu et al. [40], we add common softmax classification
heads on top of the global embedding space to predict values for every K attributes and for
categories. In other words, this corresponds to a multitask model with multiple heads. An
additional similarity loss on the global embedding space models instance representations. In
our setting, the final embedding used for evaluation is the global representation space.
• Conditional gives every label its own metric subspace x, as originally introduced for at-

tributes by Veit et al. [64]. Compared with our proposed method, conditional does not in-
clude any grouping mechanism. We add for every subspace label a loss that measures image
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Table 1. Comparison with Alternatives

(a) Diverse–Cars

Method seen unseen all

Global 33.20 19.45 28.53 ± 0.20

Conditional 33.83 19.83 29.00 ± 0.13

Modulation 32.80 17.57 27.63 ± 0.46

Routing 29.87 16.02 25.17 ± 0.14

This article 37.61 21.03 31.98 ± 0.30

(b) Diverse–Clothes

Method seen unseen all

Global 8.58 4.15 6.88 ± 0.08

Conditional 8.01 3.60 6.33 ± 0.13

Modulation 8.61 4.12 6.89 ± 0.08

Routing 6.61 2.56 5.06 ± 0.11

This article 9.67 4.56 7.72 ± 0.13

We adapt four existing methods, designed for a different purpose, in such a way that they become applicable to our

setting (details provided in Section 5.1). We report the average over three runs. Our embedding outperforms these

alternatives in mAP (in %) on both Diverse–Cars and Diverse–Clothes datasets. Integrating attribute, instance, and

category representations altogether in the embedding space with interrelated representations helps to model a diverse

set of labels.

similarities. In our setting, the final embedding used for evaluation concatenates attribute,
category, and instance subspaces.
• Modulation controls the amount of feature sharing for every type of labels, as originally

proposed for attributes by Zhao et al. [81]. Similar to conditional, every type of label rep-
resentation is also delimited to its subspace. Though, the main difference with conditional
lies in the backbone network, which produces different features per label. Instead of having
an explicit subspace per label during training, the idea is to encode the label information
by transforming the activations of the backbone with a learned real-valued vector to weight
every channel. This offers a compelling and efficient way to have label-specific feature repre-
sentations without the need to train label-specific models. Following Zhao et al. [81], modula-
tion occurs after the last two residual blocks (i.e., block3 and block4). In our setting, the final
embedding concatenates the modulated attribute, category, and instance representations.
• Routing zeroes out channels given a type of labels, as originally proposed for many task

learning by Strezoski et al. [62]. Routing is in the same spirit as modulation, and the differ-
ence lies in the usage of fixed binary masks to transform the activations of the backbone
rather than learned real-valued vectors. Following Strezoski et al. [62], we generate binary
masks by sampling a binomial distribution with a probability of success of 0.6. Similar to
modulation, we apply the routing module after the last two residual blocks. In our setting,
the final embedding concatenates the routed attribute, category, and instance representa-
tions.

Results on Diverse–Cars. Table 1(a) shows that our diversely supervised embedding outperforms
alternative ways to combine attribute, category, and instance subspaces. Interestingly, channel-
modulated methods based on a real-valued or binary masks achieve a lower retrieval score than
the non-modulated conditional counterpart. As cars depict clear attribute values, their representa-
tion does not really benefit from creating a feature weighting. Indeed, there is no middle ground
between three and four doors, while there might exist a debate to decide whether the sleeves
length is long or three-quarter. When comparing with the conditional embedding, the diversely
supervised embedding shows a large improvement. Integrating attribute, instance, and category
representations altogether in the embedding space, rather than separating them all, helps to cap-
ture the diverse set of labels needed for diversely supervised search.

Note that for fair comparison, we implement alternatives with the same prototype loss as our
method. For example, the conditional alternative of Veit et al. [64] has been initially proposed
with a triplet loss. When training conditional with a triplet loss [57], the mAP drops by 9.74% on
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Table 2. Per-sample vs. Per-label Averaging

on Diverse–Cars

Averaging seen unseen all

Per-sample 6.44 5.06 5.97
Per-label 35.17 19.28 29.77

Weighting per-sample biases in the query, which

degrades the mAP (in %) score.

Table 3. Triple vs. Dual Grouping

on Diverse–Cars

Grouping seen unseen all

Triple 35.17 19.28 29.77
Dual 38.10 20.71 32.19

Separating the category representation leads to

an mAP (in %) improvement.

Diverse-Cars. As triplets only capture one label at a time, results degrade in a multiple labels
setting. Our proposed loss with latent prototypes allows us to capture all labels simultaneously,
which results in an increased performance for the alternatives and our proposed model.

Results on Diverse–Clothes. Table 1(b) confirms the benefits of the diversely supervised embed-
dings on this more challenging dataset. When products exhibit more subjective attribute values,
modulation has an edge over the non-modulated conditional counterpart. The routing module
struggles the most, as zeroing out channels destroys information needed when measuring dis-
tances in the embedding space. When comparing the inference time, we notice the channel mod-
ulated methods have a linear complexity to the number of subspaces, as every label comes with a
modulated representation. This is different from global, conditional, and ours that have a constant
complexity, as they do not need to be channel-modulated. Our integration of attribute, instance,
and category representations in the embedding space also captures these more subtle attribute
changes without the need to modulate the backbone.

5.2 Ablations

Per-sample vs. per-label averaging. We study two alternatives to represent composite queries in
the embedding space, as defined in Equation (8). Recall that we collect all visual representations
corresponding to every label and average them either per-sample or per-label to form a represen-
tation for composite queries. Table 2 shows that a per-label averaging outperforms a per-sample
averaging on Diverse–Cars. When averaging per-sample, all sample images are considered equally
in the composite query. If a label is over-represented in the training set, then a per-sample averag-
ing will result in a composite query biased towards this dominant label. When averaging per-label,
all labels are instead considered equally. If a label is over-represented in the training set, then a
per-label averaging will mitigate the imbalance effect, as an equal weight is put to each label rep-
resentation to produce the composite query. For the remaining experiments, we then rely on a
per-label averaging for composite queries to avoid a strong bias towards the dominant label.

Triple vs. dual grouping. In this experiment, we evaluate the difference between the triple and
dual grouping in the embedding (Figure 1). The grouping motivation differs by the assumptions
on how to relate instance, category, and attribute labels; and the practical application. In the triple
grouping, attributes qualify instances, and grouped instances form categories. With all three types
of labels interrelated in one single embedding space, this allows to explore the dataset to discover
trends, as illustrated in Figure 9. The dual grouping relaxes the category assumption, as categories
are now in a separate subspace. This avoids the duality where the embedding focuses on fine-
grained instance differences while trying to group them for form categories at the same time.
Table 3 shows that the dual variant outperforms the triple one on Diverse–Cars. A competing du-
ality appears between instances and categories: Focusing on categories pushes the embedding to be
agnostic to instances differences. The triple variant allows an interrelated exploration of products,
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Table 4. Pre-training Comparison

on Diverse–Cars and

Diverse–Clothes

Pre-training Cars Clothes

Self-supervised 16.21 3.53
ImageNet 32.19 7.74

Pre-training on ImageNet improves by a factor

two on the diverse search of all queries (mAP, in

%) compared with a self-supervised pre-training.

ImageNet acts as a regularizer.

Table 5. Swapping Backbones

between Diverse–Cars

and Diverse–Clothes

Swapping Cars Clothes

✓ 0.86 0.33
32.19 7.74

When swapping the backbones, the diverse

search of all queries yields a very low

performance (mAP, in %). Backbone

features are specific to each dataset.

Table 6. Search Space Comparison on Diverse–Cars

and Diverse–Clothes

Search space Model Fine-tuning Cars Clothes

Features Self-supervision 1.35 0.45
Features Pre-trained 0.91 0.59
Features Pre-trained ✓ 22.02 3.64
Embedding Pre-trained ✓ 32.19 7.74

Fine-tuning on the respective datasets yields a significant mAP (in %) improvement

over models trained in a supervised or self-supervised setting on ImageNet.

Diversely supervised search benefits significantly when the search occurs in the

embedding space, which captures all label types as opposed to the feature space.

as all diverse label representations are axis-aligned. Yet, putting the category representations in
another subspace better helps the diversely supervised search. Additionally, we evaluate a variant
where category labels are treated like any other attribute labels. In this variant, we obtain a 29.34%
mAP. This reinforces the observation that category labels are then different from attributes and
need to be treated accordingly. Depending on the application, it can be advantageous to separate
instance and category representations. For the remaining experiments in this section, we use the
dual grouping, as it yields the best scores for both seen and unseen queries.

Pre-training. We explore the effect of self-supervised pre-training on our model. We rely on
MoCo v2 [10, 20] for the self-supervision training and use the same hyper-parameters as proposed
originally. Once trained, we use these weights to initialize the ResNet50 backbone of our model.
Table 4 compares a pre-training on ImageNet [54] with self-supervision on both Diverse-Cars and
Diverse-Clothes. On both datasets, pre-training on ImageNet outperforms a pre-training with self-
supervision. During training, we notably observe an overfitting effect with models initialized with
self-supervision. Indeed, the training set of both datasets is several orders of magnitude smaller
than ImageNet. Thus, a pre-training on ImageNet acts as a regularizer to help models generalize
to diversely supervised search.

Swapping backbones. To understand the importance of backbone features in the generalization
performance on diversely supervised search, we swap the backbone network trained on Diverse–
Cars with the one trained on Diverse–Clothes, and vice versa. Concretely, h in Equation (1) for
Diverse–Cars comes from the backbone fθ of Diverse–Clothes, and vice versa. Table 5 shows
the negative effect of swapping backbones. In either scenario, swapping the backbone drops the
performance close to zero. This means that the backbone features, as well as the linear projections,
are dataset-specific, as they cannot generalize across datasets.
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Fig. 4. Influence of diverse labels. In both datasets, the instance supervision I is essential. For Diverse–Cars,

the category supervision C matters the most, while for Diverse–Clothes the attribute supervision A is the

most important. A combination of supervision results in an improvement for both seen and unseen composite

queries.

Search space. We assess the importance of the embedding space for diversely supervised product
search by comparing with a search in the feature space. Concretely, we compute the composite

query representation in Equation (8) from h(n) instead of z(n) , where h(n) corresponds to the output

of the backbone convolutional network for the nth sample and z(n) to the output of the embedding
layer. Table 6 shows the benefits of diversely supervised search in the embedding space. When
relying on a backbone model without fine-tuning, we obtain very low scores when trained either
in supervised or self-supervised settings on ImageNet [54]. For the self-supervised model, we rely
on MoCo v2 [10, 20]. When fine-tuning the model on the respective datasets, the diversely super-
vised search improves considerably. Searching in the embedding space is the most effective, as it
captures all label similarities, and also the most efficient, as the dimension is lower than the feature
space. For example in Diverse-Cars, the dimensionality of the embedding space is 200 compared
with 2,048 in the feature space. When swapping backbones and searching in the feature space,
we observe a similar behavior as in Table 5 where the performance drops close to zero. Diversely
supervised search benefits from a retrieval operation in an embedding space that captures all label
types.

Influence of diverse labels. We investigate the influence of each diverse label as a supervision
source during training in Figure 4. In particular, we evaluate the effect of the instance, category,
and all attributes labels individually and their combination. When leveraging all types of labels,
it achieves the best overall scores. In general, the instance labels always matters and combining
two types of labels leads to an improvement. Though, both product datasets exhibit different be-
haviors. Figure 4(a) shows that the model benefits the most from category labels on Diverse–Cars.
Category labels alone yield a high retrieval score and combining them with other types of labels
results in even higher scores. Indeed, car makers usually distill a similar design to all their car
models. Being able to represent categories is then the most important. Figure 4(b) rather depicts
the importance of attribute-label supervision on Diverse–Clothes. Attribute labels alone yield a
high retrieval score and their combination with other labels is always beneficial. Contrary to car
makers, fashion designers focus more on attribute combinations to create new products. Indeed,
compared to cars, clothes have more attributes, which makes this supervision the most important.
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Fig. 5. Weighted diverse labels effect on the diverse

search of all queries (mAP) on Diverse–Clothes. Per-

formance can be slightly improved by reducing the

contribution of the attributes or the category la-

bels. For simplicity, we set all contributions to one.

Fig. 6. Embedding regularization on Diverse–Cloth-

es. The stronger the regularization, the higher the

performance on diverse search is for both seen and

unseen queries (mAP). Though, when the regulariza-

tion is too strong, the model does not learn properly,

as everything is pushed to zero.

In case of scarce resources, we then recommend to collect annotations on instances and categories
for cars, and on instances and attributes for clothes.

Weighted diverse labels. While Figure 4 switches on and off the contribution of every lambda, Fig-
ure 5 evaluates these tradeoff hyper-parameters with real values. When evaluating every lambda
individually, we fix the others to one. All settings improve over the absence of a label, which indi-
cates that all labels are important to diversely supervised search. It is possible to slightly improve
the performance by reducing the contribution of attributes or category labels on Diverse–Clothes
rather than setting them all to one. Though, as the search space for the lambda triplet is vast, we
recommend to simply set all three to one. Notably, this enables a simple, non-exhaustive, and fair
comparison with alternative methods.

Embedding regularization. Figure 6 varies the amount of regularization λR on the embedding
space on Diverse–Clothes. The higher the regularization, the better the performance of diversely
supervised search is. Interestingly, this affects both seen and unseen queries positively. There is
a cliff in performance after λR=1 where the performance drops drastically. Indeed, when the reg-
ularization is too strong, the representation is pushed towards zero, which annihilates the model
learning.

Improving the performance. Comparisons in Table 1 are done with λR = 0.001. As shown in
Figure 6, increasing this value can greatly benefit the diversely supervised search in our proposed
models. Indeed, when applying a λR = 1 during training, we improve the mAP for all composite
queries to 34.24 ± 0.23 for Diverse–Cars and to 11.34 ± 0.21 for Diverse–Clothes. Though, applying
such a high regularization for the alternatives can be detrimental. For example, on Diverse–Cars,
modulation drops to an mAP below one while conditional drops by five points. The fact that our
model incorporates a grouping mechanism helps to benefit from higher regularization on the em-
bedding space, as alternatives without any grouping suffer to various extents.

Influence of the number of attributes. We examine the influence of the number of attributes in the
composite queries on the retrieval performance. As described in Section 4.2, we create composite
queries with up to three attributes. For example, “a DS with 3 doors and 5 seats” is a composite
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Table 7. Influence of the Number of Attributes

(a) Diverse–Cars

#A seen unseen all

1 42.15 23.50 37.33
2 36.76 20.67 30.89
3 30.91 17.41 24.93

(b) Diverse–Clothes

#A seen unseen all

1 20.44 4.29 18.79
2 10.05 4.40 8.53
3 7.86 4.61 6.34

We examine the influence of the number of attributes in composite queries and report the mAP (in

%). The more specific the composite query is, the harder it gets to retrieve relevant images. Unseen

queries for clothes remain at the same level, because they are equally challenging, as the median

number of images per query is the same.

Fig. 7. Influence of the number of attributes. We show examples of unseen composite queries with an in-

creasing number of attribute values and their top-five retrieved images (correct in green, incorrect in red).

query with a category and two attributes, for a total of three labels. Table 7 shows that increasing
the number of attributes in the composite queries leads to a more challenging task. The more
specific the search is, the harder it gets to find the needle in the haystack. On both datasets there is a
drop of about 12 mAP when switching from one to three attributes. In particular, Table 7(a) exhibits
a drop of only 6 mAP points for unseen queries but 11 mAP points for seen queries on Diverse–
Cars. Table 7(b) shows a constant performance for unseen queries, while scores decrease more
importantly for seen queries on Diverse–Clothes. This is explained by the fact that the median
number of images per unseen composite query for all levels of detail is the same, making them
equally challenging. Figure 7 depicts composite query examples with an increasing number of
attributes. For Diverse–Cars, there can exist multiple car models matching the query. The model
can retrieve correct images regardless of the viewpoint. Yet, confusion can happen when cars
are of the same color or shape. For Diverse–Clothes, the search is more challenging, as there is
usually one clothes item with very few images to retrieve. Items can be rare or exhibit original
combinations of labels. Future work on product search should emphasize the retrieval performance
of (a) composite queries with several attributes, as distinguishing products on a fine-grained level
requires a higher amount of attributes, and (b) unseen composite queries as designers usually
create products with an unseen combination of labels.
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Fig. 8. Attribute subspace visualization with t-SNE on the test set of Diverse–Cars. Learned prototype repre-

sentations for every value of every attribute are illustrated with a star. (a) The number of doors are clustered

with prototypes being at extremities. Cars with three doors tend to spread all across the embedding space.

(b) A transition from two seats to more than five seats is observed. Cars with more than five seats tend to

spread all across the embedding space. (c) Car types are occupying the whole embedding space. Certain car

types tend to be close to each other, e.g., coupe and convertible, or pickup and van.

Table 8. Binary Representations on the

Diverse Search of All Queries (mAP) on

Diverse–Cars and Diverse–Clothes

Representation Cars Clothes

Binary 21.47 7.58
Real-valued 32.19 7.74

While a binary representation has a large gap to

real-valued representations on Diverse–Cars, it

provides a compelling alternative with a close

score on Diverse–Clothes.

Table 9. Sentence Representations on the

Diverse Search of All Queries (mAP) on

Diverse–Cars and Diverse–Clothes

Representation Cars Clothes

Sentences 5.51 3.96
Subspaces 32.19 7.74

Sentences cannot capture the diversity of all

labels in composite queries, as they lack the

flexibility of subspaces to represent every label.

Attribute subspace visualization. Figure 8 plots the t-SNE [42] visualization of every attribute
subspace on the test set of Diverse–Cars, as well as the latent prototype visualization for every
attribute value. For the number of doors attribute, the prototypes are well separated, with a pro-
totype at each extremity. Though, it appears that cars with three doors do not have a compact
representation, as they tend to spread all across the space. For the number of seats attribute, there
is a transition from two seats to cars with more than five seats. This indicates that the model has
found a progressive way to represent this attribute. For the type attribute, every car type is also
represented around the region of its corresponding latent prototype. Some values are close to each
other; for example, coupe and convertible, which indicates that the model has captured the car
shape similarities.

Binary representations. As we design our embedding model to be a probabilistic model, a binary
representation can also be used for diversely supervised search. In this scenario, the represen-
tation of every image corresponds to the one-hot predictions of the probabilistic model for the
category label and every attribute label. Similarly, the composite query is represented by a one-
hot binary representation for diversely supervised search. Table 8 compares the one-hot binary
representations with real-valued representations. On Diverse–Cars, there is a large gap in perfor-
mance between both representations. This difference resides in the fact that the performance for
unseen queries drops by a factor two. On Diverse–Clothes, the performance is similar for both
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Fig. 9. Discovering typical, atypical, and eclectic products. We explore product instances in the gallery set

to discover design styles. Images in the same row share the same category label (underlined). The blue text

box indicates the model prediction (italics). (a) Typical instances close to the category prototype depict the

common appearance of sweaters, dresses, and shirts. (b) Atypical instances far from the category prototype

exhibit a global appearance that resembles other categories, which causes misclassification. (c) Eclectic in-

stances with a high entropy display original attribute values for the category.

representations, which suggests that binary representations can be used if storage space becomes
a challenge.

Text representations. An alternative to learned label subspaces is to rely on text representations.
The idea is to process the diverse label through a language model to obtain a text representation.
The model then learns to regress to the text embedding, which is considered as a prototype during
learning. For example, for an image with a diverse label “a shirt with long sleeves and a stripe
print,” we feed this sentence to a language model and take the output embedding as a prototype
to regress to. We rely on sentence-BERT [51], a variant of BERT [13] for sentences fine-tuned on
natural language inference datasets [7, 70], to extract text representations. Table 9 shows that text
representations underperform learned label subspaces. Recall the example above. While the image
has a diverse label “a shirt with long sleeves and a stripe print,” it should hit for composite queries
such as “a shirt with long sleeves” or “a shirt with a stripe print.” Having a sentence representation
is too rigid, as it imposes an order in the attributes and ties strongly attributes with the category.
Instead, subspaces offer a more flexible representation and allow composite queries with various
numbers of attributes in an unordered manner.

5.3 Discovering Typical, Atypical, and Eclectic Products

In this experiment, we aim to discover products with typical, atypical, or eclectic styles in the gallery
set. We rely on the triple grouping that integrates attribute, category, and instance representations
within the same embedding space. First, we aggregate visual representations per instance, i.e.,
images of the same instances are aggregated to the same visual representation. We refer to those
as product representations. Second, we compute distances between product representations and
all category prototypes cy ∈ ZC in the embedding space. These distances provide three different
indicators: (a) a small distance to the corresponding prototype indicates typical products, while
(b) a large distance refers to atypical products. Additionally, the entropy can be computed over the
probability distributions for each product representation, where (c) a high entropy refers to eclectic

products on the edge of several categories. Probabilities are obtained by applying the softmax
function over the distances.
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We provide qualitative results based on the three indicators on Diverse–Clothes. Figure 9(a) illus-
trates the closest instances to category prototypes. These instances depict a common style, which
makes them easily recognizable, as they form typical instances [52]. Distilling a typical design
style in instances is particularly attractive for brands to enforce loyalty or attachment [63]. Yet,
product design styles have a determined lifespan [61], and other combinations of visual attributes
defining the style will emerge next due to cyclic [4] or punctual [43] trends. Figure 9(b) illustrates
the farthest instances to category prototypes. The global shape of these instances, either in size or
fabric, makes them look like they are part of another category. For example, instances of “dresses”
in row 2 look like “tees.” Thus, the model can misclassify these instances. Figure 9(c) illustrates
instances that confuse the embedding the most, as they exhibit a high entropy. These instances
depict an original visual appearance, especially for the print attribute. Searching for atypical and
eclectic products reveals unexpected and intriguing trends in product design.

6 CONCLUSION

We have introduced the problem of diversely supervised visual product search, where queries
describe a specific set of diverse labels to search for. We have proposed a diversely supervised
embedding, where attribute, instance, and attribute labels provide a diverse supervision to learn a
representation for products. Evaluation relies on composite queries to describe the specific set of
labels to search for. Composite query representations correspond to a per-label average of selected
visual representations in the embedding space. Experiments on seen and unseen settings show
that our diversely supervised embedding better models a diverse set of labels than alternative
baselines repurposed for diversely supervised visual product search. The embedding also enables
the discovery of the typicality effect in design styles, which reveals intriguing products. In the
current form, labels describe physical properties of products but could also capture aesthetics or
cultural differences.

APPENDICES

In this Appendix, we present the labeling process for Diverse–Cars (Section A) and Diverse–
Clothes (Section B).

A DIVERSE–CARS LABELING PROCESS

Diverse–Cars builds upon Cars196 by Krause et al. [33] and CompCars by Yang et al. [72]. Both
datasets provide a large number of car models. Every car model comprises multiple images from
several viewpoints. CompCars [72] already comes with an initial set of labels, while Cars196 [33]
has only car model labels. By merging both datasets, Diverse–Cars covers car models sold in both
North American and South-Pacific regions.

We manually re-annotate the images to ensure the quality of the category and attribute labels.
Besides the new category and attribute labels, we also ensure that similar car models between the
two original datasets are merged. The new labels will be made public.

In the newly proposed labels, category and attribute value labels are annotated. Original instance

labels are preserved. We adopt the same three attribute vocabularies as initially defined in Comp-
Cars [72]. Figure 10 shows one sample for every attribute value of every attribute.

Overall, a total of 691 unique instances are annotated. Every image in the dataset receives an
instance, a category, and three attribute value labels. Note that some categories are very scarce.
We ensure that there are at least one or two models per car maker in the training set, which in
return can result in the absence of some car makers in the gallery set. In other words, not all car
makers are present in the gallery set.
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For hyper-parameters search, we create a separate validation set from the training set. We ran-
domly sample 17 car models, for a total of 1,169 images. We keep the validation separate. There is
no re-training on both training and validation sets once hyper-parameters are fixed.

B DIVERSE–CLOTHES LABELING PROCESS

Diverse–Clothes builds upon In-Shop Clothes by Liu et al. [40], which provides a large number of
clothing products. Every product comprises multiple images from several viewpoints and a rich
description of several sentences. However, the labeling of the original In-Shop Clothes dataset
was done in a weakly supervised manner, which can result in scarce attribute values, duplicates,
or incoherencies [75].

We manually re-annotate the images to ensure the quality of the category and attribute labels.
Besides the new category and attribute labels, other cleaning tasks are also performed: (1) instance
and image duplicates are removed; (2) instances with two different category labels are merged. The
new labels will be made public.

In the newly proposed labels, category and attribute value labels are re-annotated. Original in-

stance labels are preserved. Eight different new attributes are defined. Figure 11 shows one sample
for every value of every attribute.

Overall, a total of 7,978 unique instances are re-annotated. While a category label and an instance
label are assigned to all instances, not all attribute labels are necessarily assigned to all instances.
For example, a skirt does not have a sleeves length attribute label.

For hyper-parameters search, we create a separate validation set from the training set. We sam-
ple 59 clothes items for a total of 352 images. We keep the validation separate and do not re-train
on it once hyper-parameters are fixed.

Fig. 10. Image samples for every attribute value in Diverse–Cars.
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Fig. 11. Image samples for every attribute value in Diverse–Clothes.
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