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LIEVEN ARBEID

Die ’t Ambacht wel verstaet

daer van hij leven moet,

En die ’t, niet wel alleen,

maer wel en geerne doet,

Beleeft het grootst geluck
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hij wint, en wint met eeren.

O aller staeten staet,
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Chapter 1
Introduction

The analog world of the past era has evolved into a digital one. With the digital
revolution came the opportunity to create, store, duplicate, and transmit an unprece-
dented amount of multimedia information, i.e. combinations of text, audio, imagery,
and video. This opportunity has been taken with eagerness. It has resulted in huge
archives of multimedia data items. In addition to the digital revolution, the Internet
rebellion at the fin de siècle of the 20th century offered new ways to connect archives,
share, and sell multimedia assets. The volume of unstructured multimedia bits in the
digital world is already beyond human reach.

In contrast to humans, machines are experts in handling large quantities of data.
While data processing capabilities of machines are superb compared to human stan-
dards, data interpretation skills are poor relative to human performance to say the
least. For an archive of Hollywood movies, retrieving the shower scene from Hitch-
cock’s Psycho is a non-trivial task requiring human intervention when the data has
not been manually annotated. Since improvement in data processing capabilities of
humans is mostly if not exclusively science fiction, advancement in interpretation
skills of machines is required. We need to equip machines with understanding of
multimedia to aid humans in their struggle to bring order to the digital chaos.

1.1 Motivation

Whether it is a descriptive caption added to holiday pictures or the spoken comment
to be synchronized with the action in a soccer broadcast, any multimedia production
originates from the mind of an author. An author crafts a multimedia document
based on a certain semantic intention. While doing so, the author faces the intention
gap. We define:

Definition 1.1.1 (Intention Gap) The lack of coincidence between the informa-
tion that an author can produce into the multimedia data and the interpretations the
user may give to the data.

1



2 Introduction

Sesame Street

Sesame Street is one of the most successful television series ever produced. The
show combines the use of muppets, animation, live action, special effects, text, and
music to teach young children about symbolic representations, cognitive processes,
and physical and social environments. The show was the first program ever that
integrated tailor made multimedia content, children oriented production conven-
tions, and empirical research into a television program [43]. The careful creation
process was of major importance to the success of Sesame Street.

The gap may be broad for amateur videos, where it is often unclear to outsiders
what the author intended with the recorded footage. The gap is narrow for authored
multimedia productions that aim for mass communication in the form of storytelling.
For these productions, both author and user rely on the professional habits originating
from the field of film art [21, 24]. Thus, when an author relies on the guidelines and
techniques known from film art for storytelling he or she may succeed in bridging the
intention gap, ultimately resulting in an effective multimedia communication.

In this thesis we focus on such professional multimedia for which the intention
gap is more or less closed, i.e. produced video. The success of a produced video
is highly dependent on the authoring process, see the Sesame Street sidebar for an
example. While the authoring process is a decisive factor in the human appreciation
and understanding of any multimedia production, it is left largely unexplored in the
analysis of multimedia by machinery. This thesis aims to fill this lacuna. We use the
authoring-driven creation process of professional produced video as a metaphor for
machine-based understanding.

1.2 Problem Statement

Understanding multimedia starts with indexing its data at a semantic level. We
need to capture the conceptual knowledge present in produced video before we can
reason about the author’s intention. An author departs from a conceptual idea to
produce a video document. Then the author exploits a set of professional conventions
and techniques to combine multimedia data into a produced video document. We
reverse the authoring process to arrive at a semantic index of produced video. We
start with an analysis of multimedia data. We then combine the results by exploiting
common style conventions from film art. Once this is achieved we can reason based
on context. An authoring-driven analysis methodology ultimately yields an effective
semantic index.

For machines, the difficulty in attaching a semantic index to produced video lies
in the semantic gap. We adapt the definition of [136] and define:

Definition 1.2.1 (Semantic Gap) The lack of coincidence between the informa-
tion that machines can extract from the multimedia data and the interpretations the
user may give to the data.
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Figure 1.1: We reverse the authoring-driven process of multimedia production to arrive at

machine-driven understanding.

The cause for the semantic gap lies in the fact that machines can only compute
low level properties of data that have no clear relation with high level conceptual
semantics. Hence, the fundamental question that is addressed in this thesis is:

How to bridge the semantic gap for produced video?

In our endeavor to machine understanding of multimedia we defy the rigors and
hardships raised by the semantic gap using the authoring metaphor, this is illustrated
in Fig. 1.1. Exploitation of the authoring metaphor for bridging the semantic gap
raises a number of follow-up questions.

Early methods for semantic indexing of multimedia focused on single modality
based analysis only. Such methods proved successful for classifying specific concepts
in narrow domains based on a few simple rules. However, it soon became prevalent
that scalability and robustness of unimodal rule-based approaches are limited. As
a consequence the semantic gap remains. Because an author uses multiple media
sources to convey meaning, the authoring metaphor dictates that analysis should
exploit all information channels for semantic indexing. A multimodal analysis of
produced video is a first step to obtain an effective semantic index. In addition, the
complex thoughts of an author are not easily mapped on a few simple decision rules.
Rather, this mapping requires quite a lot decision rules. To cope with this need,
the use of advanced machine learning techniques is inevitable. Within the authoring
metaphor, the first follow-up question is:

How to exploit multimodal analysis in combination with machine
learning for multimedia understanding?
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An analysis based on content, either in the visual channel, auditory channel, tex-
tual channel or combinations thereof using machine learning, throws a first bridge but
is not enough to cover the semantic gap. Apart from content, an author uses specific
techniques and conventions to compose raw material into an effective presentation.
Hence, style conventions should be part of analysis as well. Within the authoring
metaphor, the second question is:

How to include the notion of style into semantic multimedia analysis?

An author thinks in concepts, interacting them to strengthen semantic intention.
Inclusion of context in the analysis was an important advancement in the research
efforts to bridge the semantic gap [98]. Thus, in addition to content and style, context
is a factor of importance in bridging the semantic gap. It is crucial to know how
these three authoring elements relate to one another. Another issue, given thousands
and thousands of concepts that might be present in a produced video, any semantic
indexing method should be generic instead of specific. Therefore, the third question
is:

How can a semantic analysis of content, style, and context be combined
effectively for generic multimedia indexing?

Interpretation of semantics is user-dependent. Thus, eventually user involvement
is inevitable for multimedia understanding. Moreover, the semantic gap dictates that
only a limited lexicon of semantic concepts can be learned automatically. Hence,
users should be offered other means, besides learning, to retrieve the semantics from
multimedia data. In this respect, similarity is of interest. Interaction, learning, and
similarity are identified in [136] as key techniques to bridge the semantic gap. We
aim for their combination, which results in the fourth question:

How should we exploit the combination of learning, similarity, and
interaction for effective multimedia retrieval?

Answering the four questions will help bridging the semantic gap. Then the prob-
lem of evaluation remains. The field of multimedia understanding in recent years has
witnessed a proliferation of methods, often evaluated on specific and small data sets.
As a result, experiments are non-repeatable; making it hard to judge whether ap-
proaches are truly promising. To counter this trend, the American National Institute
of Science and Technology (NIST) initiated the TREC Video Retrieval Evaluation
(TRECVID) [102]. The aim of the benchmark is to promote progress in content-
based retrieval from digital video archives via open, metrics-based evaluation using a
common large data set. We joined this initiative, by evaluating a substantial part of
the authoring metaphor within the TRECVID benchmark. Because of benchmarks
like TRECVID methods for multimedia understanding can be valued on their relative
merit.
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Figure 1.2: Outline of the work addressed in this thesis.

1.3 Organization

We present in this thesis a step-by-step extrapolation of the authoring metaphor to
arrive at automatic indexing of semantic concepts in produced video archives. This
process is illustrated in Fig. 1.2.

The thesis starts in Chapter 2 with the definition of a general framework for ma-
chine understanding of produced video. Viewing a video document as the result of
an authoring process, allows for seamless integration of the different modalities in-
volved. Moreover, it allows to structure the index methodologies and tools currently
available in literature. We end the Chapter with a number of research issues that are
addressed in the remainder of the thesis. Integration of modalities is a crucial part
of any multimodal video indexing system. Chapter 3 addresses the specific problems
for modality fusion, i.e. synchronization and the inclusion of temporal context. The
proposed Time Interval Multimedia Event framework tackles these problems by using
a representation based on time intervals. The representation allows integrating mul-
tiple modalities and facilitates the usage of several machine learning approaches for
semantic indexing. In Chapter 4 we arrive at the heart of the authoring metaphor,
where we introduce a framework for produced video indexing based on style analy-
sis. By combining style detectors into a classifier ensemble, the framework facilitates
robust classification of semantic concepts in produced video. A unifying architecture
of our work addressed in Chapters 2, 3, and 4 together with recent advances in the
field of multimedia understanding is presented in Chapter 5. The proposed semantic
value chain follows the authoring metaphor by successively analyzing video on con-
tent, style, and context aspects. While doing so, it allows for semantic video indexing
in a generic fashion. In Chapter 6 we present a paradigm for interactive video re-
trieval. We build the paradigm on three principles: learning of a lexicon of semantic
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concepts, multimedia data similarity, and user interaction with a video search engine.
Finally, in Chapter 7 we present four case studies that illustrate the practical use of
the theory derived in this thesis into several semantic video search engine prototypes.



Chapter 2
Multimodal Video Indexing: A Review
of the State-of-the-art∗

Efficient and effective handling of video documents depends on the availability of
indexes. Manual indexing is unfeasible for large video collections. In this Chapter
we survey several methods aiming at automating this time and resource consuming
process. Good reviews on single modality based video indexing have appeared in
literature. Effective indexing, however, requires a multimodal approach in which ei-
ther the most appropriate modality is selected or the different modalities are used
in collaborative fashion. Therefore, instead of separately treating the different infor-
mation sources involved, and their specific algorithms, we focus on the similarities
and differences between the modalities. To that end we put forward a unifying and
multimodal framework, which views a video document from the perspective of its
author. This framework forms the guiding principle for identifying index types, for
which automatic methods are found in literature. It furthermore forms the basis for
categorizing these different methods.

∗Published in Multimedia Tools and Applications, 25(1):5-35, 2005.
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2.1 Introduction

For browsing, searching, and manipulating video documents, an index describing the
video content is required. It forms the crux for applications like digital libraries storing
multimedia data, or filtering systems [103] which automatically identify relevant video
documents based on a user profile. To cater for these diverse applications, the indexes
should be rich and as complete as possible.

Until now, construction of an index is mostly carried out by documentalists who
manually assign a limited number of keywords to the video content. The specialist
nature of the work makes manual indexing of video documents an expensive and time
consuming task. Therefore, automatic classification of video content is necessary.
This mechanism is referred to as video indexing and is defined as the process of
automatically assigning content-based labels to video documents [55].

When assigning an index to a video document, three issues arise. The first is
related to granularity and addresses the question: what to index, e.g. the entire
document or single frames. The second issue is related to the modalities and their
analysis and addresses the question: how to index, e.g. a statistical pattern classifier
applied to the auditory content only. The third issue is related to the type of index
one uses for labeling and addresses the question: which index, e.g. the names of the
players in a soccer match, their time dependent position, or both.

Most solutions to video indexing address the how question with a unimodal ap-
proach, using the visual [32,53,108,149,153,175,181], auditory [40,50,87,105,106,110,
165], or textual modality [26, 62, 182]. Good books [46, 58] and review papers [22, 27]
on these techniques have appeared in literature. Instead of using one modality, mul-
timodal video indexing strives to automatically classify (pieces of) a video document
based on multimodal analysis. Only recently, approaches using combined multi-
modal analysis were reported [7, 13, 38, 65, 96, 111, 126] or commercially exploited,
e.g. [33, 114,160].

Ultimately the which question should be answered with content-based segment
descriptors, for instance those proposed in the MPEG-7 standard [91,92], that make
a video document as accessible as a text document. However, the choice for an index
is limited by the set of index terms for which automatic detectors can be realized.

One review of multimodal video indexing is presented in [162]. The authors focus
on approaches and algorithms available for processing of auditory and visual infor-
mation to answer the how and what question. We extend this by adding the textual
modality, and by relating the which question to multimodal analysis. Moreover, we
put forward a unifying and multimodal framework. Our work should therefore be
seen as an extension to the work of [22, 27, 162]. Combined they form a complete
overview of the field of multimodal video indexing.

The multimodal video indexing framework is defined in Section 2.2. We view a
single video document from the perspective of its author, and discuss the different
modalities and granularities involved in video indexing. This framework forms the
basis for structuring the discussion on video document segmentation in Section 2.3. In
Section 2.4 the role of conversion and integration in multimodal analysis is discussed.
An overview of the index types that can be distinguished, together with some exam-
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ples, will be given in Section 2.5. Finally, in Section 2.6 we end with a perspective on
open research questions.

2.2 An Author’s Perspective on Video Documents

In contrast to other frameworks, that view video documents from the (visual) data
perspective, e.g. [2], we view a video document as a result of an authoring process.
Consequence of this approach is that it allows for integration of different modali-
ties more easily. To arrive at our framework for video indexing, we first consider
video creation. In this survey we restrict ourselves to video made within a produc-
tion environment, so excluding for example surveillance video. Video made within
a production environment requires an author who conceives the idea for the video
document and produces the final result, consisting of specific content and a layout.
Therefore, we view a video document from an authors perspective.

An author uses visual, auditory, and textual channels to express his or her ideas.
Hence, the content of a video is intrinsically multimodal. Let us make this more
precise. In [101] multimodality is viewed from the system domain and is defined
as “the capacity of a system to communicate with a user along different types of
communication channels and to extract and convey meaning automatically”. We
extend this definition from the system domain to the video domain, by using an
authors perspective as:

Definition 2.2.1 (Multimodality) The capacity of an author of the video docu-
ment to express a predefined semantic idea, by combining a layout with a specific
content, using at least two information channels.

We consider the following three information channels or modalities, within a video
document:

• Visual modality : contains the mise-en-scène, i.e. everything, either naturally
or artificially created, that can be seen in the video document;

• Auditory modality : contains the speech, music, and environmental sounds that
can be heard in the video document;

• Textual modality : contains textual resources that describe the content of the
video document;

For each of those modalities, definition 2.2.1 naturally leads to a semantic perspective,
a content perspective, and a layout perspective. We will now discuss each of the three
perspectives involved. The important issue of combining modalities will be described
later.

2.2.1 Semantic Index

The first perspective expresses the intended semantic meaning of the author. De-
fined segments can have a different granularity, where granularity is defined as the
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descriptive coarseness of a meaningful unit of multimodal information [35]. To model
this granularity, we define segments on five different levels within a semantic index
hierarchy. The first three levels are related to the video document as a whole. The
top level is based on the observation that an author creates a video with a certain
purpose. We define:

• Purpose: set of video documents sharing similar intention;

The next two levels define segments based on consistent appearance of layout or
content elements. We define:

• Genre: set of video documents sharing similar style;

• Sub-genre: a subset of a genre where the video documents share similar content;

The next level of our semantic index hierarchy is related to parts of the content, and
is defined as:

• Logical units: a continuous part of a video document’s content consisting of a
set of named events or other logical units which together have a meaning;

Where named event is defined as:

• Named events: short segments which can be assigned a meaning that doesn’t
change in time;

Note that named events must have a non-zero temporal duration. A single image
extracted from the video can have meaning, but this meaning will never be perceived
by the viewer when this meaning is not consistent over a set of images.

At the first level of the semantic index hierarchy we defined purpose. According
to [69], the purpose for which the video document is made is either entertainment,
information, communication, or data analysis. Recall that we only consider video
documents that are made within a production environment. Therefore, the purpose of
data analysis is excluded. Genre examples range from feature films, news broadcasts,
to commercials. This forms the second level. On the third level are the different sub-
genres, which can be e.g. horror movie or ice hockey match. Examples of logical units,
at the fourth level, are a dialogue in a drama movie, a first quarter in a basketball
game, or a weather report in a news broadcast. Finally, at the lowest level, consisting
of named events, examples can range from explosions in action movies, goals in soccer
games, to a visualization of stock quotes in a financial news broadcast.

2.2.2 Content

The content perspective relates segments to elements that an author uses to create a
video document. The following elements can be distinguished [21]:

• Setting : time and place in which the video’s story takes place, can also empha-
size atmosphere or mood;
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• Objects: noticeable static or dynamic entities in the video document;

• People: human beings appearing in the video document;

Typically, setting is related to logical units. Objects and people are the main elements
in named events. The appearance of the different content elements can be influenced
by an author of the video document by using modality specific style elements. For
the visual modality an author can use specific colors, lighting, camera angles, camera
distance, and camera movement. Auditory style elements are the loudness, rhythmic,
and musical properties. The textual appearance is determined by the style of writing
and the phraseology. All these style elements contribute to expressing an author’s
intention.

2.2.3 Layout

The layout perspective considers the syntactic structure an author uses for the video
document. In essence, the syntactic structure for each modality is a temporal sequence
of fundamental units, which in itself do not have a temporal dimension. The nature
of these units is the main factor discriminating the different modalities. The visual
modality of a video document is a set of ordered images, or frames. So the fundamental
units are the single image frames. Similarly, the auditory modality is a set of samples
taken within a certain time span, resulting in audio samples as fundamental units.
Individual characters form the fundamental units for the textual modality. Upon the
fundamental units an aggregation is imposed, which is an artifact from creation. We
refer to this aggregated fundamental units as sensor shots, defined as a continuous
sequence of fundamental units resulting from an uninterrupted sensor recording. For
the visual and auditory modality this leads to:

• Camera shots: result of an uninterrupted recording of a camera;

• Microphone shots: result of an uninterrupted recording of a microphone;

For text, sensor recordings do not exist. In writing, uninterrupted textual expres-
sions can be exposed on different granularity levels, e.g. word level or sentence level,
therefore we define:

• Text shots: an uninterrupted textual expression;

Note that sensor shots are not necessarily aligned. Speech for example can continue
while the camera switches to show the reaction of one of the actors. There are
however situations where camera and microphone shots are recorded simultaneously,
for example in live news broadcasts.

An author of the video document is also responsible for concatenating the different
sensor shots into a coherent structured document by using transition edits. “He or she
aims to guide our thoughts and emotional responses from one shot to another, so that
the interrelationships of separate shots are clear, and the transitions between sensor
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Figure 2.1: A unifying framework for multimodal video indexing based on an author’s per-

spective. The letters S, O, P stand for setting, objects, and people. An example layout of the

auditory modality is highlighted, the same holds for the others.

shots are smooth” [21]. For the visual modality abrupt cuts, or gradual transitions†,
like wipes, fades, or dissolves can be selected. This is important for visual continuity,
but sound is also a valuable transitional device in video documents. Not only to relate
shots, but also to make changes more fluid or natural. For the auditory transitions
an author can have a smooth transition using music, or an abrupt change by using
silence [21]. To indicate a transition in the textual modality, e.g. closed captions, an
author typically uses “>>>”, or different colors. They can be viewed as corresponding
to abrupt cuts as their use is only to separate shots, not to connect them smoothly.

†A gradual transition actually contains pieces of two camera shots, for simplicity we regard it as
a separate entity.
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Figure 2.2: Data flow in unimodal video document segmentation.

The final component of the layout are the optional visual or auditory special
effects, used to enhance the impact of the modality, or to add meaning. Overlayed
text, which is text that is added to video frames at production time, is also considered
a special effect. It provides the viewer of the document with descriptive information
about the content. Moreover, the size and spatial position of the text in the video
frame indicate its importance to the viewer. “Whereas visual effects add descriptive
information or stretch the viewer’s imagination, audio effects add level of meaning and
provide sensual and emotional stimuli that increase the range, depth, and intensity
of our experience far beyond what can be achieved through visual means alone” [21].
Note that we don’t consider artificially created content elements as special effects, as
these are meant to mimic true settings, objects, or people.

Based on the discussion in this section we come to a unifying multimodal video
indexing framework based on the perspective of an author. This framework is visu-
alized in Fig. 2.1. It forms the basis for our discussion of state-of-the-art indexing
techniques.

2.3 Video Document Segmentation

For analysis purposes the process of authoring should be reversed. To that end, first
a segmentation should be made that decomposes a video document in its layout and
content elements. Results can be used for indexing specific segments. In many cases
segmentation can be viewed as a classification problem. In video indexing literature
many heuristic methods are proposed. The more advanced techniques make explicit
use of pattern recognition. Therefore, we will first discuss the different classification
methods that are used in video indexing. Then, we will discuss reconstruction of
the layout for each of the modalities. Finally, we will focus on segmentation of the
content. The data flow necessary for analysis is visualized in Fig. 2.2.
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2.3.1 Pattern Recognition

In video indexing, patterns of interest need to be distinguished to make decisions
about layout and content categories. These patterns can be, for example, sub images,
samples, or features derived from layout and content elements. According to [68] the
four best approaches for pattern recognition are:

• Template matching : the pattern to be recognized is compared with a learned
template, allowing changes in scale and pose;

• Statistical classification: the pattern to be recognized is classified based on the
distribution of patterns in the space spanned by pattern features;

• Syntactic or structural matching : the pattern to be recognized is compared to a
small set of learned primitives and grammatical rules for combining primitives;

• Neural networks: the pattern to be recognized is input to a network which has
learned nonlinear input-output relationships;

Examples of those methods are found throughout this chapter. The statistical ap-
proach is most frequently encountered in video indexing literature, especially the
following four specific techniques:

• Bayes Classifier : assigns a pattern to the class which has the maximum esti-
mated posterior probability [68];

• Decision Tree: assigns a pattern to a class based on a hierarchical division of
feature space [68];

• k-Nearest Neighbor : assigns a pattern to the majority class among the k patterns
with smallest distance in feature space [68];

• Hidden Markov Model (HMM): assigns a pattern to a class based on a sequential
model of state and transition probabilities [86, 118];

Statistical classifiers are also well suited for multimodal classification. This aspect of
pattern recognition will be highlighted in Section 2.4.2. We will now first discuss the
reconstruction of layout and content elements.

2.3.2 Layout Reconstruction

Layout reconstruction is the task of detecting the sensor shots and transition edits in
the video data. For analysis purposes layout reconstruction is indispensable. Since
the layout guides the spectator in experiencing the video document, it should also
steer analysis.

For reconstruction of the visual layout, several techniques already exist to seg-
ment a video document on the camera shot level, known as shot boundary detection ‡.

‡As an ironic legacy from early research on video parsing, this is also referred to as scene-change
detection.



2.3. Video Document Segmentation 15

Various algorithms are proposed in video indexing literature to detect cuts in video
documents, all of which rely on comparison of successive frames with some fixed or
dynamic threshold on either pixel, edge, block, or frame level. Block level features
can be derived from motion vectors, which can be computed directly from the visual
channel, when coded in MPEG, saving decompression time. For an extensive overview
of different cut detection methods we refer to the survey of Brunelli in [27] and the
references therein.

Detection of transition edits in the visual modality can be done in several ways.
Since the transition is gradual, comparison of successive frames is insufficient. The
first researchers exploiting this observation where Zhang et al [174]. They introduced
the twin-comparison approach, using a dual threshold that accumulates significant
differences to detect gradual transitions. For an extensive coverage of other methods
we again refer to [27], we just summarize the methods mentioned. First, so called
plateau detection uses every k -th frame. Another approach is based on effect mod-
eling, where video production-based mathematical models are used to spot different
edit effects using statistical classification. Finally, a third approach models the effect
of a transition on intensity edges in subsequent frames.

Detection of abrupt cuts in the auditory layout can be achieved by detection of
silences and transition points, i.e. locations where the category of the underlying
signal changes. In literature different methods are proposed for their detection.

In [105] it is shown that average energy, En, is a sufficient measure for detecting
silence segments. En is computed for a window, i.e. a set of n samples. If the average
for all the windows in a segment are found lower than a threshold, a silence is marked.
Another approach is taken in [177]. Here En is combined with the zero-crossing rate
(ZCR), where a zero-crossing is said to occur if successive samples have different signs.
A segment is classified as silence if En is consistently lower than a set of thresholds,
or if most ZCRs are below a threshold. This method also includes unnoticeable noise.

Li et al [80] use silence detection for separating the input audio segment into silence
segments and signal segments. For the detection of silence periods they use a three-
step procedure. First, raw boundaries between silence and signal are marked in the
auditory data. In the succeeding two steps a fill-in process and a throwaway process
are applied to the results. In the fill-in process short silence segments are relabeled
signal and in the throwaway process low energy signal segments are relabeled silence.

Besides silence detection [80] also detects transition points in the signal segments
by using break detection and break merging. They compute an onset and offset
break to indicate a potential change in category of the underlying signal, by moving
a window over the signal segment and compare En of different halves of the window
at each sliding position. In the second step, adjacent breaks of the same type are
merged into a single break.

In [177] music is distinguished from speech, silence, and environmental sounds
based on features of the ZCR and the fundamental frequency. To assign the proba-
bility of being music to an audio segment, four features are used: the degree of being
harmonic (based on fundamental frequency), the degree to which the fundamental
frequency concentrates on certain values during a period of time, the variance of the
ZCR, and the range of the amplitude of the ZCR.
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The first step in reconstructing the textual layout is referred to as tokenization, in
this phase the input text is divided into units called tokens or characters. Detection
of text shots can be achieved in different ways, depending on the granularity used. If
we are only interested in single words we can use the occurrence of white space as the
main clue. However, this signal is not necessarily reliable, because of the occurrence
of periods, single apostrophes and hyphenation [86]. When more context is taken into
account one can reconstruct sentences from the textual layout. Detection of periods is
a basic heuristic for the reconstruction of sentences, about 90% of periods are sentence
boundary indicators [86]. Transitions are typically found by searching for predefined
patterns.

Since layout is very modality dependent, a multimodal approach for its recon-
struction won’t be very effective. The task of layout reconstruction can currently be
performed quite reliably. However, results might improve even further when more ad-
vanced techniques are used, for example methods exploiting the learning capabilities
of statistical classifiers.

2.3.3 Content Segmentation

In Section 2.2.2 we introduced the elements of content. Here we will discuss how
to detect them automatically, using different detection algorithms exploiting visual,
auditory, and textual information sources.

People Detection

Detection of people in video documents can be done in several ways. They can be
detected in the visual modality by means of their faces or other body parts, in the
auditory modality by the presence of speech, and in the textual modality by the
appearance of names. In the following, those modality specific techniques will be
discussed in more detail. For an in-depth coverage of the different techniques we refer
to the cited references.

Most approaches using the visual modality simplify the problem of people de-
tection to detection of a human face. Face detection techniques aim to identify all
image regions which contain a face, regardless of its three-dimensional position, ori-
entation, and lighting conditions used, and if present return their image location and
extents [171]. This detection is by no means trivial because of variability in loca-
tion, orientation, scale, and pose. Furthermore, facial expressions, facial hair, glasses,
make-up, occlusion, and lightning conditions are known to make detection error prone.

Over the years various methods for the detection of faces in images and image
sequences are reported, see [171] for a comprehensive and critical survey of current
face detection methods. From all methods currently available the one proposed by
Rowley in [120] performs the best [112]. The neural network-based system is able to
detect about 90% of all upright and frontal faces, and more important the system
only sporadically mistakes non-face areas for faces.

When a face is detected in a video, face recognition techniques aim to identify
the person. A common used method for face recognition is matching by means of
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Eigenfaces [109]. Here the matching is performed using single images, and the method
is capable to recognize faces under varying pose. In [15] the authors demonstrate
that by using Fisherfaces the error rates are lower for tests on certain face databases.
Moreover the Fisherface method achieves better results when variations in lighting and
expression are present simultaneously. A drawback of applying face recognition for
video indexing, is its limited generic applicability [126]. Reported results [15,109,126]
show that face recognition works in constrained environments, preferably showing a
frontal face close to the camera. When using face recognition techniques in a video
indexing context one should account for this limited applicability.

In [89] people detection is taken one step further, detecting not only the head,
but the whole human body. The algorithm presented, first locates the constituent
components of the human body by applying detectors for head, legs, left arm, and
right arm. Each individual detector is based on the Haar wavelet transform using
specific examples. After ensuring that these components are present in the proper
geometric configuration, a second example-based classifier combines the results of the
component detectors to classify a pattern as either a person or a non-person.

A similar part-based approach is followed in [45] to detect naked people. First,
large skin-colored components are found in an image by applying a skin filter that
combines color and texture. Based on geometrical constraints between detected com-
ponents an image is labeled as containing naked people or not. Obviously this method
is suited for specific genres only.

The auditory channel also provides strong clues for presence of people in video
documents through speech in the segment. When layout segmentation has been per-
formed, classification of the different signal segments as speech can be achieved based
on the features computed. Again different approaches can be chosen.

In [177] five features are checked to distinguish speech from other auditory signals.
First one is the relation between amplitudes of ZCR and energy curves. The second
one is the shape of the ZCR curve. The third and fourth features are the variance
and the range of the amplitude of the ZCR curve. The fifth feature is about the
property of the short-time fundamental frequency. A decision value is defined for
each feature. Based on these features, classification is performed using the weighted
average of these decision values.

A more elaborated audio segmentation algorithm is proposed in [80]. The authors
are able to segment not only speech but also speech together with noise, speech or
music with an accuracy of about 90%. They compared different auditory feature
sets, and conclude that temporal and spectral features perform bad, as opposed to
Mel-frequency cepstral coefficients (MFCC) and linear prediction coefficients (LPC)
which achieve a much better classification accuracy.

When a segment is labeled as speech, speaker recognition can be used to identify
a person based on his or her speech utterance. Different techniques are proposed,
e.g. [94, 106]. A generic speaker identification system consisting of three modules is
presented in [106]. In the first module feature extraction is performed using a set
of 14 MFCC from each window. In the second module those features are used to
classify each moving window using a nearest neighbor classifier. The classification is
performed using a ground truth. In the third module results of each moving window
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are combined to generate a single decision for each segment. The authors report
encouraging performance using speech segments of a feature film.

A strong textual cue for the appearance of people in a video document are words
which are names. In [126], for example, natural language processing techniques using
a dictionary, thesaurus, and parser are used to locate names in transcripts. The
system calculates a grammatical, lexical, situational, and positional score for each
word in the transcripts. A net likelihood score is then calculated which together with
the name candidate and segment information forms the system’s output. Related to
this problem is the task of named entity recognition, which is known from the field
of computational linguistics. Here one seeks to classify every word in a document
into one of eight categories: person, location, organization, date, time, percentage,
monetary value, or none of the above [19]. In the reference, name recognition is
viewed as a classification problem, where every word is either part of some name, or
not. The authors use a variant of an HMM for the name recognition task based on
a bigram language model. Compared to any other reported learning algorithm, their
name recognition results are consistently better.

In conclusion, people detection in video can be achieved using different approaches,
all having limitations. Variance in orientation and pose, together with occlusion,
make visual detection error prone. Speech detection and recognition is still sensitive
to noise and environmental sounds. Also, more research on detection of names in text
is needed to improve results. As the errors in different modalities are not necessarily
correlated, a multimodal approach in detection of persons in video documents can
be an improvement. Besides improved detection, fusion of different modalities is
interesting with respect to recognition of specific persons.

Object Detection

Object detection forms a generalization of the problem of people detection. Specific
objects can be detected by means of specialized visual detectors, motion, sounds,
and appearance in the textual modality. Object detection methods for the different
modalities will be highlighted here.

Approaches for object detection based on visual appearance can range from detec-
tion of specific objects to detection approaches of more general objects. An example
from the former is given in [129], where the presence of passenger cars in image
frames is detected by using a product of histograms. Each histogram represents the
joint statistics of a subset of wavelet coefficients and their position on the object.
The authors use statistical modeling to account for variation, which enables them to
reliably detect passenger cars over a wide range of points of view.

If we know what we are looking for, e.g. people or cars, the task is easier. If not,
grouping based on motion is the best in absence of other knowledge. Moreover, since
the appearance of objects might vary widely, rigid object motion detection is often
the most valuable feature. Thus, when considering the approach for general object
detection, motion is a useful feature. A typical method to detect moving objects
of interest, starts with a segmentation of the image frame. Regions in the image
frame sharing similar motion are merged in the second stage. Result is a motion-
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based segmentation of the video. In [100] a method is presented that segments a
single video frame into independently moving visual objects. The method follows a
bottom-up approach, starting with a color-based decomposition of the frame. Regions
are then merged based on their motion parameters via a statistical test, resulting in
superior performance over other methods, e.g. [9, 168].

Specific objects can also be detected by analyzing the auditory layout segmentation
of the video document. Typically, segments in the layout segmentation first need to
be classified as environmental sounds. Subsequently, the environmental sounds are
further analyzed for the presence of specific object sound patterns. In [165, 177]
for example, specific object sound patterns e.g. dog bark, ringing telephones, and
different musical instruments are detected using specific auditory features.

Detecting objects in the textual modality also remains a challenging task. A logical
intermediate step in detecting objects of interest in the textual modality is part-of-
speech tagging. The latter is the task of labeling each word in a sentence with its
appropriate part of speech [86]. Though limited, the information we get from tagging
is still quite useful. By extracting and analyzing the nouns in tagged text for example,
one can make some assumptions about objects present. This technique is known as
chunking [1]. To our knowledge chunking has not yet been used in combination with
detection of objects in video documents. Its application however, might prove to be
a valuable extension to unimodal object detection.

Successful detection of objects is limited to specific examples. A generic object
detector still forms the holy grail in video document analysis. Therefore, multimodal
object detection seems interesting. It helps if objects of interest can be identified
within different modalities. Then the specific visual appearance, the specific sound,
and its mentioning in the accompanying textual data can yield the evidence for robust
recognition.

Setting Detection

For the detection of setting, motion is not so relevant, as the setting is usually static.
Therefore, techniques from the field of content-based image retrieval can be used.
See [136] for a complete overview of this field. By using for example key frames, those
techniques can easily be used for video indexing. We focus here on methods that
assign a setting label to the data, based on analysis of the visual, auditory, or textual
modality.

In [150] images are classified as either indoor or outdoor, using three types of visual
features: one for color, texture, and frequency information. Instead of computing
features on the entire image, the authors use a multi-stage classification approach.
First, sub-blocks are classified independently, and afterwards another classification is
performed using the k-nearest neighbor classifier.

Outdoor images are further classified into city and landscape images in [157]. Fea-
tures used are color histograms, color coherence vectors, Discrete Cosine Transform
(DCT) coefficients, edge direction histograms, and edge direction coherence vectors.
Classification is done with a weighted k-nearest neighbor classifier with leave-one out
method. Reported results indicate that the edge direction coherence vector has good
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discriminatory power for city vs. landscape. Furthermore, it was found that color can
be an important cue in classifying natural landscape images into forests, mountains,
or sunset/sunrise classes. By analyzing sub-blocks, the authors detect the presence
of sky and vegetation in outdoor image frames in another paper. Each sub-block is
independently classified, using a Bayesian classification framework, as sky vs. non-sky
or vegetation vs. non-vegetation based on color, texture, and position features [156].

Detecting setting based on auditory information, can be achieved by detecting
specific environmental sound patterns. In [165] the authors reduce an auditory seg-
ment to a small set of parameters using various auditory features, namely loudness,
pitch, brightness, bandwidth, and harmonicity. By using statistical techniques over
the parameter space the authors accomplish classification and retrieval of several
sound patterns including laughter, crowds, and water. In [177] classes of natural and
synthetic sound patterns are distinguished by using an HMM, based on timbre and
rhythm. The authors are capable of classifying different environmental setting sound
patterns, including applause, explosions, rain, river flow, thunder, and windstorm.

The transcript is used in [30] to extract geographic reference information for the
video document. The authors match named places to their spatial coordinates. The
process begins by using the text metadata as the source material to be processed. A
known set of places along with their spatial coordinates, i.e. a gazetteer, is created
to resolve geographic references. The gazetteer used consists of approximately 300
countries, states and administrative entities, and 17000 major cities worldwide. After
post processing steps, e.g. including related terms and removing stop words, the end
result are segments in a video sequence indexed with latitude and longitude.

We conclude that the visual and auditory modality are well suited for recognition
of the environment in which the video document is situated. By using the textual
modality, a more precise (geographic) location can be extracted. Fusion of the differ-
ent modalities may provide the video document with semantically interesting setting
terms such as: outside vegetation in Brazil near a flowing river. Which can never be
derived from one of the modalities in isolation.

2.4 Multimodal Analysis

After reconstruction of the layout and content elements, the next step in the inverse
analysis process is analysis of the layout and content to extract the semantic index.
At this point the modalities should be integrated. However, before analysis, it might
be useful to apply modality conversion of some elements into more appropriate form.
The role of conversion and integration in multimodal video document analysis will be
discussed in this section, and is illustrated in Fig. 2.3.

2.4.1 Conversion

For analysis, conversion of elements of visual and auditory modalities to text is most
appropriate.

A typical component we want to convert from the visual modality is overlayed
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Figure 2.3: Role of conversion and integration in multimodal video document analysis.

text. Video Optical Character Recognition (OCR) methods for detection of text
in video frames can be divided into component-based, e.g. [133], or texture-based
methods, e.g. [81]. A method utilizing the DCT coefficients of compressed video was
proposed in [179]. By using Video OCR methods, the visual overlayed text object
can be converted into a textual format. The quality of the results of Video OCR vary,
depending on the kind of characters used, their color, their stability over time, and
the quality of the video itself.

From the auditory modality one typically wants to convert the uttered speech
into transcripts. Available speech recognition systems are known to be mature for
applications with a single speaker and a limited vocabulary. However, their per-
formance degrades when they are used in real world applications instead of a lab
environment [27]. This is especially caused by the sensitivity of the acoustic model
to different microphones and different environmental conditions. Since conversion
of speech into transcripts still seems problematic, integration with other modalities
might prove beneficial.

Note that other conversions are possible, e.g. computer animation can be viewed
as converting text to video. However, these are relevant for presentation purposes
only.

2.4.2 Integration

The purpose of integration of multimodal layout and content elements is to improve
classification performance. To that end the addition of modalities may serve as a
verification method, a method compensating for inaccuracies, or as an additional
information source.

An important aspect, indispensable for integration, is synchronization and align-
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Table 2.1: An overview of various integration methods.

Content Segmentation Classification Method Processing Cycle

Symmetric Asymmetric Statistical Knowledge Iterated Non-Iterated

[7] X X X

[13] X X X

[37] X X X

[38] X X X

[44] X X X

[65] X X X

[65] X X X

[70] X X X

[71] X X X

[76] X X X

[93] X X X

[96] X X X

[111] X X X

[124] X X X

[126] X X X

[148] X X X

[154] X X X

[163] X X X

ment of the different modalities, as all modalities must have a common timeline.
Typically the time stamp is used. We observe that in literature modalities are con-
verted to a format conforming to the researchers main expertise. When audio is the
main expertise, image frames are converted to (milli)seconds, e.g. [65]. In [7,38] image
processing is the main expertise, and audio samples are assigned to image frames or
camera shots. When a time stamp isn’t available, a more advanced alignment proce-
dure is necessary. Such a procedure is proposed in [70]. The error prone output of a
speech recognizer is compared and aligned with the accompanying closed captions of
news broadcasts. The method first finds matching sequences of words in the transcript
and closed caption by performing a dynamic-programming based alignment between
the two text strings. Segments are then selected when sequences of three or more
words are similar in both resources.

To achieve the goal of multimodal integration, several approaches can be followed.
We categorize those approaches by their distinctive properties with respect to the
processing cycle, the content segmentation, and the classification method used. The
processing cycle of the integration method can be iterated, allowing for incremental
use of context, or non-iterated. The content segmentation can be performed by using
the different modalities in a symmetric, i.e. simultaneous, or asymmetric, i.e. or-
dered, fashion. Finally, for the classification one can choose between a statistical or
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knowledge-based approach. An overview of the different integration methods found
in literature is in Table 2.1.

Most integration methods reported are symmetric and non-iterated. Some follow
a knowledge-based approach for classification of the data into classes of the semantic
index hierarchy [44, 93, 111, 124, 154]. In [154] for example, the auditory and visual
modality are integrated to detect speech, silence, speaker identities, no face shot,
face shot, and talking face shot using knowledge-based rules. First, talking people
are detected by detecting faces in the camera shots, subsequently a knowledge-based
measure is evaluated based on the amount of speech in the shot.

Many methods in literature follow a statistical approach [7, 37, 38, 65, 70, 71, 76,
96,126,163]. An example of a symmetric, non-iterated statistical integration method
is the Name-It system presented in [126]. The system associates detected faces and
names, by calculating a co-occurrence factor that combines the analysis results of face
detection and recognition, name extraction, and caption recognition.

Hidden Markov Models are frequently used as a statistical classification method
for multimodal integration [7, 37,38,65]. A clear advantage of this framework is that
it is not only capable to integrate multimodal features, but is also capable to include
sequential features. Moreover, an HMM can also be used as a classifier combination
method.

When modalities are independent, they can easily be included in a product HMM.
In [65] such a classifier is used to train two modalities separately, which are then
combined symmetrically, by computing the product of the observation probabilities.
It is shown that this results in significant improvement over a unimodal approach.

In contrast to the product HMM method, a neural network-based approach doesn’t
assume features are independent. The approach presented in [65], trains an HMM for
each modality and category. A three layer perceptron is then used to combine the
outputs from each HMM in a symmetric and non-iterated fashion.

Another advanced statistical classifier for multimodal integration was recently pro-
posed in [96]. A probabilistic framework for semantic indexing of video documents
based on so called multijects and multinets is presented. The multijects model content
elements which are integrated in the multinets to model the relations between objects,
allowing for symmetric use of modalities. For the integration in the multinet the au-
thors propose a Bayesian belief network [107]. Significant improvements of detection
performance is demonstrated. Moreover, the framework supports detection based on
iteration. Viability of the Bayesian network as a symmetric integrating classifier was
also demonstrated in [71], however that method doesn’t support iteration.

In contrast to the above symmetric methods, an asymmetric approach is presented
in [65]. A two-stage HMM is proposed which first separates the input video document
into three broad categories based on the auditory modality, in the second stage another
HMM is used to split those categories based on the visual modality. A drawback of
this method is its application dependency, which may result in less effectiveness in
other classification tasks.

An asymmetric knowledge-based integration method, supporting iteration, was
proposed in [13]. First, the visual and textual modality are combined to generate
semantic index results. Those form the input for a post-processing stage that uses
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those indexes to search the visual modality for the specific time of occurrence of the
semantic event.

For exploration of other integration methods, we again take a look in the field of
content-based image retrieval. From this field methods are known to integrate the
visual and textual modality by combining images with associated captions or HTML
tags. Early reported methods used a knowledge base for integration, e.g. the Piction
system [148]. This system uses modalities asymmetrically, it first analyzes the caption
to identify the expected number of faces and their expected relative positions. Then
a face detector is applied to a restricted part of the image, if no faces are detected
an iteration step is performed that relaxes the thresholds. More recently, Latent
Semantic Indexing (LSI) [36] has become a popular means for integration [76, 163].
LSI is symmetric and non-iterated and works by statistically associating related words
to the conceptual context of the given document. In effect it relates documents that
use similar terms, which for images are related to features in the image. In [76] LSI is
used to capture text statistics in vector form from an HTML document. Words with
specific HTML tags are given higher weights. In addition, the position of the words
with respect to the position of the image in the document is also accounted for. The
image features, that is the color histogram and the dominant orientation histogram,
are also captured in vector form and combined they form a unified vector that the
authors use for content-based search of a WWW-based image database. Reported
experiments show that maximum improvement was achieved when both visual and
textual information are employed.

In conclusion, video indexing results improve when a multimodal approach is fol-
lowed. Not only because of enhancement of content findings, but also because more
information is available. Most methods integrate in a symmetric and non-iterated
fashion. Usage of incremental context by means of iteration can be a valuable addi-
tion to the success of the integration process. Usage of combined statistical classifiers
in multimodal video indexing literature is still scarce, though various successful sta-
tistical methods for classifier combinations are known, e.g. bagging, boosting, or
stacking [68]. So, probably results can be improved even more substantially when
advanced classification methods from the field of statistical pattern recognition, or
other disciplines are used, preferably in an iterated fashion.

2.5 Semantic Video Indexes

The methodologies described in Section 2.4 have been applied to extract a variety of
the different video indexes described in Section 2.2.1. In this section we systematically
report on the different indexes and the information from which they are derived.
As methods for extraction of purpose are not mentioned in literature, this level is
excluded. Fig. 2.4 presents an overview of all indexes and the methods in literature
which can derive them.
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Figure 2.4: Semantic index hierarchy with instances as found in literature. From top to bottom

instances from genre, sub-genre, logical units, and named events. The dashed box is used to

group similar nodes.

2.5.1 Genre

“Editing is an important stylistic element because it affects the overall rhythm of the
video document” [21]. Hence, layout related statistics are well suited for indexing a
video document into a specific genre. Most obvious element of this editorial style is
the average shot length. Generally, the longer the shots, the slower the rhythm of the
video document.

The rate of shot changes together with the presence of black frames is used in [63]
to detect commercials within news broadcast. The rationale behind detection of black
frames is that they are often broadcasted for a fraction of a second before, after,
and between commercials. However, black frames can also occur for other reasons.
Therefore, the authors use the observation that advertisers try to make commercials
more interesting by rapidly cutting between different shots, resulting in a higher
shot change rate. A similar approach is followed in [82], for detecting commercials
within broadcasted feature films. Besides the detection of monochrome frames and
shot change rate, the authors use the edge change ratio and motion vector length to
capture high action in commercials.

Average shot length, the percentage of different types of edit transitions, and six
visual content features, are used in [153] to classify a video document into cartoons,
commercials, music, news and sports video genres. As a classifier the C4.5 decision
tree is used.

In [37] the observation is made that different genres exhibit different temporal
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patterns of face locations. They furthermore observe that the temporal behavior of
overlayed text is genre dependent. In fact the following genre dependent functions
can be identified:

• News: annotation of people, objects, setting, and named events;

• Sports: player identification, game related statistics;

• Movies/TV series: credits, captions, and language translations;

• Commercials: product name, claims, and disclaimers;

Based on results of face and text tracking, each frame is assigned one of 15 labels,
describing variations on the number of appearing faces and/or text lines together with
the distance of a face to the camera. These labels form the input for an HMM, which
classifies an input video document into news, commercials, sitcoms, and soaps based
on maximum likelihood.

Detection of generic sport video documents seems almost impossible due to the
large variety in sports. In [75], however, a method is presented that is capable of
identifying mainstream sports videos. Discriminating properties of sport videos are
the presence of slow-motion replays, large amounts of overlayed text, and specific
camera/object motion. The authors propose a set of eleven features to capture these
properties, and obtain 93% accuracy using a decision tree classifier. Analysis showed
that motion magnitude and direction of motion features yielded the best results.

Methods for indexing video documents into a specific genre using a multimodal
approach are reported in [44, 65, 71]. In [65] news reports, weather forecasts, com-
mercials, basketball, and football games are distinguished based on audio and visual
information. The authors compare different integration methods and classifiers and
conclude that a product HMM classifier is most suited for their task, see also 2.4.2.

The same modalities are used in [44]. The authors present a three-step approach.
In the first phase, content features such as color statistics, motion vectors and audio
statistics are extracted. Secondly, layout features are derived, e.g. shot lengths,
camera motion, and speech vs. music. Finally, a style profile is composed and an
educational guess is made as to the genre in which a shot belongs. They report
promising results by combining different layout and content attributes of video for
analysis, and can find five (sub)genres, namely news broadcasts, car racing, tennis,
commercials, and animated cartoons.

Besides auditory and visual information, [71] also exploits the textual modality.
The segmentation and indexing approach presented uses three layers to process low-,
mid-, and high-level information. At the lowest level features such as color, shape,
MFCC, ZCR, and the transcript are extracted. Those are used in the mid-level
to detect faces, speech, keywords, etc. At the highest level the semantic index is
extracted through the integration of mid-level features across the different modalities,
using Bayesian networks, as noted in Section 2.4.2. In its current implementation the
presented system classifies segments as either part of a talk show, commercial or
financial news.
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2.5.2 Sub-genre

Research on indexing sub-genres, or specific instances of a genre, has been geared
mainly towards sport videos [44, 65, 122] and commercials [32]. Obviously, future
index techniques may also extract other sub-genres, for example westerns, comedies,
or thrillers within the feature film genre.

Four sub-genres of sport video documents are identified in [122]: basketball, ice
hockey, soccer, and volleyball. The full motion fields in consecutive frames are used
as a feature. To reduce the feature, Principal Component Analysis is used. For
classification two different statistical classifiers were applied. It was found that a
continuous observation density Markov model gave the best results. The sequences
analyzed were post-edited to contain only the play of the sports, which is a drawback
of the presented system. For instance, no crowd scenes or time outs were included.
Some sub-genres of sport video documents are also detected in [44, 65], as noted in
Section 2.5.1.

An approach to index commercial videos based on semiotic and semantic properties
is presented in [32]. Semiotics classifies commercials into four different sub-genres
that relate to the narrative of the commercial. The following four sub-genres are
distinguished: practical, critical, utopic, and playful commercials. Perceptual features
e.g. saturated colors, horizontal lines, and the presence or absence of recurring colors,
are mapped onto the semiotic categories. Based on research in the marketing field, the
authors also formalized a link between editing, color, and motion effects on the one
hand, and feelings that the video arouses in the observer on the other. Characteristics
of a commercial are related to those feelings and have been organized in a hierarchical
fashion. A main classification is introduced between commercials that induce feelings
of action and those that induce feelings of quietness. The authors subdivide action
further into suspense and excitement. Quietness is further specified in relaxation and
happiness.

2.5.3 Logical Units

Detection of logical units in video documents is extensively researched with respect to
the detection of scenes or Logical Story Units (LSU) in feature films and sitcoms. An
overview and evaluation of such methods is presented in [159]. However, detection of
LSU boundaries alone is not enough. For indexing, we are especially interested in its
accompanying label.

A method that is capable of detecting dialogue scenes in movies and sitcoms, is
presented in [7]. Based on audio analysis, face detection, and face location analysis the
authors generate output labels which form the input for an HMM. The HMM outputs
a scene labeled as either, establishing scene, transitional scene, or dialogue scene.
According to the results presented, combined audio and face information gives the
most consistent performance of different observation sets and training data. However,
in its current design, the method is incapable of differentiating between dialogue and
monologue scenes.

A technique to characterize and index violent scenes in general TV drama and
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movies is presented in [93]. The authors integrate cues from both the visual and
auditory modality symmetrically. First, the spatio-temporal dynamic activity of each
video shot is computed as a measure of action. This is combined with detection of
flames and blood using a predefined color table. The corresponding audio information
provides supplemental evidence for the identification of violent scenes. The focus is
on the abrupt change in energy level of the audio signal, computed using the energy
entropy criterion. As a classifier the authors use a knowledge-based combination of
feature values on scene level.

By utilizing a symmetric and non-iterated multimodal integration method four
different types of scenes are identified in [124]. The audio signal is segmented into
silence, speech, music, and miscellaneous sounds. This is combined with a visual
similarity measure, computed within a temporal window. Dialogues are then detected
based on the occurrence of speech and an alternated pattern of visual labels, indicating
a change of speaker. When the visual pattern exhibits a repetition the scene is labeled
as story. When the audio signal isn’t labeled as speech, and the visual information
exhibits a progressive pattern, with contrasting visual content, the scene is labeled as
action. Finally, scenes that don’t fit in the aforementioned categories are indexed as
generic scenes.

In contrast to [124], a unimodal approach based on the visual information source
is used in [172] to detect dialogues, actions, and story units. Shots that are visually
similar and temporally close to each other are assigned the same (arbitrary) label.
Based on the patterns of labels in a scene, it is indexed as either dialogue, action, or
story unit.

A scheme for reliably identifying logical units which clusters sensor shots according
to detected dialogues, similar settings, or similar audio is presented in [111]. The
method starts by calculating specific features for each camera and microphone shot.
Auditory, color, and orientation features are supported as well as face detection. Next
an Euclidean metric is used to determine the distance between shots with respect to
the features, resulting in a so called distance table. Based on the distance tables,
shots are merged into logical units using absolute and adaptive thresholds.

News broadcasts are far more structured than feature films. Researchers have
exploited this to classify logical units in news video using a model-based approach.
Especially anchor shots are easy to model and therefore easy to detect. Since there
is only minor body movement they can be detected by comparison of the average
difference between (regions in) successive frames. This difference will be minimal.
This observation is used in [53, 132, 175]. In [53, 132] also the restricted position and
size of detected faces is used.

Another approach for the detection of anchor shots is taken in [17, 57, 67]. Rep-
etition of visually similar anchor shots throughout the news broadcast is exploited.
To refine the classification of the similarity measure used, [17] requires anchor shots
candidates to have a motion quantity below a certain threshold. Each shot is clas-
sified as either anchor or report. Moreover, textual descriptors are added based on
extracted captions and recognized speech. To classify report and anchor shots, the
authors in [67] use face and lip movement detection. To distinguish anchor shots, the
aforementioned classification is extended with the knowledge that anchor shots are
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graphically similar and occur frequently in a news broadcast. The largest cluster of
similar shots is therefore assigned to the class of anchor shots. Moreover, the detection
of a title caption is used to detect anchor shots that introduce a new topic. In [57] an-
chor shots are detected together with silence intervals to indicate report boundaries.
Based on a topics database the presented system finds the most probable topic per
report by analyzing the transcribed speech. Opposed to [17,67], final descriptions are
not added to shots, but to a sequence of shots that constitute a complete report on
one topic. This is achieved by merging consecutive segments with the same topic in
their list of most probable topics.

Besides the detection of anchor persons and reports, other logical units can be
identified. In [38] six main logical units for TV broadcast news are distinguished,
namely, begin, end, anchor, interview, report, and weather forecast. Each logical unit
is represented by an HMM. For each frame of the video one feature vector is calculated
consisting of 25 features, including motion and audio features. The resulting feature
vector sequence is assigned to a logical unit based on the sequence of HMMs that
maximizes the probability of having generated this feature vector sequence. By using
this approach parsing and indexing of the video is performed in one pass through the
video only.

Other examples of highly structured TV broadcasts are talk and game shows.
In [72] a method is presented that detects guest and host shots in those video doc-
uments. The basic observation used is that in most talk shows the same person is
host for the duration of the program but guests keep on changing. Also host shots
are typically shorter since only the host asks questions. For a given show, the key
frames of the N shortest shots containing one detected face are correlated in time to
find the shot most often repeated. The key host frame is then compared against all
key frames to detect all similar host shots, and guest shots.

In [169] a model for segmenting soccer video into the logical units break and play
is given. A grass-color ratio is used to classify frames into three views according to
video shooting scale, namely global, zoom-in, and close-up. Based on segmentation
rules, the different views are mapped. Global views are classified as play and close-ups
as breaks if they have a minimum length. Otherwise a neighborhood voting heuristic
is used for classification.

2.5.4 Named Events

Named events are at the lowest level in the semantic index hierarchy. For their
detection different techniques have been used.

A three-level event detection algorithm is presented in [54]. The first level of the
algorithm extracts generic color, texture, and motion features, and detects moving
object blobs. The mid-level employs a domain dependent neural network to verify
whether the moving blobs belong to objects of interest. The generated shot descrip-
tors are then used by a domain-specific inference process at the third level to detect
the video segments that contain events of interest. To test the effectiveness of the al-
gorithm the authors applied it to detect animal hunt events in wildlife documentaries.

Violent events and car chases in feature films are detected in [90], based on analysis
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of environmental sounds. First, low level sounds as engines, horns, explosions, or
gunfire are detected, which constitute part of the high level sound events. Based on
the dominance of those low level sounds in a segment it is labeled with a high level
named event.

Walking shots, gathering shots, and computer graphics shots in broadcast news
are the named events detected in [67]. A walking shot is classified by detecting the
up and down oscillation of the bottom of a facial region. When more than two similar
sized facial regions are detected in a frame, a shot is classified as a gathering shot.
Finally, computer graphics shots are classified by a total lack of motion in a series of
frames.

The observation that authors use lightning techniques to intensify the drama of
certain scenes in a video document is exploited in [152]. An algorithm is presented
that detects flashlights, which is used as an identifier for dramatic events in feature
films, based on features derived from the average frame luminance and the frame
area influenced by the flashing light. Five types of dramatic events are identified that
are related to the appearance of flashlights, i.e. supernatural power, crisis, terror,
excitement, and generic events of great importance.

Whereas a flashlight can indicate a dramatic event in feature films, slow motion
replays are likely to indicate semantically important events in sport video documents.
In [104] a method is presented that localizes such events by detecting slow motion
replays. The slow-motion segments are modeled and detected by an HMM.

One of the most important events in a sport video document is a score. In [13] a
link between the visual and textual modalities is made to identify events that change
the score in American football games. The authors investigate whether a chain of key-
words, corresponding to an event, is found from the closed caption stream or not. In
the time frames corresponding to those keywords, the visual stream is analyzed. Key
frames of camera shots in the visual stream are compared with predefined templates
using block matching based on the color distribution. Finally, the shot is indexed by
the most likely score event, for example a touchdown.

Besides American football, methods for detecting events in tennis [88, 149, 178],
soccer [23, 51], baseball [121, 178] and basketball [127, 181] are reported in literature.
Commonly, the methods presented exploit domain knowledge and simple (visual)
features related to color, edges, and camera/object motion to classify typical sport
specific events e.g. smashes, corner kicks, and dunks using a knowledge-based clas-
sifier. An exception to this common approach is [121], which presents an algorithm
that identifies highlights in baseball video by analyzing the auditory modality only.
Highlight events are identified by detecting excited speech of the commentators and
the occurrence of a baseball pitch and hit.

Besides semantic indexing, detection of named events also forms a great resource
for reuse of video documents. Specific information can be retrieved and reused in
different contexts, or reused to automatically generate summaries of video documents.
This seems especially interesting for, but is not limited to, video documents from the
sport genre.
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2.5.5 Discussion

Now that we have described the different semantic index techniques, as encountered
in literature, we are able to distinguish the most prominent content and layout prop-
erties per genre. As variation in the textual modality is in general too diverse for
differentiation of genres, and more suited to attach semantic meaning to logical units
and named events, we focus here on properties derived from the visual and auditory
modality only. Though, a large amount of genres can be distinguished, we limit our-
selves to the ones mentioned in the semantic index hierarchy in Fig. 2.4, i.e. talk show,
music, sport, feature film, cartoon, sitcom, soap, documentary, news, and commercial.
For each of those genres we describe the characteristic properties.

Most prominent property of the first genre, i.e. talk shows, is their well-defined
structure, uniform setting, and prominent presence of dialogues, featuring mostly
non-moving frontal faces talking close to the camera. Besides closing credits, there is
in general a limited use of overlayed text.

Whereas talk shows have a well-defined structure and limited setting, music clips
show great diversity in setting and mostly have ill-defined structure. Moreover, music
will have many short camera shots, showing lots of camera and object motion, sepa-
rated by many gradual transition edits and long microphone shots containing music.
The use of overlayed text is mostly limited to information about the performing artist
and the name of the song on a fixed position.

Sport broadcasts come in many different flavors, not only because there exist a
tremendous amount of sport sub-genres, but also because they can be broadcasted
live or in summarized format. Despite this diversity, most authored sport broadcasts
are characterized by a voice over reporting on named events in the game, a watching
crowd, high frequency of long camera shots, and overlayed text showing game and
player related information on a fixed frame position. Usually sport broadcasts contain
a vast amount of camera motion, objects, and players within a limited uniform setting.
Structure is sport-specific, but in general, a distinction between different logical units
can be made easily. Moreover, a typical property of sport broadcasts is the use of
replays showing events of interest, commonly introduced and ended by a gradual
transition edit.

Feature film, cartoon, sitcom, and soap share similar layout and content properties.
They are all dominated by people (or toons) talking to each other or taking part
in action scenes. They are structured by means of scenes. The setting is mostly
limited to a small amount of locales, sometimes separated by means of visual, e.g.
gradual, or auditory, e.g. music, transition edits. Moreover, setting in cartoons is
characterized by usage of saturated colors, also the audio in cartoons is almost noise-
free due to studio recording of speech and special effects. For all mentioned genres
the usage of overlayed text is limited to opening and/or closing credits. Feature film,
cartoon, sitcom, and soap differ with respect to people appearance, usage of special
effects, presence of object and camera motion, and shot rhythm. Appearing people
are usually filmed frontal in sitcoms and soaps, whereas in feature films and cartoons
there is more diversity in appearance of people or toons. Special effects are most
prominent in feature films and cartoons, laughter of an imaginary public is sometimes
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added to sitcoms. In sitcoms and soaps there is limited camera and object motion.
In general cartoons also have limited camera motion, though object motion appears
more frequently. In feature films both camera and object motion are present. With
respect to shot rhythm it seems legitimate to state that this has stronger variation in
feature films and cartoons. The perceived rhythm will be slowest for soaps, resulting
in more frequent use of camera shots with relative long duration.

Documentaries can also be characterized by their slow rhythm. Other properties
that are typical for this genre are the dominant presence of a voice over narrating
about the content in long microphone shots. Motion of camera and objects might be
present in the documentary, the same holds for overlayed text. Mostly there is no
well-defined structure. Special effects are seldom used in documentaries.

Most obvious property of news is its well-defined structure. News reports and
interviews are alternated by anchor persons introducing, and narrating about, the
various news topics. A news broadcast is commonly ended by a weather forecast.
Those logical units are mostly dominated by monologues, e.g. people talking in front
of a camera showing little motion. Overlayed text is frequently used on fixed positions
for annotation of people, objects, setting, and named events. A report on an incident
may contain camera and object motion. Similarity of studio setting is also a prominent
property of news broadcasts, as is the abrupt nature of transitions between sensor
shots.

Some prominent properties of the final genre, i.e. commercials, are similar to
those of music. They have a great variety in setting, and share no common structure,
although they are authored carefully, as the message of the commercial has to be
conveyed in twenty seconds or so. Frequent usage of abrupt and gradual transition,
in both visual and auditory modality, is responsible for the fast rhythm. Usually
lots of object and camera motion, in combination with special effects, such as a
loud volume, is used to attract the attention of the viewer. Difference with music
is that black frames are used to separate commercials, the presence of speech, the
superfluous and non-fixed use of overlayed text, a disappearing station logo, and the
fact that commercials usually end with a static frame showing the product or brand
of interest.

Due to the large variety in broadcasting formats, which is a consequence of guid-
ance by different authors, it is very difficult to give a general description for the
structure and characterizing properties of the different genres. When considering
sub-genres this will only become more difficult. Is a sports program showing high-
lights of today’s sport matches a sub-genre of sport or news? Reducing the prominent
properties of broadcasts to instances of layout and content elements, and splitting of
the broadcasts into logical units and named events seems a necessary intermediate
step to arrive at a more consistent definition of genre and sub-genre. More research
on this topic is still necessary.
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2.6 Conclusion

Viewing a video document from the perspective of its author, enabled us to present a
framework for multimodal video indexing. This framework formed the starting point
for our review on different state-of-the-art video indexing techniques. Moreover, it
allowed us to answer the three different questions that arise when assigning an index to
a video document. The question what to index was answered by reviewing different
techniques for layout reconstruction. We presented a discussion on reconstruction
of content elements and integration methods to answer the how to index question.
Finally, the which index question was answered by naming different present and future
index types within the semantic index hierarchy of the proposed framework.

At the end of this review we stress that multimodal analysis is the future. However,
more attention, in the form of research, needs to be given to the following factors:

1. Content segmentation

Content segmentation forms the basis of multimodal video analysis. In contrast
to layout reconstruction, which is largely solved, there is still a lot to be gained in
improved segmentation for the three content elements, i.e. people, objects, and
setting. Contemporary detectors are well suited for detection and recognition
of content elements within certain constraints. Most methods for detection of
content elements still adhere to a unimodal approach. A multimodal approach
might prove to be a fruitful extension. It allows to take additional context into
account. Bringing the semantic index on a higher level is the ultimate goal for
multimodal analysis. This can be achieved by the integrated use of different
robust content detectors or by choosing a constrained domain that ensures the
best detection performance for a limited detector set.

2. Modality usage

Within the research field of multimodal video indexing, focus is still too much
geared towards the visual and auditory modality. The semantic rich textual
modality is largely ignored in combination with the visual or auditory modality.
Specific content segmentation methods for the textual modality will have their
reflection on the semantic index derived. Ultimately this will result in semantic
descriptions that make a video document as accessible as a text document.

3. Multimodal integration

The integrated use of different information sources is an emerging trend in video
indexing research. All reported integration methods indicate an improvement of
performance. Most methods integrate in a symmetric and non-iterated fashion.
Usage of incremental context by means of iteration can be a valuable addition
to the success of the integration process. Most successful integration methods
reported are based on the HMM and Bayesian network framework, which can
be considered as the current state-of-the-art in multimodal integration. There
seems to be a positive correlation between usage of advanced integration meth-
ods and multimodal video indexing results. This paves the road for the explo-
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ration of classifier combinations from the field of statistical pattern recognition,
or other disciplines, within the context of multimodal video indexing.

4. Technique taxonomy

We presented a semantic index hierarchy that grouped different index types as
found in literature. Moreover we characterized the different genres in terms of
their most prominent layout and content elements, and by splitting its structure
into logical units and named events. What the field of video indexing still lacks
is a taxonomy of different techniques that indicates why a specific technique is
suited the best, or unsuited, for a specific group of semantic index types.

The impact of the above mentioned factors on automatic indexing of video documents
will not only make the process more efficient and more effective than it is now, it
will also yield richer semantic indexes. This will form the basis for a range of new
innovative applications.



Chapter 3
Multimedia Event-Based Video
Indexing using Time Intervals∗

We propose the Time Interval Multimedia Event (TIME) framework as a robust ap-
proach for classification of semantic events in multimodal video documents. The
representation used in TIME extends the Allen temporal interval relations and allows
for proper inclusion of context and synchronization of the heterogeneous information
sources involved in multimodal video analysis. To demonstrate the viability of our
approach, it was evaluated on the domains of soccer and news broadcasts. For auto-
matic classification of semantic events, we compare three different machine learning
techniques, i.c. C4.5 decision tree, Maximum Entropy, and Support Vector Machine.
The results show that semantic video indexing results significantly benefit from using
the TIME framework.

∗Published in IEEE Transactions on Multimedia, 7(4):638-647, 2005.
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3.1 Introduction

Management of digital video documents is becoming more and more problematic
due to the ever growing size of content produced. For easy management a semantic
index describing the different events in the content of the document is indispensable.
Since manual annotation is unfeasible, because of its tedious and cumbersome nature,
automatic video indexing methods are necessary.

In general, automatic indexing methods suffer from the semantic gap or the lack
of coincidence between the extracted information and its interpretation by a user, as
recognized for image indexing in [136]. Video indexing has the advantage that it can
profit from combined analysis of visual, auditory, and textual information sources. For
multimodal indexing, two problems have to be unravelled. Firstly, when integrating
analysis results of different information channels, difficulties arise with respect to
synchronization. The synchronization problem is typically solved by converting all
modalities to a common layout scheme [142], e.g. camera shots, hereby ignoring
the layout of the other modalities. This introduces the second problem, namely the
difficulty to properly model context, i.e. how to include clues that do not occur at the
exact moment of the semantic event of interest? When synchronization and context
have been solved, multimodal video indexing might be able to bridge the semantic
gap to some extent.

Existing methods for multimodal integration can be grouped into knowledge based
approaches [13, 44] and statistical approaches [56, 65, 84, 96, 180]. The former ap-
proaches typically combine the output of different multimodal detectors into a rule
based classifier. In [13] for example, the authors first analyze the textual channel
for the occurrence of specific keywords that have a relation with a semantic event in
American football. This results in a time interval where a possible event has taken
place. The visual information of this time interval is then used for final classification.
The drawback of this two stage approach is the dependence on the first stage. If the
textual stream detector fails, no event is detected. To limit this model dependency,
and improve the robustness, a statistical approach seems more promising. Various
statistical frameworks can be exploited for multimodal integration. Recently there has
been a wide interest in applying the Dynamic Bayesian Network (DBN) framework
for multimodal integration [65, 96]. Other multimodal statistical frameworks that
were proposed include the use of C4.5 decision trees [180], Maximum Entropy [56],
and Support Vector Machines [84]. However, all of these frameworks suffer from the
problems of synchronization and context, identified above. Furthermore, they lack
satisfactory inclusion of the textual modality. Therefore, a new framework is needed.

In this Chapter we propose the Time Interval Multimedia Event (TIME) frame-
work which explicitly handles context and synchronization and, as it is based on
statistics, yields a robust approach for multimodal integration.

To demonstrate the viability of our approach for video indexing of semantic events
we provide a systematic evaluation of three statistical classifiers, using TIME, and
discuss their performance on the domains of soccer and news broadcasts. The soccer
domain was chosen because events occur infrequently and in an unpredictable manner.
Hence, contextual clues are important for reliable detection. In contrast to soccer, the
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news domain is far more structured. Here, synchronization of the different information
sources is more important than context for accurate event detection.

The rest of this Chapter is organized as follows. First we discuss related work, with
respect to the domains we consider. Then we proceed with the introduction of the
TIME framework in Section 3.3, discussing both representation and classification. In
Section 3.4 we discuss the detectors used for classification of various semantic events
in soccer and news video. Experimental results are presented in Section 3.5.

3.2 Related Work in Soccer and News Analysis

The classification methods introduced in the introduction have been used in various
applications. For an extensive overview we refer to Chapter 2. We focus here on the
soccer and news domain.

In literature several methods for automatic soccer analysis have been proposed,
e.g. [11, 39,79,173]. Most methods are based on analysis of the visual modality only.
One of the first reported methods was presented in [173]. The authors focus on
visualization of ball and player tracks using mosaics. However, no experiments in
semantic event detection were demonstrated. More recently, methods were proposed
that try to narrow the semantic gap based on a correlation between advanced visual
detectors and semantic concepts. In [11, 79] camera based detectors are proposed,
exploiting the relation between the movement of the ball and the camera. A slow-
motion replay detector, among others, is proposed in [39] as a strong indicator for
an event of importance that happened beforehand. For combination of the visual
detectors a statistical DBN is used in [11, 79], whereas [39] exploits a knowledge
based approach.

In contrast to soccer event detection methods, which are still mainly based on
visual analysis, the state-of-the-art in news analysis is already based on multimodal
analysis [18,38,67,84]. In [18] anchor shots and graphical shots are detected based on
similarity and motion. The remaining shots are classified as news footage and are an-
notated with text extracted from a Video Optical Character Recognition module and
a speech recognition module. A similar approach is proposed in [67], besides anchors,
graphics, and report events, they detect gathering and walking events by exploiting
face statistics. Manually added captions are processed with a named entity recognizer
to attach more semantics to the detected events. By exploiting the fixed structure
of a news broadcast in combination with similarity, motion, and audio detectors, the
authors of [38] are able to detect anchors, monologues, report footage and weather
forecasts. Weather reports are also detected in [84], the authors combine text and
image detectors and exploit combination strategies to improve classification accuracy.
For the integration phase, again, a differentiation between knowledge based [18, 67]
and statistical methods [38,84] can be made.

For both domains problems arise when contextual information is to be included in
the analysis and the various information sources have to be synchronized. In soccer
for example, contextual clues like replays and distinguishing camera movement don’t
appear at the exact moment of the event, therefore the timing has to be estimated.
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Figure 3.1: Detector based segmentation of a multimodal soccer video document into its layout

and content elements with a goal event (box) and contextual relations (dashed arrows).

In news on the other hand, there is a clear relation between the visibility moment of
overlayed text and the introduction of a speaker, i.e. it is unlikely that the overlay
will appear at the end of the camera shot that views the speaker. Hence, their
synchronization should be relative to each other. To tackle the problems of proper
synchronization and inclusion of contextual clues for multimodal video analysis we
propose the statistical TIME framework.

3.3 Multimedia Event Classification Framework

We view a video document from the perspective of its author [142]. Based on a prede-
fined semantic intention, an author combines certain multimedia layout and content
elements to express his message. For analysis purposes this authoring process should
be reversed. Hence, we start with reconstruction of layout and content elements.
To that end, discrete detectors, indicating the presence or absence of specific layout
and content elements, are often the most convenient means to describe the layout
and content. This has the added advantage that detectors can be developed inde-
pendently of one another. To combine the resulting detector segmentations into a
common framework, some means of synchronization is required. To illustrate, con-
sider Fig. 3.1. In this example a soccer video document is represented by various
time dependent detector segmentations, defined on different asynchronous layout and
content elements. At a certain moment a goal occurs. Clues for the occurrence of
this event are found in the detector segmentations that have a value within a specific
position of the time-window of the event, e.g. excited speech of the commentator.
But also in contextual detector segmentations that have a value before, e.g. a camera
panning towards the goal area, or after the actual occurrence of the event, e.g. the
occurrence of the keyword score in the time stamped closed caption. Clearly, in terms
of the theoretical framework, it doesn’t matter exactly what the detector segmenta-
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tions are. What is important is that we need means to express the different visual,
auditory, and textual detector segmentations into one fixed representation without
loss of their original layout scheme.

Hence, for automatic classification of a semantic event, ω, we need to grasp a video
document into a common pattern representation. In this section we first consider how
to represent such a pattern, x, using multimodal detector segmentations and their
relations, then we proceed with statistical pattern recognition techniques that exploit
this representation for classification using varying complexity.

3.3.1 Pattern Representation

Applying layout and content detectors to a video document results in various seg-
mentations, we define:

Definition 3.3.1 (TIME Segmentation) Decomposition of a video document into
one or more series of time intervals, τ , based on a set of multimodal detectors.

To model synchronization and context, we need means to express relations be-
tween these time intervals. Allen showed that thirteen relationships are sufficient to
model the relationship between any two intervals. To be specific, the relations are:
precedes, meets, overlaps, starts, during, finishes, equals, and their inverses, identified
by adding i to the relation name [8]. For practical application of the Allen time
intervals two problems occur. First, in video analysis exact alignment of start- or
endpoints seldom occurs due to noise. Second, two time intervals will always have a
relation even if they are far apart in time. To solve the first problem a fuzzy inter-
pretation was proposed in [6]. The authors introduce a margin, T1, to account for
imprecise boundary segmentations, explaining the fuzzy nature. The second problem
only occurs for the relations precedes and precedes i, as for these the two time inter-
vals are disjunct. Thus, we introduce a range parameter, T2, which assigns to two
intervals the type NoRelation if they are too far apart in time. Hence, we define:

Definition 3.3.2 (TIME Relations) The set of fourteen fuzzy relations that can
hold between any two elements from two segmentations, τ1 and τ2, based on the margin
T1 and the range parameter T2.

Obviously the new relations still assure that between two intervals one and only one
type of relation exists. The difference between standard Allen relations and TIME
relations is visualized in Fig. 3.2.

Since TIME relations depend on two intervals, we choose one interval as a reference
interval and compare this interval with all other intervals. Continuing the example,
when we choose a camera shot as a reference interval, the goal can be modeled by a
swift camera pan that starts the current camera shot, excited speech that overlaps i
the camera shot, and a goal related keyword in the closed caption that precedes i the
camera shot within a range of 6 seconds. This can be explained because of the time
lag between actual occurrence of the event and its mentioning in the closed caption.
Although a panning camera, excited speech, and a goal related keyword are possible
important cues for a goal event, it is their combination with specific TIME relations



40 Chapter 3. Multimedia Event-Based Video Indexing using Time Intervals

Allen TIME

NoRelation

- ta2 £ tb1 -T2

Precedes
ta2 < tb1 ta1 > tb1 -T2

ta2 < tb1-T1

Meets

ta2 = tb1 tb1-T1 £ ta2 £ tb1+T1

Overlaps
ta1<tb1 ta1 < tb1-T1

tb1<ta2<tb2 tb1+T1< ta2 < tb2-T1

Starts

ta1=tb1 tb1 -T1 £ ta1 £ tb1 +T1

ta2< tb2 ta2 < tb2 -T1

During
ta1> tb1 ta1> tb1+T1

ta2< tb2 ta2< tb2-T1

Finishes
ta1> tb1 ta1> tb1+ T1

ta2= tb2 tb2 -T1 £ ta2 £ tb2 +T1

Equals

ta1= tb1 tb1 -T1 £ ta1 £ tb1 +T1

ta2= tb2 tb2 -T1 £ ta2 £ tb2 +T1

t1

t1

t2

t2

a

b

a

a

a

a

a

a

b

a

T2 T2T1 T1 T1 T1

Figure 3.2: Overview of the differences between exact Allen relations and TIME relations,

extended from [6].

that makes it key information with respect to the semantics. Also note that the
interval based TIME relations have a clear advantage over point based representations,
since the relative ordering of segmentations is preserved, and the relations don’t suffer
from variable lengths between various segmentations. Moreover, by combining TIME
segmentations and TIME relations it becomes possible to represent events, context,
and synchronization into one common framework. Hence, we define:

Definition 3.3.3 (TIME Representation) Model of a multimedia pattern x based
on the reference interval τref , and represented as a set of n TIME relations, with d

TIME segmentations.

In theory, the number of TIME relations, n, is bounded by the number of TIME
segmentations, d. Since, every TIME segmentation can be expressed as a maximum
of fourteen TIME relations with the fixed reference interval, the maximum number of
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TIME relations in any TIME representation is equal to 14(d−1). In practice, however,
a subset can be chosen, either by feature selection techniques [68], experiments, or
domain knowledge.

With the TIME representation we are able to combine layout and content elements
into a common framework. Moreover, it allows for proper modeling of synchronization
and inclusion of context as they can both be expressed as time intervals.

3.3.2 Pattern Classification

To learn the relation between a semantic event ω, and corresponding pattern x, we
exploit the powerful properties of statistical classifiers. In standard pattern recog-
nition, a pattern is represented by features. In the TIME framework a pattern is
represented by related detector segmentations.

The statistical classification process is composed of two phases: training and test-
ing. In the first phase, the optimal pattern configuration of relations is learned from
the training data. In the second phase, the statistical classifier assigns the most prob-
able event to a pattern based on the detected segmentations and their TIME relations.
To prevent overtraining of the classifier, patterns in the testing phase should be drawn
from an independent data set.

In literature a varied gamut of statistical classifiers is proposed, see [68] for an
excellent overview. For our purpose, classification of semantic events in video docu-
ments, a classifier should adhere to the following principles:

• Binary representation: since TIME relations are binary by default, the statisti-
cal classifier should be able to handle a binary pattern representation;

• No independence assumption: since there is a clear dependency between clues
found in different modalities, a statistical classifier should not be based on an
independence assumption;

• Learn from few examples: since the events of importance in a video can be
limited, the statistical classifier should be able to learn from few examples;

Three statistical classifiers with varying complexity, adhering to the predefined prin-
ciples, will be discussed. We start with the C4.5 decision tree [116], then we proceed
with the Maximum Entropy framework [16, 73], and finally we discuss classification
using a Support Vector Machine [158].

C4.5 Decision Tree

The C4.5 decision tree learns from a training set the individual importance of each
TIME relation by computing the gain ratio [116]. Based on this ratio a binary tree
is constructed where a leaf indicates a class, and a decision node chooses between
two subtrees based on the presence of some TIME relation. The more important a
TIME relation is for the classification task at hand, the closer it is located near the
root of the tree. Because the relation selection algorithm continues until the entire
training set is completely covered, some pruning is necessary to prevent overtraining.
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Decision trees are considered suboptimal for most applications [68]. However, they
form a nice benchmark for comparison with more complex classifiers and have the
added advantage that they are easy to interpret.

Maximum Entropy

Whereas a decision tree exploits individual TIME relations in a hierarchical manner,
the Maximum Entropy (MaxEnt) framework exploits the TIME relations simulta-
neously. In MaxEnt, first a model of the training set is created, by computing the
expected value, Etrain, of each TIME relation using the observed probabilities p̃(x, ω)
of pattern and event pairs, [16]. To use this model for classification of unseen patterns,
we require that the constraints for the training set are in accordance with the con-
straints of the test set. Hence, we also need the expected value of the TIME relations
in the test set, Etest [16]. The complete model of training and test set is visualized in
Fig. 3.3. We are left with the problem of finding the optimal reconstructed model, p∗,
that finds the most likely event ω given an input pattern x, and that adheres to the
imposed constraints. From all the possible models, the maximum entropy philosophy
dictates that we select the one with the maximum entropy. It is shown in [16] that
there is always a unique model p∗(ω|x) with maximum entropy, and that p∗(ω|x) has
a form equivalent to:

p∗(ω|x) =
1

Z

n
∏

j=1

α
τj(x,ω)
j (3.1)

where αj is the weight for TIME relation τj and Z is a normalizing constant, used
to ensure that a probability distribution results. The values for αj are computed
by the Generalized Iterative Scaling (GIS) [34] algorithm. Since GIS relies on both
Etrain and Etest for calculation of αj , an approximation proposed by [77] is used that
relies only on Etrain. This allows to construct a classifier that depends completely
on the training set. The automatic weight computation is an interesting property of
the MaxEnt classifier, since it is very difficult to accurately weigh the importance of
individual detectors and TIME relations beforehand.

Support Vector Machine

The Support Vector Machine (SVM) classifier follows another approach. Each pattern
x is represented in a n-dimensional space, spanned by the TIME relations. Within
this relation space an optimal hyperplane is searched that separates the relation space
into two different categories, ω, where the categories are represented by +1 and −1
respectively. The hyperplane has the following form: ω|(w · x + b)| ≥ 1, where w
is a weight vector, and b is a threshold. A hyperplane is considered optimal when
the distance to the closest training examples is maximum for both categories. This
distance is called the margin, see the example in Fig. 3.3.

The problem of finding the optimal hyperplane is a quadratic programming prob-
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Figure 3.3: (a) Simplified visual representation of the Maximum Entropy framework. Con-

straints, imposed by the relations, for the training set should be in accordance with those for

the test set. From all possible models the one with maximum entropy is chosen. (b) Visual

representation of the Support Vector Machine framework. Here a two-dimensional relation space

consisting of two categories is visualized. The solid bold line is chosen as optimal hyperplane

because of the largest possible margin. The circled data points closest to the optimal hyperplane

are called the support vectors.

lem of the following form [158]:

min
w,ξ

{1

2
w · w + C

(

l
∑

i=1

ξi

)}

(3.2)

Under the following constraints:

ω|(w · xi + b)| ≥ 1 − ξi, i = 1, 2, . . . , l (3.3)

Where C is a parameter that allows to balance training error and model complexity,
l is the number of patterns in the training set, and ξi are slack variables that are
introduced when the data is not perfectly separable. These slack variables are useful
when analyzing multimedia, since results of individual detectors typically include a
number of false positives and negatives.

3.4 Multimodal Video Analysis

We consider two domains for analysis, namely soccer and news. These domains were
chosen because they allow to evaluate both the importance of context and proper
synchronization.
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Important events in a soccer game are scarce and occur more or less random. Ex-
amples of such events are goals, penalties, yellow cards, red cards, and substitutions.
We define these events as follows:

• Goal : the entire camera shot showing the actual goal;

• Penalty : beginning of the camera shot showing the foul until the end of the
camera shot showing the penalty;

• Yellow card : beginning of the camera shot showing the foul until the end of the
camera shot that shows the referee with the yellow card;

• Red card : beginning of the camera shot showing the foul until the end of the
camera shot that shows the referee with the red card;

• Substitution: beginning of the camera shot showing the player who goes out,
until the end of the camera shot showing the player who comes in;

These events are important for the game and therefore the author adds contextual
clues to make the viewer aware of the events. For accurate detection of events, this
context should be included in the analysis.

In contrast to soccer, a news broadcast is far more structured. Each episode,
the author carefully edits the layout and content elements, strictly adhering to the
predefined format of events in the news show. Most important events in a news
broadcast are the news stories. However, due to large variability in content, they
are hard to model. Therefore, we focus on events that are more uniform in content
and are useful for analysis of news structure. Examples of such events are reporting
anchors, monologues, split-view interviews, and weather reports. We define these
events as follows:

• Reporting anchor : the entire camera shot showing a news anchor talking to the
camera;

• Monologue: the entire camera shot showing a single person, not a reporting
anchor or weather reporter, talking for a while;

• Split-view interview : the entire camera shot showing both a news anchor and
an on-site reporter in dialogue;

• Weather report : the entire camera shot showing a weather reporter talking
about the weather forecast;

For analysis, the careful editing of the events should be taken into account by means
of proper synchronization.

In this section we will elaborate on the TIME segmentations and TIME relations
used for both soccer and news analysis. Some of the detectors, used for the segmen-
tation, are domain specific. It allows to integrate domain knowledge, but as these
are learned and not strict they are more robust than domain knowledge captured in
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Table 3.1: TIME representation for soccer analysis. T2 indicates the contextual range used by

the precedes and precedes i relations.

TIME segmentation TIME relations T2 (s)

Camera work during

Person during

Close-up precedes i 0 - 40

Goal keyword precedes i 0 - 6

Card keyword precedes i 0 - 6

Substitution keyword precedes i 0 - 6

Excitement All relations 0 - 1

Info block statistics precedes i 20 - 80

Person block statistics precedes i 20 - 50

Referee block statistics precedes i 20 - 50

Coach block statistics precedes i 20 - 50

Goal block statistics precedes i 20 - 50

Card block statistics precedes i 20 - 50

Substitution block statistics during

Shot length during

rules. Other detectors were chosen based on reported robustness and training experi-
ments. The parameters for individual detectors were found by experimentation using
the training set. Combining all TIME segmentations with all TIME relations results
in an exhaustive use of relations, we therefore use a subset to prevent a combinatory
explosion. The subset was tuned on the training set and exploits domain knowledge.
For all events, all mentioned TIME segmentations and TIME relations are used, i.e.
we used the same TIME representation for all events from the same domain. For
both domains, we use a fixed value of 0.5 seconds for the margin T1. We will now
first discuss the soccer representation, we then proceed with the news representation.

3.4.1 Soccer Representation

The teletext (European closed caption) provides a textual description of what is
said by the commentator during a match. This information source was analyzed for
presence of informative keywords, like yellow, red, card, goal, 1-0, 1-2, and so on. In
total 30 informative stemmed keywords were defined for the various events.

On the visual modality we applied several detectors. The type of camera work [12]
was computed for each camera shot, together with the shot length. A face detec-
tor [120] was applied for detection of persons. The same detector formed the basis for
a close-up detector. Close-ups are detected by relating the size of detected faces to
the total frame size. Often, an author shows a close-up of a player after an event of
importance. One of the most informative pieces of information in a soccer broadcast
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are the visual overlay blocks that give information about the game. We subdivided
each detected overlay block as either info, person, referee, coach, goal, card, or sub-
stitution block [140], and added some additional statistics. For example the duration
of visibility of the overlay block, as we observed that substitution and info blocks
are displayed longer on average. Note that all detector results are transformed into
binary output before they are included in the analysis.

From the auditory modality the excitement of the commentator is a valuable
resource. For the proper functioning of an excitement detector, we require that it is
insensitive to crowd cheer. This can be achieved by using a high threshold on the
average energy of a fixed window, and by requiring that an excited segment has a
minimum duration of 4 seconds.

We take the result of automatic shot segmentation as a reference interval. An
overview of the TIME representation for the soccer domain is summarized in Table 3.1.

3.4.2 News Representation

The news events we want to classify are dominated by talking people. Most detectors
that we propose are based on this observation. In the auditory modality we look for
speech segments. This is simply achieved by using the previously discussed excitement
detector with a lower threshold.

In the visual modality we detected faces [120] and several derived statistics, like
position, number, and camera distance used. We also detected the dominant camera
work used during the shot, since the events we try to classify are typically shot using
a static camera. For each shot we furthermore computed the average motion, number
of flashes, length, and whether it was preceded or succeeded by an effect. Text
localization [12] was applied to detect regions of overlayed text. We differentiated
between presence of a single region and parallel regions, e.g. one in the top of the
image frame and on the bottom.

For each detected text region we recognized the text and tried to match it, using
fuzzy string matching, with the city name where the news studio is located. The
presence of closed caption segments was used as an additional indicator for speech.
Moreover, they were scanned for presence of weather related keywords like sunny,
snow, degree, west and so on.

Again we take the result of automatic shot segmentation as a reference interval.
The TIME representation for the news domain is summarized in Table 3.2. When
comparing both Table 3.1 and 3.2, one can clearly see that Table 3.1 includes more
context, whereas Table 3.2 is more concerned with synchronization. In the next
section we will evaluate the automatic indexing of events in soccer and news video,
based on the presented pattern representation.

3.5 Results

For the evaluation of the TIME framework we used soccer and news broadcasts from
Dutch national TV. We recorded 8 live soccer broadcasts, about 12 hours in total. The
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Table 3.2: TIME representation for news analysis. T2 indicates the contextual range used by

the precedes and precedes i relations.

TIME segmentation TIME relations T2 (s)

Camera work during

Effect precedes, precedes i 0 - 4

Block length during

Camera distance during

Face left during

Face right during

Face center during

Number of faces during

Number of flashes during

Kinetic Energy during

Speech All relations 0 - 1

Closed caption All relations 0 - 1

Overlayed text All relations 0 - 1

Parallel overlayed text All relations 0 - 1

Studio keyword during

Weather keyword during

videos were digitized in 704 × 576 resolution MPEG-2 format. For the news domain
we recorded 24 broadcasts, again about 12 hours in total, in 352 × 288 resolution
MPEG-1 format. The audio was sampled at 16 KHz with 16 bits per sample for both
domains. The time stamped teletext was recorded with a teletext receiver. For soccer
analysis we used a representative training set of 3 hours and a test set of 9 hours.
For news, a training and test set of 6 hours each was used. In this section we will
first present the evaluation criteria used for evaluating the TIME framework, then we
present the classification results obtained. After presenting two prototype systems,
we end with a discussion on the results.

3.5.1 Evaluation Criteria

The standard measure for performance of a statistical classifier is the error rate.
However, this is unsuitable in our case, since the amount of relevant events are out-
numbered by irrelevant pieces of footage. We therefore use the precision and recall
measure adapted from information retrieval. Let |R| be the number of relevant cam-
era shots, i.e. camera shots containing the specific event one is looking for. Let |A|
denote the answer set, i.e. the number of camera shots that are retrieved by the sys-
tem. Let |R∩A| be the number of camera shots in the intersection of the sets R and
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Table 3.3: Evaluation results of the different classifiers for soccer events, where duration is the

total duration of all segments that are retrieved.

Ground truth C4.5 MaxEnt SVM

Total Duration Relevant Duration Relevant Duration Relevant Duration

Goal 12 3m07s 2 2m40s 10 10m14s 11 11m52s

Yellow Card 24 10m35s 13 14m28s 22 26m12s 22 12m31s

Substitution 29 8m09s 25 15m27s 25 7m36s 25 7m23s

∑

65 21m51s 40 32m35s 57 44m02s 58 31m46s

A. Then, precision is the fraction of retrieved camera shots (A) which are relevant:

Precision =
|R ∩ A|

|A|
(3.4)

and recall is the fraction of the relevant camera shots (R) which have been retrieved:

Recall =
|R ∩ A|

|R|
(3.5)

This measure gives an indication of correctly classified events, falsely classified events,
and missed events. For the evaluation of news classification, results will be plotted in
a recall-precision curve.

For the evaluation of soccer we used a different approach. Since events in a soccer
match can cross camera shot boundaries, we merge adjacent camera shots with similar
labels. As a consequence, we loose our arithmetic unit. Therefore, precision and recall
can no longer be computed. As an alternative for precision we relate the total duration
of the segments that are retrieved to the total duration of the relevant segments.
Moreover, since it is unacceptable from a users perspective that scarce soccer events
are missed, we strive to find as many events as possible in favor of an increase in false
positives. Finally, because it is difficult to exactly define the start and end of an event
in soccer video, we introduce a tolerance value T3 (in seconds) with respect to the
boundaries of detection results. We used a T3 of 7 s. for all soccer events. A merged
segment is considered relevant if one of its boundaries plus or minus T3 crosses that
of a labeled segment in the ground truth.

Besides a comparison of individual classifiers, we also compare the influence of
TIME on the final result. Since the benefit of using TIME for domains relying on
context is obvious, we only show this result for the news domain.

3.5.2 Event Classification

For evaluation of TIME on the soccer domain, we manually labeled all the camera
shots as either belonging to one of four categories: yellow card, goal, substitution, or
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Figure 3.4: Recall-precision curves for four semantic events in news broadcasts.

unknown. Red card and penalty were excluded from analysis since there was only
one instance of each in the data set. For all three remaining events a C4.5, MaxEnt,
and SVM classifier† was trained. Results on the test set are visualized in Table 3.3.

When analyzing the results, we clearly see that the C4.5 classifier performs worst.
Although it does a good job on detection of substitutions, it is significantly worse
for both yellow cards and goals when compared to the more complex MaxEnt and
SVM classifiers. When we compare results of MaxEnt and SVM, we observe that
almost all events are found independent of the classifier used. The amount of video
data that a user has to watch before finding these events is about two times longer
when a MaxEnt classifier is used, and about one and a half times longer when an
SVM is used, compared to the best case scenario. This is a considerable reduction of
watching time when compared to the total duration, 9 hours, of all video documents

†For classification the following open source toolboxes were used:
S. Ruggieri. YaDT - Yet another Decision Tree builder.
J. Baldridge, T. Morton and G. Bierner. OpenNLP Maxent.
C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines.
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in the test set. With the SVM we were able to detect one extra goal, compared to
MaxEnt. Analysis of retrieved segments learned that results of Maximum Entropy
and SVM are almost similar. Except for goal events, where nine events were retrieved
by both, the remaining classified goals were different for each classifier.

For the news domain we used the same classification approach as for soccer. But
now focussing on 4 events, namely: reporting anchor, monologue, split-view interview,
and weather report. Again for each event a C4.5, MaxEnt, and SVM classifier was
trained. Moreover, we also compared the added value of TIME by inclusion of one run
with the SVM classifier where all TIME relations were replaced by during relations.

Results of news classification are visualized by means of recall-precision curves
in Fig. 3.4. For the MaxEnt classifier we varied the threshold on the likelihood for
each camera shot computed by (3.1). For SVM we varied the threshold on the mar-
gin computed by (3.2) for each camera shot. For C4.5 this is impossible because of
its binary nature, we therefore plotted results of 5 pruning values. When compar-
ing classification results of the different classifiers we observe that SVM outperforms
all other classifiers, and that C4.5 achieves comparable classification results when
compared with a MaxEnt classifier. MaxEnt performs better on monologues, C4.5
performs better on weather reports, and is even comparable to SVM for this event.
The experimental results of SVM with and without TIME clearly show that there is
a significant gain in classification results when using the TIME framework. Only for
classification of weather report events, an SVM classifier without TIME can achieve
comparable results as an SVM with TIME. For all other classes, it is outperformed
by the SVM with TIME.

3.5.3 Implementation

Based on the current classification result we have developed the Goalgle soccer video
search engine, and added functionality to the News RePortal system, see Fig. 3.5. In
its current form, the web based prototypes allow to query a selection of broadcasts
on keywords, persons and events. Ultimately this should result in a personalized
automatic summary, that can be presented on a wide range of pervasive devices.

3.5.4 Discussion

When we take a closer look to the individual results of the different classifiers, it is
striking that C4.5 can achieve a good result on some events, e.g. substitution and
weather report, while performing bad on others, e.g. goal and monologue. This
can, however, be explained by the fact that the events where C4.5 scores well, can be
detected based on a limited set of TIME relations. For substitution events in soccer an
overlay during the event is a very strong indicator, whereas a weather related keyword
in the teletext is very indicative for weather reports. When an event is composed of
several complex TIME relations, like goal and monologues, the relatively simple C4.5
classifier performs worse than both complex MaxEnt and SVM classifiers.

To gain insight in the meaning of complex relations in the two domains, we consider
the GIS algorithm from Section 3.3.2, which allows to compute the importance or
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Figure 3.5: Screen dumps of (a) the Goalgle soccer video search engine, and (b) the News

RePortal system.

relative weight of the different relations used. The weights computed by GIS indicate
that for the soccer events goal and yellow card specific keywords in the closed captions,
excitement with during and overlaps relations, a close-up afterwards, and the presence
of an overlay nearby are important relations. For the news events reporting anchor
and monologue, a close-up face on the left side during the shot, a low average motion
during the shot, and overlayed text during the shot were of equal importance. For
reporting anchors speech that starts the camera shot was important, whereas various
relations with overlayed text were important for monologues. The weights for the
speech relation for monologues weren’t high enough to consider it very important,
which is quite surprising. This can be explained by the fact that non-Dutch speakers
are transcribed by means of overlayed text in the Dutch news, hence the detection
of such overlayed text is more distinguishing than speech for monologues. For split-
view interview events, two faces during the camera shot, meets and equals relations
with overlayed text showing the location of the two speakers, overlapping and during
speech relations, and the identification of a city keyword in the overlay text were
important. For weather reports, besides keywords in the teletext, a long shot camera
distance during the camera shot, and overlayed text with start and finish relations
are of importance.

When combining the weights, MaxEnt sometimes fails to profit from multiple in-
formation sources. This is best observed in the recall-precision curve for weather
reports. Overall, the SVM classifier achieves comparable or better results than Max-
Ent. When we analyze false positives for both classifiers, we observe that these are
caused because some of the important relations are shared between different events.
For soccer this mostly occurs when another event is indeed happening in the video,
e.g. a hard foul or a scoring chance. For news this especially occurs for classification
of reporting anchors and monologues. Often a monologue is classified as anchor and
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vice versa. We also found that close-ups of people in report footage with voice-overs,
and reporting anchor’s that were filmed from less usual camera positions were often
falsely classified. False negatives are mainly caused by the fact that a detector failed.
By increasing the number of detectors and relations in our model we might be able
to reduce these false positives and false negatives. Another option is to use a cascade
of classifiers, so instead of classifying each event individually, first classify events on
which you can do a good job, e.g. split-view interviews, and apply another classi-
fier on the negative results of the first classifier, and so on. This should yield better
indexing results.

3.6 Conclusion

To bridge the semantic gap for multimedia event classification, a new framework
is required that allows for proper modeling of context and synchronization of the
heterogeneous information sources involved. We have presented the Time Interval
Multimedia Event (TIME) framework that accommodates these issues, by means of
a time interval based pattern representation. Moreover, the framework facilitates
robust classification using various statistical classifiers.

To demonstrate the effectiveness of TIME it was evaluated on two domains, namely
soccer and news. The former was chosen because of its dependency on context.
The latter because of its dependence on synchronization. We have compared three
different statistical classifiers, with varying complexity, and show that there exists a
clear relation between narrowness of the semantic gap and the needed complexity of a
classifier. When there exists a simple mapping between a limited set of relations and
the semantic concept we are looking for, a simple decision tree will give comparable
results as a more complex SVM. When the semantic gap is wider, detection will profit
from combined use of multimodal detector relations and a more complex classifier, like
the SVM. Moreover, we show that the TIME framework, including synchronization
and context, outperforms the ‘standard’ multimodal analysis approaches common in
video indexing literature.

In the future we aim to explore the usage of complex classifier combinations and
architectures. Moreover, by inclusion of more textual resources we expect to be able
to give a richer description of events in video, ultimately bridging the semantic gap
for a large set of events.



Chapter 4
Learning Rich Semantics from
Produced Video by Style Analysis

In this Chapter, we propose a generic and flexible framework for produced video in-
dexing that is capable to learn rich semantic concepts from multimodal sources based
on style analysis. Four properties that are indicative for style are identified, namely
layout, content, capture, and context. By combining a fixed core of layout, content,
and capture detectors together with varying context detectors into a classifier ensem-
ble, the framework facilitates robust classification of several rich semantic concepts in
produced video. Results on 120 hours of video data from the 2003 TRECVID bench-
mark show that it is the combination of style elements that yields the best results
for produced video indexing. In addition, we demonstrate that the accuracy of the
proposed framework for classification of several rich semantic concepts in broadcast
news is state-of-the-art.

53
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4.1 Introduction

Advancement in optical fiber technology and growing availability of low-cost digital
multimedia recording devices enables worldwide capture, delivery, and exchange of
large amounts of video documents. This overwhelming amount of digital video data
will trigger the need for automatic indexing tools that can provide on-the-fly content-
based annotation, allowing for effective and efficient browsing, filtering, and retrieval
of specific video segments. The progress in content-based multimedia analysis, how-
ever, has not kept pace with this technology push.

Automatic techniques for video indexing suffer from the fact that it is hard to infer
semantics based on features extracted from the data. This semantic gap [136] has
hampered the development of a generic index solution. To study the problem, two
major classes of video documents should be distinguished, namely non-produced and
produced video. For non-produced video, e.g. security or home video, the content
is more or less accidental. In contrast, video created in a production environment,
e.g. a feature film or broadcast news, has an author or director to guide all facets
of the production process. He or she imposes a certain style to express a semantic
intention in the form of concepts. Where style is merely expressed by the choice of
techniques and their interrelationship. As considers semantic indexing, the content-
based multimedia research community has ignored the stylized nature of produced
video.

Initial work on semantic indexing of multimedia focused on content-based analysis
only. This approach is fruitful for concepts that are easy to distinguish because of their
large similarity in (visual) content, e.g. tigers and soccer games. For concepts that
have more variability in their content, e.g. buildings, sporting events, and dialogues,
analysis methods based on content only are too fragile. Some concepts, however,
share many similarities in their production style. Both sporting events and dialogues
for example, are often recorded from a fixed camera distance. To distinguish this class
of rich semantic concepts we therefore need the notion of style, see Fig. 4.1.

We perceive of the author’s style as a combination of four elements. In addition
to content, we identified in [142] layout as an important aspect for analysis of the
author’s style. As noted by [21, 24], capture of the data into a multimedia medium
is also an important stylistic element. Furthermore, in a produced video a concept
does not occur in isolation, but is further defined by its local context [98]. Thus
where bridging the semantic gap for non-produced video is not within reach, one can
potentially bridge it for produced video. The key observation to help overcome the
semantic gap in produced video is that an author in many ways stylizes rich semantic
concepts that appear in a video document. Thus, produced video analysis methods
should exploit style to infer rich semantics.

An author thinks in concepts, and aims to stimulate all senses of the audience when
expressing a semantic intention. Thus, the author combines the visual, auditory, and
textual modalities in the video document. Hence, analysis methods should exploit
the multimodal properties of video documents to its full potential when aiming for
detection of semantics based on style analysis.

Various multimodal approaches for produced video indexing exist, see [142] for



4.1. Introduction 55

Low

High

Content variabilityLow High

S
ty

le
c
o

n
s
is

te
n

c
y

Sunset Airplane

Sporting Event Interview

Rich Semantics

News Anchor

Figure 4.1: Relation between content variability and style consistency. Rich semantics have

both a high variability in content and a high consistency in style.

an overview. Methods for extraction of semantics are often based on highly specific
features and knowledge based classification rules [142]. Generic applicability and
robustness of these methods, therefore, is limited because of their model dependency.
Recently, the focus in multimodal video indexing has shifted to machine learning based
approaches. This has resulted in increased robustness for classification of concepts
related to setting, objects, people, and events, e.g. [4, 10, 60, 98, 141]. However, none
of these methods uses style.

In this Chapter we propose a generic, flexible, and robust framework for produced
video indexing based on style analysis. Our framework is generic because we learn
various rich semantic concepts from a fixed set of layout, content, and capture de-
tectors. We achieve flexibility within the framework by varying the set of context
detectors, depending on the rich semantic concept one is looking for. Finally, the
framework guarantees robustness by integrating all style elements into a statistical
classifier ensemble.

We participated in the 2003 NIST TRECVID video retrieval benchmark [134],
to demonstrate the applicability of our framework. The data set totaled 120 hours
of produced news episodes from ABC and CNN. In total 17 semantic concepts were
defined by TRECVID to be detected in this data set. Most concepts can be classified
as content-based concepts related to setting, e.g. vegetation, objects, e.g. airplane,
and people, e.g. news subject face. We focus our evaluation on classification of
rich semantic news concepts that use various style elements, namely: news subject
monologue, non-studio setting, sporting event, and weather news.
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The organization of the remainder of this Chapter is as follows. First, we discuss in
more detail related work. Then, we proceed with the introduction of our framework
for produced video indexing in Section 4.3. We discuss an implementation of the
framework for the news genre in Section 4.4. An extensive evaluation, demonstrating
the applicability of our framework, is presented in Section 4.5.

4.2 Related Work

Initial work on produced video indexing started with the analysis of visual layout and
content. A good example of this exploratory work is [176]. The authors focus on
parsing and indexing of video. Based on extracted motion features they are able to
classify concepts such as crowds and talking heads. Because of the exploring nature
of this work, experiments are carried out on a small-scale video data set only. In
addition, the multimodal nature of produced video is ignored.

Large scale multimodal produced video indexing has been pioneered by the In-
formedia project at Carnegie Mellon University [161]. Their approach focused on
adapting techniques developed for other domains, like speech recognition, face de-
tection, and natural language processing, into a video indexing and retrieval envi-
ronment. This has resulted in a news video analysis toolbox that exploits content
in a knowledge-based fashion. A drawback of their approach is the news model de-
pendency, and therefore lack of robustness. Although the current system is shifting
towards the usage of more advanced learning schemes [60], layout, capture, and con-
text are largely ignored.

Naphade et al. [98] were among the early adopters of advanced pattern recogni-
tion techniques for semantic classification of produced video. In [98] they propose to
model semantic concepts through probabilistic detectors, for example airplane, sky-
diving, and bird detectors. The authors refer to these concept detectors as multijects.
Integration of multijects into a network representation, referred to as Multinet, al-
lows inferring contextual semantics, e.g. outdoor based on detection of vegetation and
sky. By combining the individual probabilities of all multijects into a Multinet, using
factor graphs [98], the framework is applicable to all sorts of multimedia data and a
variety of semantic indexes. However, the experiments only consider visual concepts
related to the setting of the multimedia data, e.g. rocky terrain, water-body, and
forestry. This indicates that this method is mostly suited for non-rich semantics.

An extended and truly multimodal version of [98] was presented in [4,10], now as
part of the IBM Research TRECVID contribution. Here the Multinet is one of the
final classifiers in a pipeline of analysis steps that exploits various machine learning
and multimodal integration schemes. The pipeline starts with a set of standard and
semantically poor image, audio, and textual features. Based on these features the
pipeline then generates several unimodal statistical models for a lexicon of 64 seman-
tic concepts. For integration of modalities and models at the concept level, Ensemble
Fusion, amongst others, is applied. This fusion scheme includes normalization of con-
fidence scores, several combiner functions, and parameter optimization, see also [155].
All multimodal concepts then serve as the input for the Multinet that builds a context
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of concepts for final semantic classification. This approach has demonstrated good
results on the concept detection task of the NIST TRECVID benchmark, resulting in
the highest mean average precision for this task in 2002 and 2003. Despite this suc-
cess, we identify some limitations in the current pipeline approach. First, at its core
the system exploits a small set of semantically poor content features. This set still
focuses on visual concepts, and context. It is therefore not surprising that one of the
concepts for which the authors had poor performance was female speech. Modality
integration by combining classifier models at the concept level is another limitation of
the pipeline approach. As it neglects the important issue of synchronizing the layouts
of different modalities. In addition, the approach only considers context with con-
cepts which occur together, disregarding their sequential order. Finally, the approach
ignores capture. Hence, the current pipeline approach is not optimal for detection of
rich semantic concepts in produced video that have a large variability in (visual) con-
tent, depend on synchronization between modalities, exploit temporal context, and
involve specific capture properties.

A framework for synchronization of multiple modalities and inclusion of temporal
context was proposed in [141]. Viewing the result of individual detectors as time
intervals, allows for combination of layout and content into a common representation.
The proposed representation exploits interval relationships and facilitates classifica-
tion of semantic events in soccer and news using several pattern recognition methods.
A drawback of the presented framework is that it ignores the capture and the context.

Combining the above, by explicitly modeling multimodal layout, content, capture,
and context into a common style-based analysis framework, we are able to detect the
rich semantics, as intended by the author of produced video, more accurately.

4.3 Produced Video Indexing Framework

Produced video indexing can be regarded as a reversed authoring process [142]. To
arrive at a generic framework for produced video indexing, we therefore first consider
video document production, in particular the role of style elements. Then we pro-
ceed with style-based produced video analysis. We end this section with a classifier
combination scheme that facilitates detection of rich semantics in produced video.

4.3.1 Video Document Production Model

A produced video document is the work of an author or director who conceives an
initial idea and finally produces a result, semantically reflecting this idea as good as
possible. To communicate a semantic intention by means of a video, an author has an
arsenal of techniques to choose from [21,24]. The choice for a specific set of techniques
is restricted only by the imagination of the author and the genre of the video to be
produced. The genre feature film presents a specific set of techniques to choose from,
while another set is available for news broadcast. In practice, the author will not
make all possible technical decisions in isolation. For specific tasks, the author relies
on a production team of specialists. The creative choices made during the creation
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process are commonly referred to as the author’s style [21].
In the production team, we distinguish different creative roles. The blueprint of

any produced video is the scenario provided by the scenario writer, e.g. a script of a
feature film, or a story board of a news broadcast. The scenario contains choices for
the assembly of concepts into a plot and story line of the produced video. Concepts do
not occur in isolation, thus context is an important instrument for a scenario writer
to define the semantics of the concept. We distinguish between spatial and temporal
context, where spatial context refers to simultaneous co-occurrence of concepts and
temporal context refers to sequential co-occurrence of concepts. Context poses a
semantic structure on the video. Thus, for the role of the scenario writer, we define:

Definition 4.3.1 (Context) Set of style elements, S, that define the spatial and
temporal semantic structure of a produced video document.

Guided by the scenario, the production design defines the content of a video doc-
ument by arranging people, objects, and setting [142]. For feature films, this includes
choices for cast, costumes, setting, and so on. For news broadcasts, choices include
the number of anchors, decoration of the studio, and type of weather map. We define:

Definition 4.3.2 (Content) Set of style elements, C, that define the people, objects,
and setting appearing in a produced video document.

The recording unit guides the recording of the video content. In feature films, the
cinematographer and sound unit take care of camera framing, lightning, and balance
and combination of microphones. In news broadcasts, one recording team works in
the studio and another one on location. Both are taking care of specific recording
circumstances. The recording unit uses sensors, like cameras and microphones, to
capture the content into a multimedia format. Furthermore, they use devices that
influence the capture, like lightning and color filters. We define:

Definition 4.3.3 (Capture) Set of style elements, T , that define the transfer of an
observed scene into the sensory format of a produced video document.

The editor is responsible for assembly and synchronization of individual pieces,
after the recording is finished. For feature films, the editor takes care in synchronizing
dialogues and adding music. For news, the editor assures that the voice over of the
reporter is in line with the visible content. The layout results after the editor is
finished with the video document, and is the combination of sensor shots, transition
edits, and special effects [142]. We define:

Definition 4.3.4 (Layout) Set of style elements, L, that define the sensor shots,
transition edits, and special effects of a produced video document.

The author is responsible for the complex interplay of all style elements to com-
municate a semantic intention, within the predefined genre. Instances of individual
pieces are less important, since they are interchangeable. For feature films, it does
not really matter whether a desert scene is shot in the Kalahari Desert or Death
Valley, and for news broadcasts, it is not important whether the anchor is sitting
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behind a desk or stands in front of an infographics screen. In addition, the choice
for specific recording circumstances, e.g. using a wide-angle lens in combination with
a yellow color filter, does not influence the choice for a specific editing technique.
This makes the individual style elements in the video production process more or less
independent.

By combining the style elements for the four independent components in a specific
way, an author is guiding the spectator to interpret the produced video in correspon-
dence with the author’s semantic intention. We define:

Definition 4.3.5 (Produced Video Authoring) Process that defines how a se-
mantic intention, Ω, is authored into a produced video document, Π, according to a
genre dependent set of four independent style elements, {L, C, T ,S}.

Thus, we consider the author’s style to consist of four independent style elements and
their genre dependent combination.

4.3.2 Style Analysis

Analysis of produced video should focus on the authoring-driven production process
that is responsible for the creation of the video document. Since a produced video is
often available only in a raw data format, we need to identify as many of the style
choices made during production as possible using detectors. We group these style
detectors into four independent sets, based on the independent roles identified for
video production: i.e. scenario writing, production design, recording, and editing.
We cannot analyze roles directly from the data. Therefore, a style detector can at
best approximate the result of each creative role involved in video production. Sum-
marizing the above, a produced video is analyzed using four groups of style detectors:
layout detectors, content detectors, capture detectors, and context detectors.

The set of layout detectors is limited by the number of modalities involved. When
an editor chooses to use a special effect, this has no consequences for the sensor shot
used. Thus for layout, detectors for various elements act independently of each other.
We define:

Definition 4.3.6 (Layout Detectors) Set of independent style detectors L̂ that
yield an approximation of L.

In contrast to layout, the set of possible content detectors is unlimited in theory,
see [142] for an overview. Although the combination of content elements is important
for the semantics, choices made by the production design for specific instances are
independent of each other, e.g. the choice for a certain actor does not influence
the choice for a specific location. Hence, we consider detectors for content elements
independent of each other also. We define:

Definition 4.3.7 (Content Detectors) Set of independent style detectors Ĉ that
yield an approximation of C.

Like layout detectors, the number of possibilities for capture detectors are bounded,
but now by the degrees of freedom of the recording sensors and devices. The fact that
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the recording unit applies a specific camera movement, does not limit the choice for
a certain color filter. Hence, the individual capture detectors are again independent
of each other. We define:

Definition 4.3.8 (Capture Detectors) Set of independent style detectors T̂ that
yield an approximation of T .

Context can enhance or limit the number of possible semantic interpretations of
a video segment. Moreover, as a scenario writer applies spatial and temporal context
separately, we consider detectors independent of each other in the analysis.

Definition 4.3.9 (Context Detectors) Set of independent style detectors Ŝ that
yield an approximation of S.

A detector-based analysis of style elements in produced video results in the map-

ping Π →
{

L̂, Ĉ, T̂ , Ŝ
}

. We need a common representation to combine the detector

results of all style elements. This involves synchronization, since elements from the
various modalities are not necessarily aligned. Synchronization has largely been ig-
nored in literature, and is typically solved by aligning all detection results to a camera
shot layout, although better schemes exist [141]. For style-based analysis, we define:

Definition 4.3.10 (Style Vector) A vector ~si that contains the synchronized result

of the detector ensemble
{

L̂, Ĉ, T̂ , Ŝ
}

, where individual components are independent.

where i indicates the segmentation used. The style vector, resulting from the syn-
chronization and concatenation of individual components, forms the basis for learning
rich semantics from produced video. We define:

Definition 4.3.11 (Produced Video Analysis) Process that defines how a rich
semantic class, ω, is learned from a produced video document, Π, according to a set
of style vectors.

4.3.3 Semantic Classifier

We perceive detection of rich semantics as a pattern recognition problem. We aim
to detect a rich semantic class ω based on an ensemble of independent detectors rep-
resented in a style vector ~si using the probability p(ω|~si). This requires a classifier
combination scheme. A classifier combination scheme combines results of several inde-
pendent classifiers or detectors that solve the same task. However, there is no reason
to assume that the same technique can not be used to combine classifiers that do not
solve the same task per se, but are related semantically, i.e. share the same author
intention. Except for trivial cases, detectors are imperfect and generate both false
positive and false negative results. Hence, in terms of statistical pattern recognition,
we consider each individual detector to act as a weak classifier. A classifier ensemble
benefits from the synergy of a combined use of weak learners, resulting in improved
performance. This is especially the case when the various classifiers are largely in-
dependent [68]. As we have designed ~si as an ensemble of independent detectors,
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Figure 4.2: General framework for style-driven produced video indexing.

a classifier combination scheme is a natural choice for learning rich semantics from
produced video.

The classifier combination scheme yields a style model that is applicable to any
data set. However, discriminatory power of the style model increases by restricting
the data set for which a model is developed. One can achieve restriction by limiting
the data set to a specific genre, author, or both. We define:

Definition 4.3.12 (Style Model) Model resulting after applying a classifier com-
bination scheme to a set of style vectors.

In literature various classifier combination schemes exist, e.g. bagging [25], boost-
ing [128], and stacking [166]. Bagging and boosting resample the training set to obtain
an ensemble, or series, of independent classifiers. They differ in the way they com-
bine the individual results. Both schemes focus on the data and exploit independence
by combining classifiers that are trained on different samples of the training set. In
contrast, stacking focuses on the classifiers. This classifier combination scheme, uses
the output labels of individual classifiers as input features for a stacked classifier,
which learns how to combine the reliable classifiers in the ensemble and makes the
final decision. Because a style vector is composed of independent style elements and
detectors, an assurance for independence exists and there is no need for resampling.
Hence, for our purpose, i.e. detection of rich semantics, stacking is a good choice.

The probabilistic output p(ω|~si) obtained from a stacked classifier allows to define
new concept detectors, which we then add to the context. Suppose we constructed
a style model for detection of fouls in soccer matches. When we apply this model to
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a set of shot-segmented soccer broadcasts, it results in a probability of occurrence of
fouls for each shot. We can then add this concept, together with its probability, to the
context and use it for a style model that detects segments where a referee presents a red
card to a player. Besides positive correlation, negative correlation is also helpful for
the context. It aids in preventing false positive classification of semantically different
concepts that share many style elements, e.g. goals and penalties in soccer matches.
Moreover, it can be exploited for detection of rich semantics that are defined by what
it is not, e.g. non-goal events. Note that by iteratively adding concepts to the context
some independence is lost. As this only involves a small fraction of all detectors in the
ensemble, we do not consider it a problem. The order in which context is updated can
be defined by domain knowledge, experimentation, or feature selection techniques [68].

The complete framework for indexing of produced video documents in terms of
rich semantics is visualized in Fig. 4.2.

4.4 An Experiment on the News Genre

We carried out a set of experiments, as part of the semantic concept detection task
of the 2003 NIST TRECVID benchmark, to evaluate the viability of our produced
video indexing framework.

The data for the benchmark contained about 120 hours of ABC World News
Tonight and CNN Headline News from the first half of 1998. Together with 13 hours
of C-SPAN programming, mainly containing public discussions, from the period 1998-
2001. NIST provided the videos in MPEG-1 format.

NIST defined 17 semantic concepts. We focused on the semantically rich concepts
that exploit style in many ways. Namely:

• News subject monologue: segment contains an event in which a single person, a
news subject not a news person, speaks for a long time without interruption by
another speaker. Pauses are ok if short;

• Non-studio setting : segment is not set in a TV broadcast studio;

• Sporting event : segment contains video of one or more organized sporting events;

• Weather news: segment reports on the weather;

Since most of these concepts exist within the news genre only, we ignore the 13 hours
of C-SPAN data in our experiments.

NIST splits the corpus into an equally sized training and test set, i.e. each con-
taining about 60 hours of produced news video. For training, we manually labeled a
subset of the training set of about 24 hours, i.e. 23 ABC and 24 CNN broadcasts.
We labeled examples for all four rich semantic concepts under consideration.

4.4.1 Semantic Classifier Implementation

As a stacked semantic classifier we choose the Support Vector Machine (SVM) [28,
158], which is known to be a stable classifier for various classification problems. In
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addition, it has also proven to be a good choice in a multimodal video indexing
setting [4, 141]. The SVM tries to find an optimal hyperplane between two classes
by maximizing the margin between these two classes. It has the following form:
ω|(~w · ~si + b)| ≥ 1, where ~w is a weight vector, and b is a threshold. The problem
of finding the optimal hyperplane is a quadratic programming problem, that can be
casted into the following form [28]:

min
~w,ξ

{1

2
~w · ~w + C+

(

t
∑

i=1

ξi

)

+ C−
(

t
∑

i=1

ξi

)}

(4.1)

Under the following constraints:

ω|(~w · ~si + b)| ≥ 1 − ξi, i = 1, 2, . . . , t (4.2)

Where C+ and C− are parameters that allow to adjust the influence of the number
of positive and negative examples in the training data, t is the total number of style
vectors in the training set, and ξi are slack variables that are introduced when the
data is not perfectly separable. Both data balancing and the use of slack variables are
required for detection of rich semantics, since rich semantics are never evenly balanced
in the data and never perfectly separable. For each concept, we perform a parameter
search to optimize the settings for (4.1) in our classification scheme.

To allow for combination of style models, we convert the classification result of
the SVM, i.e. the margin, to a calibrated result. Ideally one would have a posterior
probability, p(ω|~si), that given an input style vector ~si returns a confidence value for
a particular class ω. But the model dependent output of an SVM, γ(~si), is not a
probability. A popular and stable method for SVM output conversion was proposed
in [113]. This solution exploits the empirical observation that class-conditional den-
sities between the margins are exponential; therefore, the author suggests a sigmoid
model. We apply the output of this model in our classifier architecture. This results
in the following posterior probability:

p(ω|~si) =
1

1 + exp(αγ(~si) + β)
(4.3)

where the parameters α and β are maximum likelihood estimates based on the training
set [113]. We rank produced video indexing results based on the probabilistic output
p(ω|~si).

4.4.2 Style Detector Implementation

For all four style elements discussed in Section 4.3.2 detectors were developed, see
Appendix A for specific implementation details. We have chosen to make the output
of all style detectors discrete using an ordinal scale, as this is known to have a positive
effect on SVM performance [28]. Moreover, this weakens individual detector classifiers
even more, which has a positive side effect on the classifier combination scheme. To
make detectors discrete we use two procedures. On the numerical output, thresholds
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are applied. We map categorical output to a discrete number. We optimized all
detectors and thresholds based on experiments using the training set. The basic
unit of testing and performance assessment within the TRECVID benchmark is the
common camera shot segmentation provided by CLIPS-IMAG [115]. We synchronize
all discrete detector results, referred to as features, to the granularity of this shot
segmentation.

For the layout L the length of a camera shot was used as a feature that character-
izes tempo [3]. Presence of overlayed text, added by the editor at production time,
was detected by a text localization algorithm [125]. A microphone segmentation using
speech and silence detection was based on the results provided by the LIMSI speech
detection system [47]. We obtain a voice over detector by combining the speech seg-
mentation with the camera shot segmentation [146]. The total set of layout detectors
is given by: L̂ = {shot length, overlayed text, silence, voice over}.

On the content C a frontal face detector [130] was applied to detect people. For
each analyzed frame in a shot we count the number of faces, and for each face we
derive one of seven possible locations. In addition, we also measured the average
amount of object motion in a camera shot [141]. Based on speaker identification [47]
we have been able to identify each of the three most frequent speakers. Each cam-
era shot is checked for the presence on the basis of speech from one of the three.
For all rich semantic concepts under consideration, we learned a list of positive and
negative correlated keywords using the training set. Stopwords are removed using
SMART’s English stoplist [123]. Based on the fraction of positive or negative key-
words in the text associated with every shot, we labeled a shot as positively correlated,
negatively correlated, or undecided. Text strings recognized by using Video Optical
Character Recognition [125]∗ were checked on length and used as input for a named
entity recognizer [161]. The total set of content detectors is given by: Ĉ ={faces,
face location, object motion, frequent speaker, positive keywords, negative keywords,
overlayed text length, video text named entity}.

From the size of detected faces [130] the camera distance used for capture T
was computed. We distinguished between seven types of camera distance, ranging
from extreme long shot to extreme close-up. When no face was detected the camera
distance was set as unknown. In addition to camera distance, several types of camera
work were detected [12], e.g. pan, tilt, zoom, and so on. Each camera work feature
was either present or not. Finally, for capture we also computed the amount of camera
motion [12], which was either high, medium, or low. The total set of capture detectors
is given by: T̂ = {camera distance, camera work, camera motion}.

The possibilities for detectors of context S are endless. Therefore, we restricted
ourselves to spatial context only. For an approach to include temporal context we
refer to [141]. Both ABC and CNN news contain many commercials. Although they
may contain monologues of people promoting a product, weather related content,
and even sporting events, we should not label commercials as such. Therefore, we
applied a context detector that is able to detect commercials [60]. News anchors also
share many characteristics with news subject monologues, it is therefore important

∗For CNN the ticker tape with stock information was ignored.
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that we can distinguish anchors to circumvent a false interpretation. Moreover, an-
chors aid in the detection of studio setting. We applied an anchor detector to stress
this importance [60]. For the same reasons we developed a news reporter detector.
Reporters were recognized by fuzzy matching of strings obtained from the transcript
and Video Optical Character Recognition with a database of names of CNN and ABC
affiliates. The set of context detectors is given by: Ŝ = {commercial, news anchor,
news reporter}.

Based on a concatenation of
{

L̂, Ĉ, T̂ , Ŝ
}

into a style vector ~si we are able to train

a style model. Since we aim for detection of four rich semantic concepts, and we want
to exploit context, we have to define order. The order was chosen based on domain
knowledge, see also Section 4.3.3. We chose sporting event as last one, because we
used a limited set of specific detectors for this semantic concept. For detection of non-
studio setting, both weather news and news subject monologues are useful. Hence,
we chose non-studio setting as third. The order of weather news and news subject
monologues is not important; we chose to detect news subject monologues first. We
added all concepts iteratively to the context. We assign a rich semantic concept to a
style vector, or not, based on the probability p(ω|~si) for each individual style model.
Where we use a threshold of 0.5 on p(ω|~si).

4.5 Results

4.5.1 Evaluation Criteria

NIST allows all groups that participate in TRECVID to submit 10 runs of at most
2000 camera shots for each of the 17 semantic concepts. NIST evaluates all runs.
For evaluation the precision at 100 and average precision is used. This former value
gives the fraction of correct shots within the first 100 retrieved results. Let Lk =
{l1, l2, . . . , lk} be a ranked version of the answer set A. Then precision at 100 is
defined as:

precision at 100 =
1

100

100
∑

k=1

λ(lk) (4.4)

where indicator function λ(lk) = 1 if lk is an element of the result set R and 0
otherwise. The average precision is a single-valued measure that corresponds to the
area under a recall-precision curve This value is the average of the precision over all
relevant shots. This metric favors highly ranked relevant shots. At any given rank k

let R ∩Lk be the number of relevant shots in the top k of L. Then average precision
is defined as:

average precision =
1

R

A
∑

k=1

R ∩ Lk

k
λ(lk) (4.5)

Within TRECVID the average precision is used as the basic metric to evaluate the
conducted experiments. However, to reduce labor-intensive manual judgments of all
submitted runs, a pooled ground truth, P , is used. From each submitted run a fixed
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number of ranked shots is taken, these are combined into a list of unique shots. Every
submission is then evaluated based on the results of assessing this merged subset, i.e.
instead of using R in (4.5), P is used, where P ⊂ R.

This is a fair comparison for submitted runs, since it assures that for each sub-
mitted run at least a fixed number of shots is evaluated in the important top of the
ranked list. However, for new runs, evaluation based on the pooled ground truth is
unfair. Since it is very likely that within the fixed number of shots in the top of the
new list a number of shots are retrieved that were not evaluated before, and hence
have a negative influence on average precision. Therefore, new runs should also be
judged to the same depth as the others, and unknown shots should be labeled and
added to a new pooled ground truth, G, where P ⊂ G ⊂ R. Average precision can
then by recalculated, using G, for both original submitted runs and new runs.

4.5.2 Influence of Style on Detection of Rich Semantic Concepts

To gain insight in the importance of style for produced video analysis, we trained clas-
sifiers for the various rich semantic concepts using style-based analysis. In addition,
we trained classifiers for each concept using the four style elements in isolation. This
resulted for each of the four rich semantic concepts in a classifier based on layout,
content, capture, context, or style. For all classifier combinations, we evaluated the
precision at 100. In Fig. 4.3 we plotted the number of hits as a function of the number
of shots judged.

The graphs show that for all rich semantic concepts, it is the combination of style
elements that yields the best results. The precision at 100 scores are respectively
0.94 for news subject monologues, 0.98 for non-studio setting, 0.85 for sporting event,
and 0.99 for weather news. As expected, content is especially strong in identifying a
small subset of concept instances that have low variability in their multimodal con-
tent. When this set is exhausted performance drops. This is especially prevalent for
sporting events, as we only used a limited number of sport specific content detectors
for this concept. For weather news an analysis based on content only achieves a good
precision at 100 accuracy, but here a combined style analysis yields the best result
also. Besides content, capture is an important style element. The graphs for news
subject monologue, non-studio setting, and to lesser extent sporting events, support
this observation. For weather news, the current set of capture detectors play no role
of importance. Layout is somewhat useful in isolation when aiming for detection of
news subject monologues and non-studio setting. For sporting event and weather
news, layout is less useful. The current set of context detectors is too limited. Except
for non-studio setting, usage of context in isolation is not able to classify rich seman-
tics. The results support our claim that produced video analysis should exploit all
style elements to infer rich semantics.

When we take a closer look on the results, we conclude that the news subject
monologue detector achieves a high accuracy. In part, the individual detectors, e.g.
the face detector, will contribute to this. The influence of style, however, is evident.
Capture, for example, is a very informative style element for news subject monologues.
Typically, an author records news subject monologues in close-up with a static camera.
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Figure 4.3: Number of hits plotted as function of the number of camera shots judged, for the

first 100 results of each analyzed rich semantic concept.

Other concepts, e.g. anchors and reporters, share similarities in content and capture
with news subject monologues. Context is therefore required to reduce the number
of false positives. By adding layout elements, specifically presence of overlayed text,
results improve even further. Another interesting observation stems from analyzing
the top 100 results for each style element. Shots from ABC dominate results for
content and layout, whereas shots from CNN dominate the top 100 lists for capture
and context. This suggests that the authors of both news broadcasts stress different
style elements for production of news subject monologues.

We can classify weather news accurately by using content detectors only. We ex-
plain this behavior by the textual keywords that we learned for this concept. Weather
news has a specific and limited vocabulary; detection of this concept is therefore easy,
based on textual content only. It is however, again, the combination of style elements
that yields the best results. In contrast to ABC, CNN has a separate weather news
report in each broadcast. This makes detection easier, since there is a large similar-
ity in style between the various weather reports. It is therefore not surprising that
shots from CNN dominate detection results. Weather news in ABC is much harder
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Table 4.1: New pooling and judging statistics for news subject monologue (NSM), non-studio

setting (NSS), sporting event (SE), and weather news (WN) after our evaluation.

NSM NSS SE WN

Pooled depth 100 350 150 100

Unlabeled 28 324 66 0

Judged true 28 304 30 0

Original true 266 2429 585 166

New true 294 2733 615 166

to detect.
Non-studio setting is relatively easy to detect in both ABC and CNN news by

all approaches. The fact that this class of concepts is rather large accounts for this
behavior. Detection is possible with all four style elements in isolation, even by
context alone. This can be explained because non-studio setting is defined by what it
is not. Hence, inclusion of anchors and weather news already reduces the number of
possible false detections considerably. Analysis of results by combined style analysis
shows that adding news subject monologues to the set of context detectors has a
very positive influence on correctly detected non-studio setting concepts. Most news
subject monologues are produced on location and are therefore not set in a broadcast
studio.

Content detectors that are strong indicators for sporting events in our current
implementation are sport specific keywords, a large amount of object motion, and
absence of frontal faces. The type of camera work used for capture, also aids in
correct classification of sporting events. Context and layout are not useful in isolation
for detection of sporting events. Similar to weather news, CNN broadcasts sporting
events in a separate report. This similarity in style makes detection of sporting events
easier for CNN than ABC.

Results on sporting events also show the influence of genre on our framework.
Sport is a generic genre that contains a large variety of sub-genres, like basketball,
football, and golf. Although similarities in style exist between produced broadcasts of
these events, specific sport sub-genres may have large differences in individual style
elements. Object and camera motion characteristics for basketball for example, are
more similar to football, than to golf. A generic sporting event classifier will therefore
profit from a large pool of context detectors for specific sport sub-genres.

In terms of precision, content is the most dominant style element for all four rich
semantic concepts. This is visible in Fig. 4.3, where content parallels style for the
highest ranked results. This makes analysis based on content useful for applications
that require only a limited set of correct results. However, when a large set of correct
results is required, one should use all style elements. As can be observed from Fig. 4.3,
it is the combination of style elements that strengthens recall, and overall performance.

Other rich semantic concepts, for which the proposed framework is likely to per-
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Figure 4.4: Comparison of style-based analysis results with 8 other present-day indexing sys-

tems.

form well, are specific instances of the ones discussed. We can split news subject
monologue, for example, into public speech, press conference, and interview. In addi-
tion, detection of political reporters and financial news anchors should also be possible.
Semantic concepts that only have similarity in content, e.g. boat, train, and building
are much harder to detect, since our framework works particularly well if similarity
in more than one style element exists.

4.5.3 Benchmark Comparison

In our second experiment we compared results of our style-based produced video in-
dexing framework with 8 present-day systems participating in TRECVID 2003. A
total of 122 system settings were submitted to TRECVID 2003 for the four rich se-
mantic concepts considered, including the work of [10, 155]. Since our experiments
were performed after the 2003 TRECVID benchmark, we had to assure for a fair com-
parison that we judged at least the same number of camera shots as TRECVID [134].
We used the procedure explained in Section 4.5.1. Results of this evaluation are sum-
marized in Table 4.1. Based on the new pooled ground truth we evaluated average
precision for our concepts, and recalculated the average precision for all other systems
and their various settings.

The results are summarized in Fig. 4.4. Our framework works particularly well
for news subject monologues, improving upon the other approaches by more than a
factor ten, see also [146]. Clearly demonstrating the potential of style for detection
of rich semantic concepts. For non-studio setting, our method is slightly better then
the other systems. Although other systems obtain a twice as good average precision
performance for sporting event, our framework works surprisingly well on this concept.
This is especially surprising if the limited number of sport-specific detectors in the
current implementation is taken into account. For example, we did not use the fact
that we can distinguish sporting events based on a large uniform visual setting like
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grass or ice. The average precision results for weather news are comparable among
the best approaches. The benchmark results show that style-based analysis allows for
generic indexing of rich semantic concepts with performance that is comparable to
the state-of-the-art.

4.6 Conclusion

When producing a video document, an author uses style to express an intention.
Thus, when aiming for semantic analysis of produced video, style is a necessity. For
produced video indexing, we identified four different roles, and mapped these roles to
four independent style elements within a generic framework. The framework starts
with the definition of a set of detectors for each of the style elements considered, i.e.
layout, content, capture, and context. To combine style detector results, and learn the
rich semantics; the framework utilizes a classifier combination scheme. This scheme
facilitates enrichment of semantics by iteratively updating the context. By combining
the style detectors in an iterative classifier combination scheme, the framework allows
for rich semantic indexing.

Experiments with the four style elements on four rich semantic concepts demon-
strate that style-based analysis allows for generic indexing of rich semantic concepts
in video. For all analyzed concepts, content is the most important style element. In
terms of performance, content is specifically useful when aiming for good precision
on a limited set of retrieved items. However, the combination of style elements yields
the best overall performance for both precision and recall. This makes our framework
a good candidate when aiming for retrieval of a large set of items.

In addition to these results, we performed an experiment on the 2003 TRECVID
benchmark, in which we compare our work with competing approaches. The results
show that the proposed framework obtains an accuracy favorable in detection of news
subject monologues, non-studio setting, and weather news and only lagging behind
to dedicated sporting event detection algorithms. We consider this another strong
indicator of the approach.

The proposed framework is applicable to any archive of produced video. However
as a consequence of the approach, to acquire additional discriminatory power the
video documents in the archive should have similarity in genre or their author. We
obtain optimal results when we learn separate style models for individual authors
within a specific genre.

Apart from content and context, the set of possible style detectors is almost com-
plete. For future research, we therefore aim to augment the lexicon of detectable
rich semantic concepts. We believe this is achievable by extending the set of (visual)
content detectors related to objects and setting. We are convinced that their im-
pact on detection of rich semantic concepts in video documents will boost progress in
multimedia analysis.



Chapter 5
The Semantic Value Chain: A
Unifying Architecture for Generic
Indexing of Multimedia Archives

To facilitate semantic access to multimedia archives, we propose the semantic value
chain. As opposed to most current methods, the semantic value chain allows for se-
mantic video indexing using a generic approach. While doing so, it unifies the most
successful existing video indexing methods into a common architecture. The semantic
value chain extracts semantic concepts from video based on three consecutive analy-
sis steps. The chain starts in the content link. In this link, we follow a data-driven
approach of indexing semantics. The style link is the second link. Here we tackle the
indexing problem by viewing a video from the perspective of production. Finally, in
the context link we view semantics in context. We learn an optimal configuration of
analysis links, on a per-concept basis, to arrive at a technique taxonomy for semantic
concept detectors. To show the generality of the proposed approach we develop de-
tectors for a lexicon of 32 concepts. In addition, we evaluate the semantic value chain
against the 2004 NIST TRECVID video retrieval benchmark, using a news archive of
184 hours. Top ranking performance in the semantic concept detection task indicates
the merit of the semantic value chain for generic indexing of multimedia archives.

71
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5.1 Introduction

Query-by-keyword forms the foundation for machine-based interaction of humans with
text repositories. Elaborating on the success of text-based search engines, the query-
by-keyword paradigm is also gaining momentum in multimedia retrieval scenarios.
For multimedia archives it is hard to achieve effective access, however, when based on
keywords that appear in the text only. Video archives require semantic access where
all modalities can contribute to the concept.

For semantic access, multimodal indexing is inevitable. For well-defined semantic
concepts sophisticated and specialized versions of such indexing methods are available,
see [97,142] for an overview. In contrast to their textual counterparts, generic methods
for semantic indexing in multimedia are neither generally available, scalable in their
computational needs, nor robust in their performance. As a consequence, semantic
access to multimedia archives is limited still. Therefore, a new semantic video indexing
methodology is required when aiming for semantic access to multimedia archives.

The main problem for any semantic video indexing approach is the semantic gap
between data representation and their interpretation by humans [136]. In an effort
to limit the size of the semantic gap, many video indexing approaches have focused
on specific semantic concepts with a small intra-class and large inter-class variability
of content. Concepts like sunsets [137] and news anchors [175], have become icons
for specific video indexing methodologies. Although specific methods have aided
in achieving substantial progress, this road is the hard way when compared to the
thousands and thousands of concepts which are needed. It is simply impossible to
bridge the semantic gap by designing a tailor-made solution for each concept.

In this Chapter we propose a generic approach for semantic indexing of multimedia
archives. While doing so, we do not ignore the vast amount of work performed in
developing specialized concept detection methods [7, 13, 54, 60, 137, 161, 175]. If we
measure success of these methods in terms of benchmark performance, Informedia [60,
161] stands out. They focus on combining techniques from computer vision, speech
recognition, natural language understanding, and artificial intelligence into a video
indexing and retrieval environment. This has resulted in a large set of isolated and
specialized concept detectors [60]. We build our generic approach in part on their
specialized concept detection methods, but we do not use them in isolation.

In contrast to specialized concept detection methods, generic semantic indexing
methodologies from video are scarce. We discuss three good examples of generic
semantic index approaches [10,41,145].

In the first one, Fan et al. [41] propose the ClassView framework. This framework
combines hierarchical semantic indexing with hierarchical retrieval. At the lowest
level, the framework supports indexing of shots into concepts based on a large set of
low-level visual features. At the second level, Bayes’ rule classifies concepts further
into semantic clusters. By assigning shots to a hierarchy of concepts, the framework
supports queries based on semantic and visual similarity. This allows for hierarchical
retrieval. As the authors indicate, the framework will provide more meaningful results
if it would support multimodal analysis. We aim for generic semantic indexing also,
but we include multimodal analysis from the beginning.
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In the second one [10], the authors propose a system for generic semantic indexing
using a detection pipeline. The pipeline starts with feature extraction, followed by
consecutive aggregations on features, multiple modalities, and concepts. Finally, the
pipeline optimizes the result by rule-based post filtering. We explain the success of
their system by the fact that all modules in the pipeline select the best of multiple
hypotheses, and the exhaustive use of machine learning. Moreover, the authors were
among the first to recognize that semantic indexing profits substantially from context.
We adopt and extend their ideas related to hypothesis selection, machine learning,
and the use of context for semantic indexing.

All of the above methods ignore the important influence of style in the analysis
process. In addition to content and context, as used in the above references, we
identify layout and capture in [145] as important factors for semantic indexing of
produced video. Based on these style elements, we propose a generic framework
for produced video indexing; combining four sets of style detectors in an iterative
semantic classifier. Results indicate that the method obtains high accuracy for rich
semantic concepts, rich meaning that style is exploited in many ways. The framework
is less suited for concepts that are not stylized. In this Chapter, we generalize the
idea of using style for semantic indexing.

We propose a generic approach for semantic indexing, we call the semantic value
chain. It unifies the most successful approaches for semantic video indexing [10,
60, 145, 161] into a common architecture. The architecture is build on several spe-
cialized detectors, multimodal analysis, hypothesis selection, and machine learning.
Furthermore, it covers the notions of content, style, and context. To demonstrate
the effectiveness of the semantic value chain, the semantic indexing experiments are
evaluated within the 2004 NIST TRECVID video retrieval benchmark [102].

The organization of this Chapter is as follows. First, we introduce the TRECVID
benchmark in Section 5.2. Our system architecture for generic semantic indexing is
presented in Section 5.3. We present results in Section 5.4.

5.2 TRECVID Benchmark

Evaluation of multimedia systems has always been a delicate issue. Due to copy-
rights and the sheer volume of data involved, multimedia archives are fragmented
and mostly inaccessible. Therefore, comparison of systems has traditionally been
difficult, often impossible even. To accommodate these hardships NIST started orga-
nizing the TRECVID video retrieval benchmark. The benchmark aims to promote
progress in video retrieval via open, metrics-based evaluation [102]. Tasks include
camera shot segmentation, story segmentation, semantic concept detection∗, and sev-
eral search tasks. We have participated in the semantic concept detection task of the
2004 NIST TRECVID video retrieval benchmark.

∗TRECVID refers to this task as the feature extraction task, to prevent misunderstanding with
feature extraction as defined in the semantic value chain we refer to it as the semantic concept
detection task.
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5.2.1 Multimedia Archive

The video archive of the 2004 TRECVID benchmark extends on the data set used
in 2003. The archive is composed of 184 hours of ABC World News Tonight and
CNN Headline News and is recorded in MPEG-1 format. The development data
consists of the archive used in 2003. It contains approximately 120 hours covering
the period of January until June 1998. The 2004 test data contains the remaining
64 hours, covering the period of October until December 1998. Together with the
video archive, CLIPS-IMAG [115] provided a camera shot segmentation. We evaluate
semantic indexing within the TRECVID benchmark, to demonstrate the effectiveness
of the semantic value chain for semantic access to multimedia archives.

5.2.2 Evaluation Criteria

Participation in TRECVID is based on the submission of results for one of the concepts
in the semantic concept detection task. Where a submission, or run, contains a ranked
list of at most 2000 camera shots per semantic concept. For each concept, participants
are allowed to submit 10 runs.

To determine the accuracy of submissions we use average precision, and precision
at 100, following the standard in TRECVID evaluations. The average precision is a
single-valued measure that corresponds to the area under a recall-precision curve. This
value is the average precision over all relevant judged shots. Let Lk = {l1, l2, . . . , lk}
be a ranked version of the answer set A. At any given rank k let R∩Lk be the number
of relevant shots in the top k of L, where R is the total number of relevant shots.
Then average precision is defined as:

average precision =
1

R

A
∑

k=1

R ∩ Lk

k
λ(lk) (5.1)

where indicator function λ(lk) = 1 if lk ∈ R and 0 otherwise. As the denominator
k and the value of λ(lk) are dominant in determining average precision, it can be
understood that this metric favors highly ranked relevant shots.

TRECVID uses a pooled ground truth P , to reduce labor-intensive manual judg-
ments of all submitted runs. They take from each submitted run a fixed number of
ranked shots, which is combined into a list of unique shots. Every submission is then
evaluated based on the results of assessing this merged subset, i.e. instead of using R

in (5.1), P is used, where P ⊂ R.
Apart from average precision, we also report the precision at depth 100 in the

result set. This value gives the fraction of correct shots within the first 100 retrieved
results.

5.3 Semantic Value Chain Analysis

The essence of produced video, like broadcast news, is that an author creates it.
Before creation, the author starts with a semantic idea: an interplay of concepts and
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Figure 5.1: Data flow conventions as used in this Chapter. Different style of arrows indicate

different data structures.

context. To stress the semantics of the message, and to guide the audience in its
interpretation, the author combines various style elements. The video aims at an
effective semantic communication. Hence, the core of semantic indexing is to reverse
this authoring process [142]. We follow this path to arrive at a system architecture
for semantic indexing in video.

Before we elaborate on the video indexing architecture, we first define a lexicon ΛS

of 32 semantic concepts. The lexicon includes all 10 concepts defined in the semantic
concept detection task at hand. We choose the additional concepts based on the
indices described in [142], as well as anticipated positive influence on the result of the
10 benchmark concepts. The following concepts form the semantic concept lexicon:

• ΛS = {airplane take off, American football, animal, baseball, basket scored,
beach, bicycle, Bill Clinton, boat, building, car, cartoon, financial news anchor,
golf, graphics, ice hockey, Madeleine Albright, news anchor, news subject mono-
logue, outdoor, overlayed text, people, people walking, physical violence, road,
soccer, sporting event, stock quotes, studio setting, train, vegetation, weather
news};

The lexicon contains both general concepts, like people, car, and beach, as well as
specific concepts such as airplane take off and news subject monologue. With the
proposed system architecture, we aim to detect all 32 concepts.

The semantic value chain is composed of three links. It follows the reverse author-
ing process. Each link in the chain detects semantic concepts. In addition, one can
exploit the output of a link in the chain as the input for the next one. The semantic
value chain starts in the content link. In this link, we follow a data-driven approach
of indexing semantics. The style link is the second link. Here we tackle the indexing
problem by viewing a video from the perspective of production. This link aids espe-
cially in indexing of rich semantics. Finally, to enhance the indexes further, in the
context link, we view semantics in context. One would expect that some concepts,
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Figure 5.2: The semantic value chain for one concept, using the conventions of Fig. 5.1.

like vegetation, have their emphasis on content where the style (of the camera work
that is) and context (of concepts like graphics) do not add much. In contrast, more
complex events, like people walking, profit from incremental adaptation of the analysis
to the intention of the author. The virtue of the semantic value chain is that it selects
the best chain of analysis links on a per-concept basis.

The links in the semantic value chain exploit a common architecture with a stan-
dardized input-output model to allow for semantic integration. The conventions to
describe the system architecture are indicated in Fig. 5.1. An overview of the semantic
value chain is given in Fig. 5.2.

5.3.1 General Architecture

We perceive of semantic indexing in video as a pattern recognition problem. We first
need to segment a video. We opt for camera shots, indicated by i, as the basic time
frame as it is known to maximize the chance for semantic machine interpretation [35].
Given pattern x, part of a shot, the aim is to detect a semantic concept ω from shot
i using probability pi(ω|xi). Each analysis link in the semantic value chain extracts
xi from the data, and exploits a learning module to learn pi(ω|xi) for all ω in the
semantic lexicon ΛS . We exploit supervised learning to learn the relation between
ω and xi. The development data of the multimedia archive, together with labeled
samples, are for learning classifiers. The other data, the test data, are set aside for
testing. The general architecture for supervised learning in each link is illustrated in
Fig. 5.3.

Supervised learning requires labeled examples. In part, we rely on the provided
ground truth of TRECVID 2003 [83, 102]. We remove the many errors from this
annotation effort. It is extended manually to arrive at a reliable ground truth for all
concepts in lexicon ΛS . We split the development data a priori into a non-overlapping
training set and validation set to prevent overfitting of classifiers in the semantic value
chain. The training set contains 85% of the development data, the validation set
contains the remaining 15%. The number of annotated examples in the training set
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Figure 5.3: General link architecture in the semantic value chain, using the conventions of

Fig. 5.1.

and the validation set for each concept are summarized in Table 5.1.

We choose from a large variety of supervised machine learning approaches to
obtain pi(ω|xi). For our purpose, the method of choice should be capable of han-
dling video documents. To that end, ideally it must learn from a limited number
of examples, it must handle unbalanced data, and it should account for unknown
or erroneously detected data. In such heavy demands, the Support Vector Machine
(SVM) framework [28, 158] has proven to be a solid choice [10, 141]. The usual SVM
method provides a margin in the result. We prefer Platt’s conversion method [113]
to achieve a posterior probability of the result. SVM classifiers thus trained for ω

on development data, result in an estimate pi(ω|xi, ~q), where ~q are parameters of the
SVM yet to be optimized.

The influence of the SVM parameters on concept detection is significant [95]. We
obtain good parameter settings for a classifier, by using an iterative search on a large
number of SVM parameter combinations. We measure average precision performance
of all parameter combinations and select the combination that yields the best perfor-
mance, ~q∗. Here we use 3-fold cross validation [68] to prevent overfitting of parameters.
The result of the parameter search over ~q is the improved model p∗

i (ω|xi, ~q
∗). In the

following we drop ~q∗ where obvious.

This concludes the introduction of the general architecture.

5.3.2 Content Link

We view of video in the content link from the data perspective. In general, three
data streams or modalities exist in video, namely the auditory modality, the textual
modality, and the visual one. As speech is often the most informative part of the
auditory source, we focus on visual features, and on textual features obtained from
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Table 5.1: Semantic concepts and the number of labeled examples used for the training set

and the validation set.

Semantic Concept Training Validation Semantic Concept Training Validation

Weather news 267 40 Golf 73 23

Stock quotes 135 28 People 2022 367

News anchor 2032 367 American football 24 9

Overlayed text 133 16 Outdoor 3904 791

Basket scored 556 89 Car 813 193

Graphics 551 97 Bill Clinton 503 130

Baseball 382 61 News subject monologue 1994 364

Sporting event 1181 224 Animal 702 123

People walking 995 181 Road 748 182

Financial news anchor 182 32 Beach 218 56

Ice hockey 187 43 Train 111 33

Cartoon 310 67 Madeleine Albright 94 2

Studio setting 2565 428 Building 2571 442

Physical violence 1416 289 Airplane take off 463 80

Vegetation 833 146 Bicycle 144 25

Boat 286 41 Soccer 33 8

transcribed speech. After modality specific data processing, we combine features in a
multimodal representation. The data flow in the content link is illustrated in Fig. 5.4.

Visual Analysis

In the visual modality, we aim for segmentation of an image frame f into regional
visual concepts. Ideally, a segmentation method should result in a precise partitioning
of f according to the object boundaries, referred to as strong segmentation. However,
weak segmentation, where f is partitioned into internally homogenous regions within
the boundaries of the object, is often the best one can hope for [136]. We obtain a
weak segmentation based on a set of visual feature detectors. Prior to segmentation
we remove the border of each frame, including the space occupied by a possible ticker
tape. The basis of feature extraction in the visual modality is weak segmentation.

Invariance was identified in [136] as a crucial aspect of a visual feature detector, e.g.
to design features which limit the influence of accidental recording circumstances. We
use invariant visual features to arrive at weak segmentation, as the conditions under
which semantic concepts appear in large multimedia archives may vary greatly.

The feature extraction procedure we adhere to, computes per pixel a number of
invariant features in vector ~u. This vector then serves as the input for a multi-class
SVM [28] that associates each pixel to one of the regional visual concepts defined in
a visual concept lexicon ΛV , using a labeled training set. Based on ΛS , we define the
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Figure 5.4: Feature extraction and classification in the content link, special case of Fig. 5.3.

following set of regional visual concepts:

• ΛV = {colored clothing, concrete, fire, graphic blue, graphic purple, graphic yel-
low, grassland, greenery, indoor sport court, red carpet, sand, skin, sky, smoke,
snow/ice, tuxedo, water body, wood};

As we use invariant features, only a few examples per visual concept class are needed;
in practice less then 10 per class. This pixel-wise classification results in the image
vector ~wf . Where ~wf is a weak segmentation of frame f in terms of regional visual
concepts from ΛV , see Fig. 5.5 for an example segmentation.

We use Gaussian color measurements [48] to obtain ~u for weak segmentation. We
decorrelate RGB color values by linear transformation to the opponent color sys-
tem [48]. Smoothing the values with a Gaussian filter suppresses acquisition and
compression noise. The size of the Gaussian filters is varied to obtain a color rep-
resentation that is compatible with variations in the target object size. Normalizing
each opponent color value by its intensity suppresses global intensity variations. This
results in two chromaticity values per color pixel. Furthermore, we obtain rotationally
invariant features by taking Gaussian derivative filters and combining the responses
into two chromatic gradients. The seven measurements in total, and each calculated
over three scales, yield a 21 dimensional invariant feature vector ~u per pixel.

Segmenting image frames into regional visual concepts at the granularity of a pixel
is computationally intensive. We estimate that the processing of the entire TRECVID
data set would have taken around 250 days on the fastest sequential machine avail-
able to us. As a first reduction of the analysis load, we analyze 1 out of 15 frames
only. For the remaining image processing effort we apply the Parallel-Horus software
architecture [131]. This architecture, consisting of a large collection of low-level image
processing primitives, allows the programmer to write sequential applications with ef-
ficient parallel execution on commonly available commodity clusters. Application of
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Figure 5.5: Computation of the visual features, see Fig. 5.4, is based on weak segmentation

of an image frame into regional visual concepts. A combination over time is used to select one

frame as representative for the shot.

Parallel-Horus, in combination with a distributed cluster consisting of 200 dual 1-Ghz
Pentium-III CPUs [14], reduced the processing time to less than 60 hours [131].

The features over time are combined into one vector for the shot i. Averaging over
individual frames is not a good choice, as the visual representation should remain
intact. Instead, we opt for a selection of the most representative frame or visual
vector. To decide which f is the most representative for i, weak segmented image ~wf

is the input for an SVM that computes a probability p∗
f (ω|~wf ). We select ~wf that

maximizes the probability for a concept from ΛS within i, given as:

~vi = arg max
f∈fi

p∗f (ω|~wf ) (5.2)

The visual vector ~vi, containing the best weak segmentation, is the final result of the
visual analysis.

Textual Analysis

In the textual modality, we aim to learn the association between uttered speech and
semantic concepts. A detection system transcribes the speech into text. From the
text we remove the frequently occurring stopwords. After stopword removal, we are
ready to learn semantics.

To learn the relation between uttered speech and concepts, we connect words to
shots. We make this connection within the temporal boundaries of a shot. We derive
a lexicon of uttered words that co-occur with ω using the shot-based annotations
of the development data. For each concept ω, we learn a separate lexicon, Λω

T , as
this uttered word lexicon is specific for that concept. We modify the procedure for
Person X concepts, i.e. Madeleine Albright and Bill Clinton, to optimize results.
In broadcast news, a news anchor or reporter mentions names or other indicative
words just before or after a person is visible. To account for this observation, we
stretch the shot boundaries with five seconds on each side for Person X concepts.
For these concepts, this procedure assures that the textual feature analysis considers
more textual content. For feature extraction we compare the text associated with
each shot with Λω

T . This comparison yields a text vector ~ti for shot i, which contains
the histogram of the words in association with ω.
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Multimodal Analysis and Classification

The result of the content link is a multimodal vector ~mi that integrates all unimodal
results. We concatenate the visual vector ~vi with the text vector ~ti, to obtain ~mi.
After this modality fusion, ~mi serves as the input for a supervised learning module.
To optimize parameter settings, we use 3-fold cross validation on the training set.
The content link associates probability p∗

i (ω|~mi) with a shot i , for all ω in ΛS .

5.3.3 Style Link

In the style link we conceive of a video from the production perspective. Based on the
four roles involved in the video production process [145], this link analyzes a video by
four related style detectors. Layout detectors analyze the role of the editor. Content
detectors analyze the role of production design. Capture detectors analyze the role of
the recording unit. Finally, context detectors analyze the role of the scenario writer,
see Fig. 5.6. Note that in contrast to the content link, where we learn specific content
features from a data set, content features in the style link are generic and independent
of the data set.

Style Analysis

We develop detectors for all four style roles as feature extraction in the style link,
see Appendix A for specific implementation details. We have chosen to convert the
output of all style detectors to an ordinal scale, as this allows for easy fusion.

For the layout L the length of a camera shot is used as a feature, as this is known
to be an informative descriptor for genre [142]. Overlayed text is another informative
descriptor. Its presence is detected by a text localization algorithm [125]. To segment
the auditory layout, periods of speech and silence are detected based on an automatic
speech recognition system [47]. We obtain a voice over detector by combining the
speech segmentation with the camera shot segmentation [145]. The set of layout
features is thus given by: L = {shot length, overlayed text, silence, voice over}.

As concerns the content C, a frontal face detector [130] is applied to detect peo-
ple. We count the number of faces, and for each face its location is derived [145].
Apart from faces, we also detect the presence of cars [130]. In addition, we mea-
sure the average amount of object motion in a camera shot [141]. Based on speaker
identification [47] we identify each of the three most frequent speakers. The camera
shot is checked for the presence on the basis of speech from one of the three [145].
The length of text strings recognized by Video Optical Character Recognition [125] is
used as a feature [145]. In addition, the strings are used as input for a named entity
recognizer [161]. On the transcribed text obtained by the LIMSI automatic speech
recognition system, we also apply named entity recognition. The set of content fea-
tures is thus given by: C ={faces, face location, cars, object motion, frequent speaker,
overlayed text length, video text named entity, voice named entity}.

For capture T , we compute the camera distance from the size of detected faces [130,
145]. It is undefined when no face is detected. In addition to camera distance, several
types of camera work are detected [12], e.g. pan, tilt, zoom, and so on. Finally,
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Figure 5.6: Feature extraction and classification in the style link, special case of Fig. 5.3.

for capture we also estimate the amount of camera motion [12]. The set of capture
features is thus given by: T = {camera distance, camera work, camera motion}.

The context S serves to enhance or reduce the correlation between semantic con-
cepts. Detection of vegetation can aid in the detection of a forest for example. Like-
wise, the cooccurrence of a space shuttle and a bicycle in one shot is improbable. As
the performance of semantic concept detectors is unknown and likely to vary between
concepts, we exploit iteration to add them to the context. The rationale here is to
add concepts that are relatively easy to detect first. They aid in detection perfor-
mance by increasing the number of true positives or reducing the number of false
positives. As initial concept we detect news reporters. We recognize news reporters
by edit distance matching of strings obtained from the transcript and video text with
a database of names of CNN and ABC affiliates [145]. The other concepts that are
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added to the context stem from ΛS . To prevent bias from domain knowledge, we use
the performance on the validation set of all concepts from ΛS in the content link as
the ordering for the context. For this ordering we again refer to Table 5.1. To assign
detection results for the first and least difficult concept, ω1 = weather news, we rank
all shot results on p∗i (ω1|~mi). This ranking is then exploited to categorize results for
ω1 into one of five levels. The basic set of context features is thus given by: S =
{news reporter, content link ω1}.

The concatenation of {L, C, T ,S} for shot i yields style vector ~si. This vector
forms the input for an iterative classifier that trains a style model for each concept in
lexicon ΛS .

Iterative Style Classification

We start from an ordering of concepts in the context, as defined above. The iteration
of the classifier begins with concept ω1. After concatenation with the other style
features this yields ~si,1 the first style vector of the first iteration. ~si,1 contains the
combined results of the content link and the style link. We classify ω1 again based
on ~si,1. This yields the a posterior probability p∗

i (ω1|~si,1). When p∗i (ω|~si) ≥ δ the
concept ω1 is considered present in the style representation. Else, it is considered
absent. The threshold δ is set a priori at a fixed value of 0.5. In this process the
classifier replaces the feature for concept ω1, from the content link, by the new feature
ω+

1 . The style link adds more aspects of the author influence to the results obtained
with the content link. In the next iteration of the classification procedure the classifier
adds ω2 = stock quotes from the content link to the context. This yields ~si,2. As
explained above, the classifier replaces the ω2 feature from the content link by the
styled version ω+

2 based on p∗i (ω2|~si,2). This iterative process is repeated for all ω in
lexicon ΛS .

We classify all ω in ΛS again in the style link. As the result of the content link is
only one of the many features in our style vector representation in the style link, we
also use 3-fold cross validation on the training set to optimize parameter settings in
this link. We use the resulting probability as output for concept detection in the style
link. In addition, it forms the input for the next link in our semantic value chain.

5.3.4 Context Link

The context link adds context to our interpretation of the video. Our ultimate aim is
the reconstruction of the author’s intent by considering detected concepts in context.

Semantic Analysis

The style link yields a probability for each shot i and all concepts ω in ΛS . The
probability indicates whether a concept is present. We fuse all these semantic features
of the style link for a shot i into a context vector, ~ci, see Fig. 5.7.

From ~ci we learn relations between concepts automatically. To that end, ~ci serves
as the input for a supervised learning module, which associates a contextual prob-
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Figure 5.7: Feature extraction and classification in the context link, special case of Fig. 5.3.

ability p∗i (ω|~ci) to a shot i for all ω in ΛS . To optimize parameter settings, we use
3-fold cross validation on the previously unused data from the validation set.

The output of the context link is also the output of the entire semantic value chain
on video documents. On the way we have included in the semantic value chain, the
results of the analysis on raw data, facts derived from production by the use of style
features, and a context perspective of the author’s intent by using semantic features.
For each concept we obtain a probability based on content, style, and context. We
select from the three possibilities the one that maximizes average precision based on
validation set performance. The semantic value chain provides us with the oppor-
tunity to decide whether a one-shot link is best for the concept only concentrating
on content, or a two-link classifier increasing discriminatory power by adding style
elements to content, or that a concept profits most from a consecutive analysis using
content, style, and context.

5.4 Results

5.4.1 Detection of 32 Semantic Concepts

We evaluated detection results for all 32 semantic concepts in each link of the semantic
value chain. We report the precision at 100, which indicates the number of correct
shots within the first 100 results, in Table 5.2.

We observe from the results that the learned best chain (printed in bold) indeed
varies over the concepts. The virtue of the semantic value chain is demonstrated by
the fact that for 12 concepts, the learning phase indicates it is best to concentrate on
content only. For 5 concepts, the semantic value chain demonstrates that a two-step
procedure is best (where in 15 cases addition of style features has a marginal positive
or negative effect). For 15 concepts, the context link obtains a better result. Context
aids substantially in the performance for 5 concepts.

The results demonstrate the virtue of the semantic value chain. Concepts are
divided by the link after which they achieve best performance. Some concepts are
just content, style does not affect them. In such cases as American football there is
style-wise too much confusion with other sports to add new value in the chain. Shots
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Table 5.2: Test set precision at 100 after the content link, the style link, and the context link

from the semantic value chain for a lexicon of 32 semantic concepts. The best chain that is

selected for a concept based on validation set experiments is indicated in bold.

Semantic Concept Content Link Style Link Context Link

Weather news 1.00 1.00 1.00

Stock quotes 0.89 0.77 0.77

News anchor 0.98 0.98 0.99

Overlayed text 0.84 0.99 0.93

Basket scored 0.24 0.21 0.30

Graphics 0.92 0.90 0.91

Baseball 0.54 0.43 0.47

Sporting event 0.77 0.98 0.93

People walking 0.65 0.72 0.83

Financial news anchor 0.40 0.70 0.71

Ice hockey 0.71 0.68 0.60

Cartoon 0.71 0.69 0.75

Studio setting 0.95 0.96 0.98

Physical violence 0.17 0.25 0.31

Vegetation 0.72 0.64 0.70

Boat 0.42 0.38 0.37

Golf 0.24 0.19 0.06

People 0.73 0.78 0.91

American football 0.46 0.18 0.17

Outdoor 0.62 0.83 0.90

Car 0.63 0.81 0.75

Bill Clinton 0.26 0.35 0.37

News subject monologue 0.55 1.00 1.00

Animal 0.37 0.26 0.26

Road 0.43 0.53 0.51

Beach 0.13 0.12 0.12

Train 0.07 0.07 0.03

Madeleine Albright 0.12 0.05 0.04

Building 0.53 0.46 0.43

Airplane take off 0.10 0.08 0.08

Bicycle 0.09 0.08 0.07

Soccer 0.01 0.01 0.00

containing stock quotes suffer from a similar problem. Here false positives contain
many stylistically similar results like graphical representations of survey and election
results. For complex concepts, analysis based on content and style is not enough.
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Figure 5.8: Influence of the style link (a) and the context link (b) on precision at 100 perfor-

mance for a lexicon of 32 semantic concepts.

They require the use of context. The context link is especially good in detecting
named events, like people walking, physical violence, and basket scored. The results
offer us the possibility to categorize concepts according to the analysis link of the
semantic value chain that yields the best performance.

The content link seems to work particularly well for semantic concepts that have
a small intra-class variability of content: weather news and news anchor for example.
In addition, this link aids in detection of accidental content like building, vegetation,
bicycle, and train. However, for some of those concepts, e.g. bicycle and train the
performance is disappointing still. Another observation is, that when one aims to
distinguish sub-genres, e.g. ice hockey, baseball, and American football, the content
link is the best choice.

After the style link we obtain an increase in performance for 12 concepts, see
Fig. 5.8a. Especially when the concepts are semantically rich: e.g. news subject
monologue, financial news anchor, sporting event, and outdoor, the style helps. As
expected, index results in the style link improve on the content link when style is a
distinguishing property of the concept and degrade the result when similarity in style
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exists between different concepts.
Results after the context link in Fig. 5.8b show that performance increases for 13

concepts. The largest positive performance difference between the context link and
the style link occurs for concept people. Concept people profits from sport-related
concepts like baseball, basket scored, American football, ice hockey, and sporting event.
In contrast, golf suffers from detection of outdoor and vegetation. When we detect
golf, these concepts are also present frequently. The inverse, however, is not necessarily
the case, i.e. when we detect outdoor it is not necessarily on a golf court. Based on
these observations we conclude that, apart from named events, detection results of the
context link are similar to those of the style link. Based on presence of semantically
related concepts index results improve, but the context link is unable to capture the
semantic structure between concepts and for some concepts this is leading to a drop
in performance.

The above results show that the semantic value chain facilitates generic video
indexing. In addition, the semantic value chain provides the foundation of a technique
taxonomy for solving semantic concept detection tasks. The fact that sub-genres like
ice hockey, golf, and American football behave similarly indicate the predictive value
of the chain for other sub-genres. The same holds for semantically rich concepts
like news subject monologue, financial news anchor, and sporting event. We showed
that for named events, such as basket scored, physical violence, and people walking,
one should apply a detector that is based on the entire semantic value chain. The
significance of the semantic value chain is its generalizing power combined with the
fact that addition of new information in the analysis can be considered by concept
type.

5.4.2 Benchmark Comparison

We performed an experiment within the TRECVID benchmark to show the effec-
tiveness of the semantic value chain for detection of semantic concepts among 12
present-day video indexing systems. The TRECVID 2004 procedure prescribes that
10 pre-defined concepts are evaluated. Hence, we report the official benchmark re-
sults for 10 concepts in our lexicon only. The 10 benchmark concepts are, however,
representative for the entire lexicon of 32. All evaluations are based on the semantic
value chain.

We compare our work with the 11 other participants in TRECVID 2004. We select
from each participant the system tuning with the best performance for a concept out
of a maximum of 10 tunings. For ease of explanation we do not take the optimal
tunings of the semantic value chain, as reported in [143], into account. Instead, we
use a similar parameter setting for all concepts. Hence, we favor other systems in this
comparison. Results are visualized in Fig. 5.9 for each concept.

Relative to other video indexing systems the semantic value chain performs the
best for two concepts, i.e. people walking and physical violence, and second for five
concepts, i.e. boat, Madeleine Albright, Bill Clinton, airplane take off, and road. For
two concepts we perform moderate, i.e. basket scored and beach. Here the best ap-
proaches are based on specialized concept detection methods that exploit domain
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systems [102].

knowledge. The big disadvantage of these methods is that they are specifically de-
signed and implemented for one concept. They do not scale to other concepts. The
benchmark results show that the semantic value chain allows for generic indexing with
state-of-the-art performance.

5.4.3 Usage Scenarios

The results from the semantic value chain facilitate the development of various ap-
plications. The lexicon of 32 semantic concepts allows for querying a video archive
by concept. In [147], we combined into a semantic video search engine query-by-
concept, query-by-keyword, query-by-example, and interactive filtering. In addition
to interactive search, the set of indexes is also applicable in a personalized retrieval
setting. A feasible scenario is that users with a specific interest in sports are provided
with personalized summaries when and where they need it. The sketched applications
provide a semantic access to multimedia archives.
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5.5 Conclusion

We propose the semantic value chain for semantic access to multimedia archives. The
semantic value chain is a generic approach for video indexing. In an effort to bridge the
semantic gap, it unifies the state-of-the-art in semantic video indexing into a common
system architecture. The architecture is built on a variety of specialized detectors,
multimodal analysis, hypothesis selection, and machine learning. The semantic value
chain selects an analysis chain from the content link, the style link, and the context
link. It relies on the content link only when concepts share many similarities in
their multimodal content. It combines the content link with the style link when the
professional habits of television making add value to the concept. Finally, it exploits
a consecutive chain based on content, style, and context for concepts that require
additional semantic value.

Experiments with a lexicon of 32 semantic concepts demonstrate that the seman-
tic value chain allows for generic video indexing. In addition, the results over the
various links indicate that a technique taxonomy exists for solving semantic concept
detection tasks. Finally, the semantic value chain is successfully evaluated within the
2004 TRECVID benchmark. With one and the same set of system parameters two
concepts, i.e. people walking and physical violence, came out best against 11 other
present-day systems with average precision scores of 0.170 and 0.086 respectively.
For five concepts our system scored the second best, i.e. boat (0.117), Madeleine Al-
bright (0.136), Bill Clinton (0.150), airplane take off (0.065), and road (0.138). Just
two performed poorly in this comparison, i.e. basket scored (0.209) and beach (0.020).
The results show that the semantic value chain allows for state-of-the-art performance
without the need of implementing specialized detectors. We consider this the best
indicator of the approach.

A semantic value chain is as strong as its weakest link. Introduction of feature
selection and knowledge representations in the various links will increase results. In
its current form the context link takes the results of the style link for granted; and
results are only adapted when there is enough contextual evidence from the other
concepts to do so. Hence, a large set of annotated examples is an important asset. To
alleviate the burden of annotation, current developments in active learning deserve
more attention. In addition, we need to tackle the greatest challenge ahead: extend
the lexicon of semantic concepts to a set that is competitive with human knowledge.
This will have an unprecedented impact on multimedia repository usage scenarios.

For the moment, the average precision resulting from completely automatic in-
dexing ranges from 0.020 to 0.209. What this means is that in 184 hours of standard
produced video, and after training on a few hundred examples from separated data,
only a small fraction of the instances in the footage are retrieved. For daily practice
footage selection this may be good enough to offer already a variety of choice. These
numbers are not good enough yet for high precision search but compared to the re-
ported results of just 2 years ago [102], automated search in video archives lures at
the horizon.





Chapter 6
A Lexicon-Driven Paradigm for
Interactive Multimedia Retrieval

The semantic gap separates the raw multimedia data-driven features on one end from
user interpretation at the other end. The gap is quite big and requires more than
just text-analysis to overcome. The semantic gap dictates that only a limited lexicon
of semantic concepts can be learned automatically, thus user involvement is essential.
We combine in this Chapter learning of a limited lexicon of semantic concepts with
similarity and interaction into a common paradigm to bridge the semantic gap. The
core of the paradigm is formed by first detecting a lexicon of 32 semantic concepts.
From there, we explore the combination of query-by-concept, query-by-similarity, and
user interaction into an integrated video search engine. The paradigm is evaluated
within the 2004 NIST TRECVID video retrieval benchmark, using a news archive
of 184 hours. Benchmark results show that the lexicon-driven search paradigm is
highly effective for interactive multimedia retrieval. In addition, we demonstrate that
the paradigm yields top ranking performance when users have experience with the
concepts in the lexicon and their anticipated performance.

91
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6.1 Introduction

For text collections, search technology has already evolved to a mature level. Re-
trieval tools have found in the Internet a medium to prosper, opening new ways to do
business, to do science, to be informed. All of this was realized only 15 years after the
introduction of the web. The success has wet the appetite for retrieval from multi-
media repositories. Now there is a problem. Multimedia archives do not release their
content as easily as text does. So, in providing access to multimedia archives, current
search engines [20,52] often rely on filename and accompanying textual sources only.
This approach is fruitful when a meticulous and complete description of the content
is available. In many circumstances however, time and resources are missing for very
detailed annotation. In addition, all-purpose completeness in describing multimedia
is practically impossible. Moreover, text-only retrieval ignores the treasure of infor-
mation that is available in the visual and auditory information stream. The reduction
to text-only retrieval for multimedia retrieval is too simplistic.

Unfortunately, techniques for multimedia retrieval are not that effective yet in
mining the semantic gold hidden in video archives. The main problem for any mul-
timedia retrieval methodology aiming for access is the semantic gap between mul-
timedia data representation and their interpretation by humans [136]. Where users
seek high-level semantics, they are being offered low-level abstractions of the data
instead. Not surprisingly, the user experience with multimedia retrieval is one of frus-
tration. Therefore, a new paradigm of semantics is required when aiming for access
to multimedia archives.

In [136], learning, similarity, and interaction are identified as key techniques
to bring semantics to the user. The multimedia research community follows this
track [10, 60, 119, 144, 164, 170]. However, there is no consensus on how to combine
key techniques into a common paradigm. A crossroad can be observed in the cur-
rent multimedia retrieval landscape, where we identify three major trails. One path
follows the analogy of information retrieval. It considers multimedia retrieval as an
extension of probabilistic text retrieval, e.g. [164]. The authors concentrate on the
construction of generative probabilistic models for the various modalities. They con-
clude that combined analysis is effective only when the modalities yield reasonable
retrieval scores in isolation. Another direction is followed in [170]. After text re-
trieval the authors boost results by combining multimodal detectors. The authors
show that a query-dependent adaptation of the weights for the various detectors has
a positive influence on overall multimedia retrieval performance. We consider both
directions promising, but still too much depending on text retrieval. We follow the
multimedia trail instead; in which text retrieval is an important signpost, but not the
guiding compass. Others also explore this frontier [10,60,119,144]. We advocate that
the ideal multimedia retrieval system should first learn a lexicon of concepts, based
on multimedia analysis, to be used for the initial search. Then, the ideal system
should employ similarity and interaction to refine the search until satisfaction. The
combination of learning, similarity, and interaction escapes the semantic gap.

As the semantic gap implies pre-indexing of all concepts of interest is impossi-
ble, we propose a multimedia retrieval paradigm that is build on three principles:
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learning of a limited set of semantic concepts, multimedia data similarity, and user
interaction. Within the proposed paradigm, we explore the combination of query-by-
concept, query-by-similarity, and interactive filtering using an integrated video search
engine. To demonstrate the effectiveness of our multimedia retrieval paradigm, the
interactive search experiments are evaluated within the 2004 NIST TRECVID video
retrieval benchmark [102].

The organization of this Chapter is as follows. First, we formulate the problem
in terms of related work in Section 6.2. Our multimedia retrieval paradigm is pre-
sented in Section 6.3. We describe the experimental setup in which we evaluated our
paradigm in Section 6.4. We present results in Section 6.5.

6.2 Problem Formulation and Related Work

We wish to provide users semantic access to multimedia archives. The question is
how we should exploit the combination of learning, similarity, and interaction into
an effective multimedia retrieval paradigm? In addition, the question arises how to
measure multimedia retrieval performance. One obtains effective semantic access only
if an answer is provided for both questions.

To answer the first question, we start to focus on three example methodologies
that also advocate the combination of learning, similarity, and interaction for semantic
access. From there we discuss the implication for the proposed multimedia retrieval
paradigm.

Rautiainen et al. [119] proposed a semantic access method which combines three
search engines into a common paradigm. A text search engine analyzes the text
obtained from automatic speech recognition and allows for keyword-based retrieval.
A visual search engine combines color and edge features and facilitates query-by-
example. Finally, a concept search engine allows to query on a lexicon of 15 semantic
concepts. The authors show that a weighted combination of search engines yields
the best result for retrieval. However, as the authors indicate, overall performance
was discouraging. In part, this can be explained by the inaccurate concept detectors.
We adopt and generalize their thoughts on combining query-by-keyword, query-by-
example, and query-by-concept for multimedia retrieval, but we add interaction in
our paradigm.

Informedia [29, 60] is often found among the top performers in benchmarks like
TRECVID. Their multimodal system employs a set of specialized concept detectors.
It is especially strong in (interactive) search scenarios. In [29], the authors explain
the success in interactive retrieval as a consequence of using storyboards, i.e. a grid of
key frame results that are related to a keyword-based query. As queries for semantic
concepts are hard to tackle using the textual modality only, the interface also supports
filtering based on semantic concepts. The filters are based on a lexicon of 10 pre-
indexed concepts with mixed performance [60]. Because of this variance in reliability
the filters are applied after a keyword-based search. The disadvantage of this approach
is the dependence on keywords for initial search. Because of the semantic gap, user-
interaction with this restricted answer set results in limited semantic access. We
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embrace the use of storyboards, querying, and filtering for interactive retrieval, but
we emphasize query-by-concept in the interaction process, where possible, to limit
the dependence on keywords.

A system for generic semantic indexing is proposed in [10, 96]. The system starts
with feature extraction, followed by consecutive aggregations on features, multiple
modalities, and concepts. Finally, the system optimizes the result by rule-based
post filtering. In spite of the use of a lexicon of 64 reported concepts, interactive
retrieval results with the web-driven MARVEL system [10] are disappointingly low
compared to [29]. We attribute this observation, in part, to the lack of speed of the
web-based interface. Moreover, it lacks video playback functionality. However, the
largest problem is the complex query interface that offers too many possibilities and
prevents users from quick retrieval of video segments of interest. We adopt and extend
their ideas related to semantic indexing, but we take a different road for interactive
retrieval.

To combine learning, similarity, and interaction we adopt the view of Smeulders
et al. [136]. They define interaction as the interplay between the user, the multimedia
data, and its semantic interpretation. We propose a multimedia retrieval paradigm
that analyzes multimedia at both a semantic and a data level. A search engine pro-
vides users with the possibility to interact with the data. Several query interfaces
allow users to retrieve results, which are visualized in the form of a storyboard. Inter-
active retrieval using the proposed paradigm facilitates semantic access to multimedia
archives.

In response to the need for measuring multimedia retrieval performance, we note
that it has always been a delicate issue. Multimedia archives are fragmented and
mostly inaccessible due to copyrights and the sheer volume of data involved. As a
consequence, comparison of systems has traditionally been difficult. NIST started or-
ganizing the TRECVID video retrieval benchmark to tackle the evaluation problem.
The benchmark aims to promote progress in video retrieval via open, metrics-based
evaluation [102]. Tasks include camera shot segmentation, story segmentation, seman-
tic concept detection, and several search tasks. The video archive used is composed of
184 hours of ABC World News Tonight and CNN Headline News. The development
data contains approximately 120 hours covering the period of January until June
1998. The test data contains the remaining 64 hours, covering the period of Octo-
ber until December 1998. Together with the video archive came automatic speech
recognition results donated by LIMSI [47]. CLIPS-IMAG [115] provided a camera
shot segmentation and corresponding key frames. The camera shots serve as the unit
for retrieval. We evaluate our multimedia retrieval paradigm within the TRECVID
benchmark, to demonstrate its effectiveness.

6.3 Multimedia Retrieval Paradigm

We propose a lexicon-driven paradigm to equip users with semantic access to multime-
dia archives. The aim is to retrieve from a multimedia archive S, which is composed
of n unique shots {s1, s2, . . . , sn}, the best possible answer set in response to a user
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information need. To that end, the paradigm combines learning, similarity, and inter-
action. The paradigm exploits learning by means of a multimedia semantic indexing
component, using machine learning for automatic indexing of a lexicon of 32 concepts.
It associates a probability of concept presence to every shot. It stores the probabili-
ties of all detected concepts for each shot in a database. In addition to learning, the
paradigm also facilitates multimedia analysis at a similarity level. In the similarity
component, 2 similarity functions are applied to index the data in the visual and tex-
tual modality. It results in 2 similarity distances for all shots, which are also stored
in a database. A search engine offers users an access to the stored indexes and the
video data in the form of 34 query interfaces; i.e. 2 query-by-similarity interfaces and
32 query-by-concept interfaces. The query interfaces emphasize the lexicon-driven
nature of the paradigm. The search engine handles the query requests, combines the
results, and displays them to an interacting user. Within the paradigm, we perceive
of interaction as a combination of querying the search engine and selecting relevant
results. A schematic overview of the retrieval paradigm is given in Fig. 6.1. The
various components of the paradigm are now explained in more detail.

6.3.1 Multimedia Semantic Indexing

We follow our previous work [144] in the idea that the essence of produced video is
its creation by an author. Style is used to stress the semantics of the message, and to
guide the audience in its interpretation. In the end, video aims at an effective semantic
communication. All of this taken together, the main focus of semantic indexing must
be to reverse this authoring process, for which we proposed the semantic value chain.

The semantic value chain is composed of three links, see Fig. 6.2 from [144].
The output of a link in the chain forms the input for the next one. We build this
architecture on machine learning of concepts for the robust detection of semantics.
The semantic value chain starts in the content link. In this link, it follows a data-driven
approach of indexing semantics. It analyzes both the visual data and textual data. In
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the learning phase, it applies a support vector machine to learn concept probabilities.
The style link addresses the elements of video production, related to the style of the
author, by several style-related detectors. They include shot length, frequent speakers,
camera distance, faces, and motion. Again, a support vector machine classifier is
applied to learn style probabilities. Finally, in the context link, the probabilities
obtained in the style link are fused into a context vector. Then, again a support
vector machine classifier is applied to learn concepts. Some concepts, like vegetation,
have their emphasis on content thus style and context do not add much. In contrast,
more complex events, like people walking, profit from incremental adaptation of the
analysis by using concepts like athletic game in their context. The semantic value
chain allows for generic video indexing by automatically selecting the best chain of
analysis links on a per-concept basis. As indicated earlier, it is based on a lexicon of
32 semantic concepts. Instantiations of the concepts in the lexicon are visualized in
Fig. 6.3. The lexicon contains both general concepts, like building, boat, and outdoor,
as well as specific concepts such as basket scored and people walking. The semantic
value chain detects all 32 concepts with varying performance [144].

6.3.2 Multimedia Similarity Indexing

In general, three data streams run in parallel in video, namely: the auditory modality,
the textual modality, and the visual modality. The variety of features one can extract
from the streams is enormous, see [136, 142, 162] for an overview. Once features
are computed, they can be used to define a similarity function applicable within
query methods like query-by-humming [50], query-by-keyword [123], and query-by-
example [136]. As auditory examples are often unavailable, we provide users with
possibilities for query-by-keyword and query-by-example to access a video.
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To arrive at query-by-keyword we first derive words from automatic speech recog-
nition [47]. We remove stopwords using the SMART’s English stoplist [123]. We then
construct a vector space by taking all transcribed words. We rely on latent seman-
tic indexing [36] to reduce the search space to 400 dimensions. While doing so, the
method takes co-occurrence of related words into account by projecting them onto the
same dimension. The rationale is that this reduced space is a better representation
of the search space. Users query the space reduced by latent semantic indexing using
keywords that are projected to the same dimensions [167].

In the visual modality the query is by example. For all key frames in the video
archive, we compute the perceptually uniform Lab color histogram [49] using 32 bins
for each color channel. Users compare key frames with the Euclidean distance among
histograms.

6.3.3 Search Engine

Video search engines are often dictated by technical possibilities rather than actual
user needs [78]. Frequently this results in an overly complex search engine. To shield
the user from technical complexity, we store all computed indexes in a database. Users
interact with the search engine based on query interfaces. After a user issues a query
it is processed and combined into a final result which is presented to the user. The
elements of our search engine are now discussed in more detail.

Query Interface Selection

The basis for interactive selection of query results forms the set of 32 concepts in the
lexicon. Users may rely on direct query-by-concept for concepts from this lexicon.
Since the lexicon contains the concept boat, all information needs related to ships
benefit from query-by-concept. This is an enormous advantage for the precision of
the search. Users can also make a first selection when a query includes a super-class
or a sub-class of a concept in the lexicon. For example, when searching for vehicles
one can use the available concepts car, boat, bicycle, train, and airplane take off from
the lexicon. Apart from querying on presence of a concept, users may also query on
absence of a concept. This aids in reducing ambiguity. Consider for example a query
on sporting events but not ice hockey. The lexicon of 32 concepts aids users in various
ways in specifying their queries.

For search topics not covered by the concepts in the lexicon, users have to rely on
similarity in the form of query-by-keyword and query-by-example. Applying query-by-
keyword in isolation allows users to find very specific topics only if they are mentioned
in the transcription from automatic speech recognition. Based on query-by-example,
on either provided or retrieved image frames, key frames that exhibit a similar color
distribution can augment results further. This is especially fruitful for repetitive key
frames that contain similar visual content throughout the archive, such as previews,
graphics, and commercials.

Naturally, the search engine provides users the possibility to combine query in-
terfaces. This is helpful when a concept is too general and needs refinement. For
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Figure 6.4: Combining query results in the video search engine is based on weighted reordering

of ranked lists. In the detail from Fig. 6.1, five query requests by a user have resulted in five

multimedia rankings of a data set. For simplicity the example data set contains only four shots.

All ranked shots are weighted according to Eq. (6.3). The sum of all weights per shot, as defined

in Eq. (6.4), is exploited to present a user a final ranked list of search results.

example when searching for Microsoft stock quotes, a user may combine query-by-
concept stock quotes with query-by-keyword Microsoft. While doing so, the search
engine exploits both the semantic indexes and the multimedia data indexes.

Combining Query Results

As indicated before, the search engine provides users with 34 query interfaces. Each
query interface acts as a ranking operator Φi on the multimedia archive S, where
i ∈ {1, 2, . . . , 34}. The search engine stores results of each ranking operator in a
ranked list ρi, which we denote by:

ρi = Φi(S) (6.1)

To rank S query-by-concept exploits semantic probabilities, while query-by-keyword
and query-by-example use similarity distances. When users mix query interfaces,
and hence several numerical scores, this introduces the question how to combine the
results. Therefore, the search engine uses a decision method based on rankings to
combine query results.
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Various ranking combination methods exist [64]. In general, the purpose of multi-
media retrieval is to obtain as many accurate results with a high ranking as possible.
A ranking method based on reordering of results is therefore a good choice [64]. To
reorder the ranked lists of results, we first determine the rank rij of shot sj over the
various ρi. Denoted by:

rij = ρi(sj) (6.2)

We define a weight function w(·) that computes the weight of sj in ρi based on rij .
This linear weight function gives a higher weight to shots that are retrieved in the
top of ρi and gradually reduces to 0. This function is defined as:

w(rij) =
n − rij + 1

n
(6.3)

We aggregate the results for each shot sj by adding the contribution from each
ranked list ρi. We then use the final ranking operator Φ∗ to rank all shots from S in
descending order based on this new weight. This combination method yields a final
ranked list of results ρ∗, defined as:

ρ∗ = Φ∗





{

m
∑

i

w(rij)

}

j=1,2,...,n



 (6.4)

where m indicates the number of selected query interfaces. The combination proce-
dure is visualized in Fig. 6.4.

Display of Results

We use a grid of key frames for visualization of ranked results. After inspection of this
storyboard, a user selects video shots of interest and adds them to a list of relevant
results. We also offer users the possibility to browse through the temporal dimension
of a specific video, after selection of an active shot. If requested, playback of specific
shots is also possible. To select query interfaces and combine retrieval results we rely
on interaction by a user. The interface of the search engine, depicted in Fig. 6.5,
allows for easy combination of query interfaces and swift visualization of retrieved
results.

6.4 Experimental Setup

6.4.1 Interactive Search

We performed our experiments within the interactive search task of the 2004 TRECVID
benchmark to demonstrate the significance of the proposed paradigm. The goal of
the interactive search task is to satisfy a multimedia information need. Given such a
need, in the form of a search topic, a user is engaged in an interactive session with a
video search engine. Based on the results obtained, a user rephrases queries; aiming
at retrieval of more and more accurate results. To limit the amount of user interaction
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and to measure search system efficiency, all individual search topics are bounded by
a 15-minute time limit. The interactive search task contains 23 search topics in total.
They became known only 10 days before the deadline of submission. Hence, they were
unknown at the time we developed the semantic concept detectors. We experimented
with four expert users. User A had knowledge about the semantic concepts and their
development set performance. The other users, B,C and D, were given a 15 minute
introduction to the system only. In line with the TRECVID submission procedure,
each user was allowed to submit for assessment up to a maximum of 1000 ranked
results for the 23 search topics.

6.4.2 Evaluation Criteria

To determine the retrieval accuracy on individual search topics TRECVID uses av-
erage precision. The average precision is a single-valued measure that corresponds to
the area under a recall-precision curve. This value is the average precision over all
relevant judged shots. To be precise, let Lk = {l1, l2, . . . , lk} be a ranked version of
the answer set A. At any given rank k let R ∩ Lk be the number of relevant shots in
the top k of L, where R is the total number of relevant shots. Then average precision
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is defined as:

average precision =
1

R

A
∑

k=1

R ∩ Lk

k
λ(lk) (6.5)

where indicator function λ(lk) = 1 if lk ∈ R and 0 otherwise. As the denominator
k and the value of λ(lk) are dominant in determining average precision, it can be
understood that this metric favors highly ranked relevant shots.

TRECVID uses a pooled ground truth P , to reduce labor-intensive manual judg-
ments of all submitted runs. They take from each submitted run a fixed number of
ranked shots, which is combined into a list of unique shots. Every submission is then
evaluated based on the results of assessing this merged subset, i.e. instead of using R

in (6.5), P is used, where P ⊂ R. This yields an incomplete ground truth, but a fair
comparison of submissions.

As an indicator for overall search system quality TRECVID computes the mean
average precision over all search topics from one run by a single user.

6.5 Results

6.5.1 Lexicon-Driven Interactive Retrieval

We plot the complete numbered list of search topics in Fig. 6.6. Together with the
topics, we plot the benchmark results for 61 users with 14 present-day interactive
multimedia retrieval systems. The figure includes our experiments with users A,B,C,

and D respectively. Based on the results, we gain insight in the contribution of the
proposed paradigm for individual search topics.

For most search topics, users of the proposed paradigm for interactive multimedia
retrieval score above average. Furthermore, users of our approach obtain the highest
average precision for seven search topics (Topics: 3, 14, 15, 16, 18, 20, 21). We explain
the success of our interactive retrieval paradigm in part by the lexicon used. In our
lexicon, there was an (accidental) overlap with the requested concepts from some
search topics; for example ice hockey, bicycle, and Bill Clinton (Topics: 6, 16, 20),
where performance is very good. Implying that there is much to be expected from
a larger set of concepts in the lexicon. For other concepts, users could use available
semantic concepts for filtering, e.g. sporting event for tennis player (Topic: 18) and
animal for horses (Topic: 21). So in our method, abstract concepts make sense even
when they are referred to indirectly. When a user finds an answer to a search topic in a
repeating commercial, query-by-example is particularly useful. Search topics profiting
from this observation are those related to bicycle and tennis player (Topics: 16, 18).
As an exception, for search topics related to the concept building (Topics: 2, 22),
our retrieval method performed badly compared to the best results. We explain this
behavior by the fact that building was not the distinguishing concept in these topics,
but rather concepts like flood and fire. When we compare results for lexicon related
topics among users A,B,C, and D, it is striking that user A performs significantly
better for most topics. The results imply that experience with the concepts and their
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Figure 6.6: Comparison of interactive search results for 23 topics performed by 61 users of

14 present-day multimedia retrieval systems. Results for the users of the proposed paradigm are

indicated with special markers.

performance pays off. This is a general observation that also holds for the other
systems.

Users of the paradigm performed moderate for search topics that did not have a
clear overlap with the concepts in the lexicon. Performance is for most topics however,
still above average. Examples are wheelchairs (Topic: 19), umbrellas (Topic: 17), and
person X related search topics that were not in the lexicon (Topics: 4, 9, 10, 11, 13).
Note that the results of the various users are now much closer to each other. For
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Figure 6.7: Overview of all interactive search runs submitted to TRECVID 2004, ranked ac-

cording to mean average precision. Users who exploited the proposed paradigm are indicated

with A, B, C, and D respectively.

these topics, we grant an important role in the obtained results to the interface of
the video search engine. Because users could quickly select segments of interest, the
search engine aided for search topics that users could not address with concepts from
the lexicon.

6.5.2 Benchmark Comparison

To gain insight in the overall quality of our lexicon-driven interactive retrieval
paradigm. We compare the results of our 4 users with 57 other users that par-
ticipated in the interactive retrieval task of the 2004 TRECVID benchmark. We
visualized the results for all submitted interactive search runs in Fig. 6.7.

The results show that user A of the proposed paradigm obtains the highest overall
mean average precision with 0.352. This is the user with knowledge about the con-
cepts. The other three users obtained mutually very similar results with an overall
score of 0.227 on average. A score that is 20% higher than the median of all interactive
search runs submitted (0.189). The benchmark results show that lexicon-driven inter-
active retrieval yields high accuracy; in case users have experience with the concepts
and their anticipated performance, the results are state-of-the-art.

6.6 Conclusion

In this Chapter, we combine learning, similarity, and interaction into an effective
paradigm for access to multimedia archives. We build the paradigm on three princi-
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ples: learning of a limited set of semantic concepts, multimedia data similarity, and
user interaction. The foundation of the paradigm is formed by first detecting a lex-
icon of 32 semantic concepts. Based on this lexicon, query-by-concept offers users a
semantic entrance to multimedia repositories. In addition, users are provided with
an entry in the form of similarity using query-by-keyword and query-by-example. In-
teraction with the various query interfaces is handled by a video search engine which
provides feedback in the form of storyboard results. The paradigm combines learn-
ing, similarity, and interaction techniques to limit the influence of the semantic gap
in multimedia retrieval.

Experiments with 4 users, 23 search topics, and 184 hours of news video indicate
that the proposed paradigm is highly effective for interactive multimedia retrieval.
For search topics that are related to concepts in the lexicon, query-by-concept is a
good starting point. If a user is interested in footage that is repeated throughout the
archive, query-by-example is the way to go. Query-by-keyword is effective when the
(visual) content is described in the speech signal. Often, an interactive combination of
query interfaces yields the best results. The results show that the lexicon of concepts
aids substantially in interactive search performance. However, users need experience
to value this asset on its true merits. Once users have faith in the lexicon of concepts,
the paradigm reveals its true power. This is best demonstrated in a comparison
among 61 users of 14 present-day retrieval systems within the interactive search task
of the 2004 NIST TRECVID video retrieval benchmark. In this comparison, a user
of the lexicon-driven paradigm who was experienced with the concepts and their
performance on development data gained the highest overall score.

Our future work focusses on inclusion of experience into the interactive retrieval
paradigm. We aim to provide interacting users of a video search engine with sug-
gestions for query interfaces that are likely to yield the best retrieval result. We
can determine the optimal query based on learned behavior on development data.
Inclusion of experience, expels user frustration with multimedia retrieval technology.

At present, retrieval results with the proposed paradigm range from poor for
topics like “find street scenes with pedestrians and vehicles in motion” to excellent
for non-trivial topics like “find a hockey rink with net”. Fluctuating performance is
unacceptable for commercial multimedia retrieval technology. However, as a support
tool for professional users the proposed paradigm may already provide a treasure of
semantic information.





Chapter 7
Semantic Search Engine Prototypes
for Broadcast Video Archives

The traditional task of broadcast video archive owners like broadcast stations, mu-
seums, and cultural heritage institutions has been one of preservation. However,
today’s technology push in the form of automatic indexing tools, retrieval services,
and broadband connections, requires a shift in strategy. Accessibility is the magic
word for content owners. To cater for accessibility, content owners currently label
broadcast video manually with semantic annotations. Due to the ever growing scale
of broadcast video archives, this effort needs to be lightened by means of automatic
technology. Since an archive of news videos differs not only in semantic content from
an archive of soccer videos, but also in indexes and derived services the technology
must be able to adapt itself to the archive of choice. In this Chapter we present such
technology in the form of a general architecture for semantic video search engines. It
fulfills the need for automatic indexing, components for index-derived services, and
archive specific retrieval at a semantic level. To show the generality of the architecture
we developed four prototype video search engines. Each prototype highlights differ-
ent aspects of the general architecture. With the proposed architecture we provide
broadcast video content owners with the possibility to develop tailor-made semantic
video search engines.

107
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7.1 Introduction

While broadcast television is often criticized for its lack of depth, a large number
of broadcasted events have made it to the collective memory of mankind. Consider
for example Neil Armstrong’s first moon steps, the fall of the Berlin Wall, and more
recently the devastating tsunami that hit many parts of Asia and east Africa. All
of this broadcasted multimedia content, and more, is stored in numerous archives
scattered all over the globe. At present, only the content owners have access to this
treasure of multimedia material.

Multimedia content owners are becoming more and more aware of their valuable
assets. By providing access to their archives they may open new services, expand busi-
ness, and generate additional revenues. Before such scenarios become common place,
however, asset owners need to realize that the value of their archives is in its index.
This index requires more then a record of the broadcast date, channel, and program
guide description. In Chapter 6 we demonstrated that users need semantic access to
yield effective multimedia retrieval [147]. In obtaining an elaborate semantic index,
multimedia content owners currently rely on manual annotation. This process is a
tedious, cumbersome, error prone, and above all costly task. Hence, content owners
need automatic semantic index technology to make their video archives accessible.

One of the conceivable scenarios is that content owners take responsibility for
semantic indexing themselves, either by developing the technology in-house or by ac-
quiring it externally. Once content owners are able to effectively index their assets
it will result in search technology that is tailored to the broadcast video archive of
choice, e.g. an archive of feature films, or ice hockey games. With corresponding
services, like a compilation of scenes of a specific actor or a weekly overview of ice
hockey highlights. Within this scenario we propose a general architecture for a se-
mantic video search engine. It fulfills the need for automatic indexing, index-derived
services, and archive specific retrieval at a semantic level. To show the generality of
the architecture we developed four prototype semantic video search engines. Each
prototype highlights different aspects of the general architecture. With the proposed
architecture we provide content owners with the possibility to develop tailor-made
broadcast video search engines.

The organization of this Chapter is as follows. First, we discuss related systems
in Section 7.2. We then introduce in Section 7.3 the general semantic video search
engine architecture. In Section 7.4 we present four prototypes, which exploit the
proposed architecture. We end this Chapter with a discussion and perspective on
future extensions.

7.2 Related Systems

Along the many dimensions on which we can assess video search systems we focus here
on the broadcast video archive used, the granularity used, the methods exploited for
indexing, the user interface, and the performance. For an in dept coverage of indexing
techniques we refer to Chapter 2, for an overview of video search engine interfaces we
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refer to [78].

As an extension of their powerful text-based search engine, Google recently in-
troduced video search [52]. At present the searchable archive is limited to broadcast
television shows from a restricted number of USA-based content providers. The sys-
tem considers television shows as the unit of retrieval. For indexing, Google relies
completely on closed caption analysis. This analysis introduces several drawbacks.
First of all, there is a time lag between what is visible in the video and the transcrip-
tion of the closed caption. Second, closed captions contain mistakes. Finally, it allows
to retrieve semantic concepts that are mentioned in the closed caption only. Since
the unit of retrieval is a television show, a query request results in a list of retrieved
programs. Currently it is impossible to retrieve specific fragments from broadcast
video. The web-based user interface shows a limited number of key frames from the
entire program, it does not support video play back. The performance in terms of
retrieval is what you would expect based on closed caption analysis.

Blinkx is another commercial video search engine [20]. Here the analysis is based
solely on speech recognition. The advantage of speech recognition over closed caption
analysis is the fact that the former allows for more accurate synchronization. However,
due to an increase in background noise, speech recognition results may be less accurate
then closed caption analysis. The web-based user interface combines low resolution
Flash MX movies with a summary of the transcription of the speech that triggered
the query request. After selection of clips of interest it links to the web sites of a set
of restricted American and British content owners and plays the clips in a commodity
video player, like Real or Windows Media. In addition to retrieval, Blinkx offers
limited personalization by automatically storing references to potentially interesting
footage based on predefined user preferences. Like Google, Blinkx is not evaluated
on any known benchmark. However, retrieval performance appears to be better then
Google.

Both speech recognition results and closed captions are combined in Dublin City
University’s F́ischlár Digital Video System. Another strong point of Físchlár is the fact
that it offers a variety of web-based user interfaces as variations of their core system
architecture [135]. We focus here on Físchlár-News. This system captures and indexes
television news from the Irish national broadcast station on a daily basis. In contrast
to Google and Blinkx, their system adds structure to retrieval results in the form of
news stories. Once users select news stories, more details are provided on a camera
shot level. In addition, they can play back segments of interest using the Oracle video
player. If users provide F́ischlár-News with a 5-scale rating of the retrieved content,
the system is able to perform personalized recommendations of future news stories.
Variations of the F́ischlár Digital Video System are evaluated with mixed performance
within the international TRECVID benchmark, see the sidebar for TRECVID details.

Carnegie Mellon University’s Informedia Project is renown for its combination
of true multimedia analysis, indexing, and retrieval into a stand-alone video search
system [161]. The system indexes broadcast news data from CNN on a story segment
and camera shot level using a large pool of techniques, such as face detection, speech
recognition, and video optical character recognition. The multimedia nature of the
Informedia architecture offers its users a big advantage over architectures that are
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TRECVID Benchmark

In 2001 NIST extended their successful Text Retrieval Conference (TREC) series
with a track focussing on automatic segmentation, indexing, and content-based
retrieval of digital video. With a steady increase in the size of the video archive
analyzed, from 11 hours in 2001 up to 183 hours in 2004, and the international
participants, from 12 in 2001 up to 33 in 2004, this track became an independent
evaluation workshop (TRECVID) in 2003. The aim of TRECVID is to promote
progress in the field of multimedia understanding by providing a large video col-
lection, uniform evaluation procedures, and a forum for researchers interested in
comparing their results. Already the benchmark is making a huge impact on
the multimedia community, resulting in a large number of video retrieval systems
and publications that report on the experiments performed within TRECVID.
An overview of the work in several TRECVID tasks from 2001 to 2003 is cov-
ered in [31, 61, 99]. Our participation in TRECVID 2003 and 2004 is extensively
reported in Chapters 4, 5, and 6.

based solely on text-based indexes. In addition, the system provides an index at a
semantic level [60]. However, these are not robust enough yet for usage in isolation;
they need to be combined with a keyword-based search on the transcribed speech
to be effective. The system provides an extensive interface to query on all derived
multimedia clues. It offers video play back via an integrated Windows Media player.
The system has scored good results in the (interactive) search tasks of the TRECVID
benchmark.

MARVEL [66] is the prototype system of IBM Research. It combines multi-
modal analysis with machine learning to index broadcast video archives at a semantic
level [138]. The system serves as a test bed of IBM’s TRECVID results. As a con-
sequence, it strictly adheres to the conventions used in the TRECVID benchmark.
Hence, the camera shot serves as the unit of retrieval. In addition, the broadcast
video archives are those used in TRECVID. The indexed semantic concepts form the
input for the web-based MARVEL interface. The search engine then allows to query
video archives by semantic concepts. In addition, it offers users query-by-keyword
on text obtained from speech transcription, and by visual example using a variety
of image features. The indexing part of MARVEL has scored better results in the
TRECVID benchmark than its interactive search part.

Summarizing the above, each system has a specific focus and accompanying ar-
chitecture. We aim at the best of all worlds to arrive at a general architecture for a
semantic video search engine. It allows for content owners to index various broadcast
video archives, on several levels of granularity, using textual, auditory, and visual
analysis. Moreover, it exploits multimodal analysis in combination with machine
learning to yield an effective semantic index. Furthermore, the architecture provides
content owners with flexibility to exploit a user interface that is tailor-made to the
archive of choice.
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Figure 7.1: General architecture of a semantic video search engine.

7.3 Semantic Video Search Engine Architecture

In our view, a semantic video search engine consists of four basic elements. The
first element is an archive of broadcast video. Then an indexing engine is required
to make these assets accessible. Once an index of the broadcast video archive is
available, several components for index-derived services can be offered to users. The
fourth element is the search interface. It lets users interact with the video archive,
the indexes, and the derived services. This is illustrated in Fig. 7.1. We will now
discuss the basic elements in more detail.

The indexing engine is responsible for analysis of the raw multimedia data. As a
first structuring step in the analysis we start with a segmentation of the broadcast
video stream, e.g. at the granularity of camera shots or story segments. To index the
segmented footage we distinguish between two types of indexes: a data index and a
semantic index.

To obtain a data index, the data-driven analysis operates directly on the textual,
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Authoring-driven Analysis

The central assumption in authoring-driven analysis is that any broadcast video
is the result of an authoring process. An author starts with a semantic intention,
an interplay of concepts and context. Based on this intention he or she produces
a broadcast video document. While doing so the professional style conventions as
used in broadcast television production are exploited. Ultimately this results in a
digital video document that communicates the original semantic intention. When
we want to extract semantics from a digital broadcast video this authoring process
needs to be reversed.

For authoring-driven analysis we propose the semantic value chain, see Chap-
ter 5. As an author uses all modalities to convey meaning, the semantic value
chain starts with multimodal content analysis. First, it extracts features from
the visual, textual, and auditory modality. Then the chain exploits supervised
machine learning to automatically label segments with semantic concepts. In a
second analysis link, the broadcast video is analyzed based on its style properties.
Again using supervised machine learning for semantic labeling. Finally, semantic
concepts are analyzed in context, with the potential to boost index results further.
The virtue of the semantic value chain is its ability to classify semantic concepts
in broadcast video in a generic fashion.

auditory, and visual stream of the video. It may use well-known techniques from
the fields of natural language processing, speech recognition, and computer vision to
provide a first access to the video data in the form of query-by-keyword [123], query-
by-humming [50], and query-by-example [136]. The data index provides the same
functionality as is currently offered by commercial video search engines.

We exploit an authoring-driven analysis to obtain an index at a semantic level.
An authoring-driven analysis combines multimodal content analysis, style analysis,
and context analysis, with machine learning to yield an effective semantic index, see
the sidebar for details. The procedure operates in two stages: a training stage and
operation stage. In the training stage a restricted set of the broadcast video material
is set aside to learn various models for a lexicon of semantic concepts using machine
learning. We follow a supervised learning paradigm, where we fuel the indexing engine
with a set of manually annotated multimedia examples for model construction. In the
operation stage, the indexing engine exploits the learned models to detect semantic
concepts in previously unseen broadcast video. The semantic index lets users query
broadcast video archives by concept.

After the raw multimedia is processed by the indexing engine, it stores the resulting
indexes in a database. If necessary, the indexes can also be stored using an XML
metadata file standard like MPEG-7 [85].

Once the data index and semantic index are stored in a database, the architecture
offers several components for index-derived services that may be presented to users of
a broadcast video archive. Currently these components include: querying, personal-
ization, summarization, and statistics. The querying component depends directly on
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the derived indexes. After a user issues a query, the search engine returns a ranked list
of results. In case of query-by-concept these results are ranked according to the prob-
ability associated with the concept. We rely on a similarity function to rank results
for the data index-derived queries. The querying component treats all users equal.
Hence, queries issued by users with different interests result in the same ranked list of
broadcast video footage. The personalization component offers a personal touch. This
component is able to tailor query results to a user’s taste. In addition, personalization
based on a user profile may drive a recommender system [5]. Apart from querying
and personalization, indexes may also support summarization. Finally, the indexes
provide a basis for broadcast statistics. The indexes provide an effective entrance into
broadcast video archives. When content owners offer the indexes on their video data
over the Internet, a new set of services may arise.

Users can interact with the search engine via tailor-made search interfaces. De-
pending on the application the used front-end may be a web-based user interface or
a stand-alone user interface.

7.4 Prototype Systems

We will now illustrate the possibilities of the general architecture by means of four
prototype systems. Each system emphasizes a specific component for semantic index-
derived services.

The Goalgle video search engine is tailored for the domain of soccer. For this
specific sub-genre, a user would typically like to find game-related statistics in the
form of highlight events such as goals, cards, and substitutions or search for a par-
ticular player. We digitized an archive of 12 hours of soccer games for the Goalgle
prototype. Highlight events were indexed automatically at the camera shot level us-
ing the authoring-driven analysis described in Chapter 3. In addition, we exploit
a data-driven analysis on the closed captions to facilitate query-by-keyword. The
tailor-made web-based user interface of Goalgle is visualized in Fig. 7.2.

The web-based user interface of the Goalgle search engine is composed of four
different panels. The query panel provides different ways of querying the system.
Most interesting queries are based on finding soccer highlight events, such as goals,
cards, and substitutions. One can choose to search the entire collection or search
for events in a specific match. The closed captions can be searched by entering a
keyword, like is used by standard text retrieval based search engines. Furthermore,
one can search for video segments showing favorite players or coaches. The result panel
displays a ranked list of video segments that adhere to the query entered in the query
panel. Results can be ranked on probability or by their time stamp. When a result
is clicked, the segment is displayed in the video panel. In the current implementation
of Goalgle we use an integrated Windows Media player for display of the soccer video
sources. When a segment is selected, a browser panel is revealed that allows to browse
through the current soccer match that is displayed in the video panel. A user can
jump to previous and next highlight events within this game. Goalgle allows users to
find the highlight events they want, without the need to watch an entire soccer game.
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Figure 7.2: User interface of the Goalgle soccer video search engine.

The News RePortal system is tailored for the domain of news. For this genre,
a user would typically be interested in structured summaries that provide a quick
overview of the news archive. We digitized an archive of 32 hours of Dutch broadcast
news for the News RePortal prototype. We segmented the videos on both the topic
level and the camera shot level. Topic segmentation is the method reported in [117].
Besides segmentation it also indexes segments with the most likely topic. Apart
form a topic index, we also index camera shots with news-specific structuring events
like news anchor, interview, and weather news using the authoring-driven analysis as
reported in Chapter 3. In addition, we exploit a data-driven analysis on the closed
captions to facilitate query-by-keyword. The tailor-made web-based user interface of
News RePortal is visualized in Fig. 7.3.

The web-based user interface of the News RePortal system is similar to the Goalgle
search engine. It also consists of four panels. The query panel allows to query the news
video archive on news topic, e.g. Israel, or speed skating. In addition it provides query-
by-concept using semantic concepts like interviews, anchors, and weather news. Like
Goalgle, it also offers query-by-keyword on the closed caption and retrieval of specific
persons. Naturally the query panel allows to combine query interfaces, in this way
users can retrieve very specific information nuggets such as interviews with Shimon
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Figure 7.3: User interface of the News RePortal system, with a structured summary in the

form of a storyboard.

Peres on the topic Israel. The result panel displays a ranked list of video segments
that adhere to the query entered in the query panel. When a result is clicked, the
segment is displayed in the video panel. We use an integrated Windows Media player
for display of the news video sources. When a segment is selected, a browser panel is
revealed that allows to browse through the current news episode on a per-topic basis.
A strong property of the News RePortal system is its ability to provide users with
a structured summary of the news episode in the form of a storyboard. To give a
condensed but accurate summary of the various topics, we exploit an intelligent key
frame selection mechanism. It filters out detected anchor shots and tries to minimize
the similarity of the various selected frames. The storyboard can be exploited to jump
to the various topics within this news broadcast.

The Video Personalizer (Viper) system is also tailored for the domain of news.
In contrast to the News RePortal, which focuses on summarization, this prototype
emphasizes personalization aspects. The news archive contains 64 hours of ABC
and CNN broadcasts. All videos are segmented on the camera shot level. They
are indexed using the authoring-driven analysis approach described in Chapter 5. A
lexicon containing 32 semantic concepts was used for indexing. Given this lexicon, we
aim to provide a person with the most relevant information given the expected use
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Figure 7.4: User interface of the Viper search engine. The left panel shows the search interface,

the top panel shows a spiral visualization of a search on graphics and the bottom panel shows a

grid visualization of ice hockey.

and user preferences. The tailor-made web-based user interface of Viper is visualized
in Fig. 7.4.

The web-based user interface of the Viper search engine is composed of six tabs.
Apart from login and logout functionality Viper allows users to add their preferences
to the system in terms of the concepts. In addition to this explicit user profiling, it also
learns from user interaction. An ontology based on WordNet [42] was developed that
provides a structure on the lexicon of 32 concepts and increases search possibilities
by means of a category browser, i.e. it maps concepts from the query to available
concepts in the lexicon if possible. We also provide a text-box based search interface
for advanced users with knowledge about the available concepts. To decide whether
concepts are related to a query, a pruner module computes query- and user-dependent
thresholds. To present the results, Viper provides five visualization modes based on
key frames. Four visualizations are variations of the well-known grid representation,
while another uses a spiral-based representation to visualize results. Users can choose
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Figure 7.5: User interface of the MediaMill system. The top row of the right panel shows

selected results for vehicle, the bottom shows results for car.

whatever interface they like best. After key frame selection the videos are displayed
with an integrated Flash MX player. Viper provides different users with different
query results based on the learned user preferences.

The fourth and final prototype is the MediaMill system. Like Viper this search
engine exploits an archive of American broadcast news video. In contrast to the
previous prototypes, this system focuses on querying. Again all videos are segmented
on the camera shot level and indexed using the authoring-driven analysis approach
described in Chapter 5. The lexicon of 32 semantic concepts is used for query-by-
concept. Apart from the semantic index this search engine also provides a textual
and visual index in the form of two similarity functions. The textual index uses
Latent Semantic Indexing to allow for query-by-keyword on the speech transcript,
while the visual index uses a Lab color histogram to facilitate query-by-example, see
also Chapter 6. The stand-alone interface of the search engine is depicted in Fig. 7.5.

In contrast to the other prototypes, the MediaMill system uses a stand-alone
interface. Where for display of the videos DirectShow is used. The reason for these
choices are speed. The MediaMill system is developed for professional users who
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swiftly need to find their information. The professional users of the system typically
engage in an interactive session to retrieve the results they require. The system offers
three basic query interfaces to a video archive: query-by-concept, query-by-keyword,
and query-by-example. The set of concepts from the concept lexicon forms the basis
for query-by-concept. For search topics not covered by concepts in the lexicon, users
have to rely on a combination of query-by-keyword and query-by-example. Applying
query-by-keyword in isolation allows users to find specific topics, but only when they
are mentioned in the speech signal. Based on query-by-example shots that exhibit
a similar color distribution can augment results further. As indicated in Chapter 6,
this retrieval approach results in highly accurate semantic access to video archives.

7.5 Future Work

We present in this Chapter a general architecture for semantic video search engines,
with the aim to provide content owners with tailor made video retrieval technology.
It fulfills the need for automatic indexing, components for index-derived services, and
archive specific retrieval at a semantic level. Based on four prototype systems we high-
light different aspects of the general architecture. Goalgle focuses on statistics in the
form of detected highlight events in soccer archives. The News RePortal demonstrates
the summarizing capabilities of the general architecture on an archive of Dutch broad-
cast news. Our third prototype, Viper, offers users personalized delivery of American
broadcast news fragments based on learned profiles. Finally, the MediaMill system is
optimized for quickly querying broadcast news video archives. The prototypes demon-
strate that the proposed search engine architecture provides application-dependent
and tailor-made semantic accessibility to various broadcast video archives.

Despite the proven applicability of the general architecture, it still needs to be
extended in several ways before it can offer content owners a competitive advantage
over solutions by contemporary web search providers. The following elements of the
general architecture need enhancements:

• The indexing engine needs to be improved.

The semantic concepts form the basis for effective access to broadcast video
archives. Therefore, they need to be detected with high accuracy. In addition
to improved performance, the number of detectable concepts that provide the
semantic index needs to be extended. Once a large lexicon of reliably detected
concepts is available, more elaborate components for index derived services come
within reach.

• The personalization aspects deserve more attention.

We opine that from the four components for index-derived services, personaliza-
tion is the most interesting. Personalization requires dedicated user profiling.
More research is needed on user profiling for video search engines. When ade-
quate profiling techniques for broadcast video search engines are available, these
search engines will evolve from reactive to proactive systems, e.g. alerting users
when potentially interesting footage is encountered.
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• The search interface needs extension.

Currently the search interfaces are limited to web-based and stand-alone front-
ends. Given the possibilities and popularity of mobile devices, a user interface
for mobile devices should be included in the architecture as well. Then users
can access video archives when and where they want.

With these improvements the general architecture may increase access to broadcast
video archives. Our future work aims for the development of an integrated semantic
video search engine that offers a large set of reliable index-derived services, via several
search interfaces. With the ultimate aim for content owners and content users to mine
the treasure of multimedia material to their personal need.





Chapter 8
Conclusion

8.1 Summary of Contribution

This thesis makes a contribution to the field of multimedia understanding. Where our
ultimate aim is to structure the digital multimedia chaos by bridging the semantic
gap between computable data features on one end and the semantic interpretation
of the data by a user on the other end. We distinguish between produced and non-
produced multimedia or video documents. We depart from the view that a produced
video document is the result of an authoring-driven production process. This author-
ing process serves as a metaphor for machine-driven understanding. We present a
step-by-step extrapolation of this authoring metaphor for automatic multimedia un-
derstanding, see Fig. 8.1. While doing so, we cover in this thesis an extensive overview
of the field, a theoretical foundation for authoring-driven multimedia understanding,
state-of-the-art benchmark validation, and practical semantic video retrieval applica-
tions. Furthermore, it allows us to answer the four questions raised in Chapter 1. The
authoring-driven methodology for semantic multimedia indexing is the main contri-
bution of this thesis.

In Chapter 2 we lay the foundation for the authoring metaphor to machine un-
derstanding of multimedia. We propose a multimodal framework in which we view
a video document from the perspective of its author. Within the framework we con-
sider layout, content, and the semantic index as the significant components. Viewing
a video document as the result of an authoring process, allows for seamless integra-
tion of the visual, auditory, and textual modality. In addition, the framework forms
the guiding principle for identifying index types, for which automatic methods are
found in literature. It unifies and categorizes these different methods. Thus it serves
as a blueprint for a generic and flexible semantic video indexing system based on
multimodal analysis.

The usage of multiple modalities for semantic indexing poses problems with respect
to synchronization and inclusion of temporal context clues. To tackle this integration
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Chapter 7:
General Architecture for Semantic Video Search Engines
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Figure 8.1: Summary of the work addressed in this thesis, including main contributions and

achievements.

problem, we propose the Time Interval Multimedia Event (TIME) framework in Chap-
ter 3. The framework explicitly handles context and synchronization. In addition,
as the framework is based on statistics, it yields a robust approach for multimodal
integration. We focus on the problem of combining authoring elements, in the form of
content and layout segmentations, into a common analysis framework. We propose to
model layout and content segmentations as time intervals to overcome the limitations
of existing multimodal fusion approaches. This time interval representation allows
for proper inclusion of temporal context and synchronization. Furthermore, we show
that a number of statistical classifiers is applicable to the problem of semantic video
indexing based on the time interval pattern representation. To demonstrate the ef-
fectiveness of TIME it was evaluated on two domains, namely soccer and news. The
former was chosen because of its dependence on context. The latter because of its
dependence on synchronization. We have compared three statistical classifiers, with
varying complexity, and show that there exists a clear relation between narrowness
of the semantic gap and the complexity of the classifier needed. Moreover, we show
that the TIME framework, including synchronization and context, significantly out-
performs the ‘standard’ multimodal analysis approaches common in video indexing
literature.

Once we are able to properly fuse multimodal information sources, we are ready
to add the notion of style to the repertoire of multimedia understanding techniques
in Chapter 4. In addition to layout and content, we identify capture and context as
important aspects of the authors style. We propose a generic and flexible framework
for produced video indexing that is capable to learn rich semantic concepts from mul-
timodal sources based on style analysis, where rich semantics means that the author
exploits style in many ways. The framework allows for robust classification of several
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rich semantic concepts in produced video by using a fixed core of layout, content,
and capture detectors together with varying context detectors that are combined into
a statistical classifier ensemble. Results on 120 hours of video data from the 2003
TRECVID benchmark show that it is the combination of style elements that yields
the best results for produced video indexing. In addition, we demonstrate that the
accuracy of the proposed framework for classification of several rich semantic concepts
in broadcast news is state-of-the-art.

In Chapter 5 we elaborate further on the authoring-driven analysis methodol-
ogy. We propose a generic approach for semantic indexing, based on the authoring
metaphor, which we call the semantic value chain. To bridge the semantic gap, it
unifies our work addressed in Chapters 2, 3, and 4, and recent advances in the field of
multimedia understanding, into a common system architecture. The architecture is
built on several specialized detectors, multimodal analysis, hypothesis selection, and
machine learning. Furthermore, it covers the notions of content, style, and context.
The semantic value chain extracts semantic concepts from video documents based on
three consecutive analysis links, named the content link, the style link, and the con-
text link. We learn an optimal configuration of analysis links, on a per-concept basis,
to arrive at a technique taxonomy for semantic concept detectors. Experiments with
a lexicon of 32 concepts demonstrate that the semantic value chain allows for generic
video indexing. In addition, the semantic value chain is successfully evaluated within
the 2004 TRECVID benchmark as top performer for the semantic concept detection
task. The results show that the semantic value chain allows for generic indexing with
state-of-the-art performance.

The semantic gap dictates that only a limited lexicon of semantic concepts can
be learned automatically, thus eventually user involvement is essential. Therefore, we
focus on interactive multimedia retrieval in Chapter 6. We propose a lexicon-driven
retrieval paradigm for access to multimedia archives. The foundation of the paradigm
is formed by the lexicon of 32 semantic concepts, as detected in Chapter 5. Based on
this lexicon, query-by-concept offers users a semantic entrance to multimedia repos-
itories. In addition, users are provided with an entry in the form of similarity using
textual and visual examples. Interaction with the various query interfaces is handled
by a video search engine which provides feedback in the form of storyboard results.
The lexicon-driven paradigm combines learning, similarity, and interaction techniques
to bridge the semantic gap in multimedia retrieval. The paradigm is evaluated within
the interactive search task of the 2004 TRECVID video retrieval benchmark, using a
news archive of 184 hours. Experiments show that the lexicon-driven search paradigm
is highly effective for interactive multimedia retrieval. In addition, we demonstrate
that the paradigm yields top ranking performance when users have experience with
the concepts in the lexicon and their anticipated performance.

The technology developed in Chapters 3, 4, 5, and 6 naturally leads to the instanti-
ation of a semantic video search engine. In Chapter 7 we present a general architecture
for such a search engine, consisting of a broadcast video archive, an indexing engine,
components for index-derived services, and a search interface. We highlight several
aspects of the common architecture by means of four prototype systems, i.e. Goalgle,
News RePortal, Viper, and the MediaMill system.
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8.2 Directions for Future Research

The path for future research continues the step-by-step extrapolation of the authoring
metaphor. We envision our future research efforts as a three-stage rocket that is fueled
by an ontology, as illustrated in Fig. 8.2. The first stage focuses on strengthening the
semantic value chain, leading us from multimedia data to a large lexicon of semantic
concepts. When the limits of the semantic value chain are reached, we need to explore
how concepts cluster in conceptual space using concept similarities. Finally, in the
third stage we need to focus on enhancement of the interactive retrieval paradigm.
Let us now make the three stages for future research more precise.

The semantic value chain can be strengthened in several ways. A first direct
improvement of the semantic value chain is achieved by inclusion of better visual,
auditory, and textual content features. Secondly, advancement of detectors that are
capable to analyze more style elements will have its repercussions on semantic value
chain performance. Thirdly, a better representation of context, using an ontology, has
the potential to extend machine understanding of multimedia further. All of these
advancements should be integrated with developments in machine learning.

We foresee that a semantic value chain is able to detect a large lexicon of several
hundreds of concepts. Eventually, however, it will reach a boundary. Ideally, an
ontology is able to deduce new concepts beyond the ones detected by a semantic
value chain. Then the value of the large lexicon can be enriched further after the
concepts are interconnected in an ontology. How the ontology should be engineered is
an important research question, which recently drifted in a first direction [59]; taking
the view that included concepts should be useful from both a visual information
perspective and feasible in terms of semi-automatic detection. In the long run, the
ontology should extend the lexicon of detectable semantic concepts in multimedia
archives to a size that is competitive with human knowledge.

Tools that build on the ontology and the detected concepts should be able to
handle uncertainty, as automatic concept detection in multimedia is never perfect.
In this respect, clustering of video snippets in conceptual space may provide the
answer. We need to explore how to exploit similarity based on the detected concepts
in combination with its performance on training data. Potentially, this conceptual
similarity indexing may increase our insight in multimedia understanding.

An ontology of semantic concepts will have a dazzling impact on interactive re-
trieval also. Questions that need to be answered when an ontology is available are
related to the query interface. How to present the available ontology to a user? In
addition, how should the conceptual similarity space be visualized to a user of multi-
media archives? Apart from improved query-by-concept, there is also a need for bet-
ter data-driven query-by-similarity functionality. In the visual channel for example,
query-by-example needs to be extended from global image examples to regional image
examples. As the suggested enhancements for both query-by-concept and query-by-
similarity lead to a drastic increase in the number of possible query interfaces, we
anticipate that the largest innovation in interactive retrieval will come from inclusion
of expert user experience. One way to achieve this is by exploiting the concept de-
tection performance on training data in the video search engine. Search engines can
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Figure 8.2: We envision our future work on machine understanding of multimedia as a three-

stage rocket that is fueled by an ontology. It focuses on strengthening the semantic value chain,

inclusion of conceptual similarity indexing, and enhancing interactive retrieval.

make query interface suggestions based on this learned performance. When linked to
personal profiles the recommendations can be tailor-made. This will form the basis
for a powerful video search engine.

8.3 General Conclusion

At the end of this thesis we are ready to ask ourselves whether we have succeeded in
answering the fundamental question, i.e. how to bridge the semantic gap for produced
video? The step-by-step extrapolation of the authoring metaphor provides us with
an effective solution path.

Because different media streams yield different clues for recognition of semantics,
methods aiming to bridge the semantic gap for produced video are most likely to
succeed when they are multimodal instead of unimodal. Hence, for multimodal ap-
proaches the content features from the visual, auditory, and textual channels should
be integrated as early as possible to yield a truly multimedia feature representation.

Such early fusion schemes require synchronization of multimedia data. To that
end, its advisable to model the features as time intervals. This has the added advan-
tage that temporal context clues can be included easily. Once multimodal features are
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captured into an early fusion representation, semantic concepts should be learned by
a statistical method instead of a knowledge-based approach to assure high robustness.
At present, the preferred mode of operation for statistical pattern recognition from
early fused multimedia representations is supervised learning with a support vector
machine.

To detect concepts that have high variability in content, and high consistency in
style, the early fusion representation should be based on style detectors, i.e. layout,
content, capture, and context detectors. One achieves optimal results when a fixed
core of style detectors is iteratively updated with more context, in the form of detected
concepts. A classifier ensemble effectively combines the pool of (weak) style detectors,
essentially boosting the performance to new heights.

To arrive at a generic, opposed to ad hoc, approach for semantic concept detection
in produced video one should not focus on a single analysis method, i.e. content-based
or style-based only. Instead, one should automatically select the best of multiple
analysis combinations preferably on content, style, and context level. It increases the
effort needed in the analysis substantially, but it pays off.

A generic semantic indexing approach yields a lexicon of concepts. However, auto-
matic learning is not sufficient to cover the semantic gap completely. User interaction
is required. When combined with similarity, a powerful retrieval paradigm emerges.
It paves the road for video search engines offering novel index-derived services.

Methods that aim to bridge the semantic gap should demonstrate performance on
publicly available data sets, using well-known evaluation protocols. When researchers
join international benchmark evaluations such as TRECVID, both data sets and com-
mon performance metrics are easily obtainable. In return, it offers the multimedia
understanding community insight in the approach, while at the same time promoting
progress for all.

We followed the above solution path in our aim to bridge the semantic gap for
produced video. For automatic analysis it resulted in the semantic value chain in
Chapter 5. We reach a tentative endpoint in our endeavor to machine understanding
of multimedia when we combine the semantic value chain with the paradigm for
interactive multimedia retrieval, proposed in Chapter 6. To bridge the semantic gap,
a combination of automatic authoring-driven analysis and user interaction yields the
most effective approach.

However, the results should not be seen through rose-tinted spectacles. Our meth-
ods have state-of-the-art TRECVID benchmark performance, but the accuracy is still
far from perfect. Despite the yearly progress in the TRECVID program, the decisive
leap forward to cover the semantic gap is still to come. As a side step, we note that
the authoring metaphor for multimedia understanding is evaluated on two domains,
i.e. soccer and news, only.

To conclude, with the authoring metaphor we have advanced the field of multi-
media understanding with an effective methodology to narrow the semantic gap sub-
stantially. We are confident that an extended exploration along the trail we blazed,
in the form of future research, will structure the ubiquitous multimedia chaos further.



Appendix A
Style Detectors

In Chapters 4 and 5 we introduced and exploited the notion of style in multime-
dia analysis. In this Appendix we discuss the implementation of the various style
detectors. Each style detector uses an existing software implementation as a basis.
The output of a base detector is then aggregated and synchronized to a camera shot.
Based on the features computed for the entire shot, we categorize the style features
for each shot. Together these three components define a style detector. All style
detectors follow the basic architecture as visualized in Fig. A.1.
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Figure A.1: Basic architecture and data flow within a style detector.
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Figure A.2: Shot length detector, using the conventions of Fig. A.1.

A.1 Layout Detectors

Shot Length

An author uses variation in shot length to affect the overall rhythm of a produced
video. We determine shot length based on a camera shot segmentation obtained from
a camera shot detector [115]. For each shot the number of frames defines the shot
length. We categorize the shot length as short take if a shot contains less than 70
frames. We categorize it as medium take if it contains 70 to 300 frames. A shot
is categorized as long take if it contains 300 to 600 frames. In all other cases it is
classified as an extreme long take. Note that the thresholds are chosen based on a
frame rate of 29.97 frames per second. The shot length detector scheme is visualized
in Fig. A.2.

Overlayed Text

Overlayed text is added by the author at production time to provide the viewer with
additional descriptive information, e.g. annotation of people in broadcast news. Its
presence is an important indicator for layout style. We apply a video optical character
recognition system [125] to localize and extract overlayed text in a video frame. As
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Figure A.3: Overlayed text detector.
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I II III I

Camera Shots

Speech Segments

Silence Shots
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Frequent Speaker Shots

Figure A.4: Segmentation of a news video document into camera shots, speech segments with

speaker identifier, silence shots, voice over camera shots, and frequent speaker camera shots.

the output of such a system may contain errors, localization of a text region is not
sufficient. To increase robustness the system recognizes the text in the localized
regions. Then, we count the number of characters in recognized text strings. We
assume overlayed text is present in a shot only if one frame within the shot contains a
string of at least 5 characters, else we consider it absent. The overlayed text detector
scheme is visualized in Fig. A.3.

Silence

An author uses silence to mark transitions in the auditory layout. We detect non-
speech, or silence, based on automatic speech recognition results [47]. We first count
the time (in frames) between transcribed words. We consider a segment a silence if
the time difference between successive words exceeds 70 frames. This results for each
video in a silence segmentation. We need to combine the silence segmentation with a
camera shot segmentation to obtain a decision at camera shot level. For this purpose
we exploit the TIME relations proposed in Chapter 3. We ignore the NoRelation,
precedes and precedes i relations, as these are interesting for temporal context only.
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Figure A.5: Silence detector.
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The shot segmentation is considered the reference segmentation. We use a value of 10
frames for the margin T1. If a TIME relation between the shot segmentation and the
silence segmentation exists, we compute the number of frames the two segmentations
have in common. If this intersection exceeds 40% of the total number of frames in a
reference shot we consider a silence period present in the shot, else absent, see Fig. A.4
for an example. The silence detector scheme is visualized in Fig. A.5.

Voice Over

An author uses a voice over when the content of the video is not self-descriptive and
requires additional information, e.g. in sport broadcasts or documentaries. Voice
over detection is also based on the automatic speech recognition results from [47]. We
compare the speech segmentation with the shot segmentation. First, we count the
number of cuts in the corresponding time interval of the camera shot segmentation
Note that to account for imperfect segmentation, a margin of 25 frames is extracted
from each end of a speech segment before counting cuts. We consider a speech segment
a voice over segment when it contains more than 1 cut, this is illustrated in Fig. A.4.
To map the voice over segments to camera shots we use the same TIME relations as
above. But, for T1 we now use a value of 25 frames. If a TIME relation between a
camera shot and a voice over segment exists we consider a voice over present in the
shot, else absent. The voice over detector scheme is visualized in Fig. A.6.

A.2 Content Detectors

Faces

Human beings are a prominent content element in produced video. To detect presence
of people we apply the face detector of [130]. For each analyzed frame in a camera
shot we count the number of faces present. We consider multiple faces present in
the shot if at least two faces are detected simultaneously in 20% of the frames, else
absent. The faces detector scheme is visualized in Fig. A.7.
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Figure A.7: Faces detector.

Face Location

Since people are important in produced video an author takes great care in filming
them, i.e. to make sure they are in the right position. For the location of a detected
face we divide an image frame into four equally sized regions: bottomleft, topleft,
bottomright, and topright. If a face falls completely within one of these four regions
the feature for that region is set. If a face covers parts of the bottomleft and topleft
part of the image we set the left location feature. The right location feature works
in a similar fashion. If a face can not be fitted into one of these locations the center
location feature is set, this is illustrated in Fig. A.8. Note that we do not distinguish
between top and bottom and that the larger the face the more likely its location is
classified as center. This results in a total of seven face location features per detected
face in a frame, initially all set to absent. We sum the value of all features for all
detected faces in a camera shot. To aggregate the frame based face features into a
camera shot, we require that a feature is true for 20% of the analyzed frames in a
camera shot. If this is the case the feature is set as present. The face location detector

A

B

C

Figure A.8: Left: an image frame with three detected faces, face A is located topleft, face B

is located center, and face C is located right. Right: two example image frames with detected

faces.
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Figure A.9: Face location detector.

scheme is visualized in Fig. A.9.

Frequent Speaker

Another clue for presence of people is their speech. We use the speaker identification
results from an automatic speech recognition system [47]. The system provides an
identifier for each recognized speaker per analyzed video. Because the identifiers are
unique for a single video document only, the recognized speakers do not scale to an
entire archive. Moreover, because performance of speaker identification degrades when
a large number of speakers appear in a video we do not trust blindly on the results.
To accommodate for both issues we determine the three most frequent speakers per
video document. Again, we refer to Fig. A.4 for an example. First, we identify the
three most frequent speakers. All speech segments that are uttered by one of these
frequent speakers are then mapped to camera shots using TIME relations. As before,
if a relation exists between these two segmentations we consider a frequent speaker
present in the shot, else absent. The frequent speaker detector scheme is visualized
in Fig. A.10.
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Figure A.10: Frequent speaker detector.
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Figure A.11: Car detector.

Cars

Numerous objects appear in the content of produced video. Unfortunately, most
object detectors are limited to detection of specific instances only. In our experiments
we apply a car detector [130] on individual frames. This detector associates with each
detected car in a frame a confidence value from 100 to 400. We consider a car detected
in a frame if it has a confidence ≥ 170. We consider it present in the entire shot if one
analyzed frame within a shot contains a detected car, else absent. The cars detector
scheme is visualized in Fig. A.11.

Object Motion

Specific object detectors help when you know what to look for. If not, presence of
object motion is the best one can hope for. We estimate the amount of motion in
a camera shot by spatiotemporal image analysis [74]. We apply a Hanning filter on
the x and y projection of a camera shot. This results in a background estimation of
the projection. Then we use the projection and the filtered projection to compute
the signal energy. We distinguish between three classes of motion based on the signal
energy. If the signal energy in a shot has a value below 2 we consider it to be
representative for low object motion. If the signal energy ranges from 2 to 80 we
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134 Appendix A. Style Detectors

Video Optical
Character

Recognition

C
o

u
n

t
C

h
a

ra
c
te

rs

C
a

te
g
o

riz
a

tio
n

Overlayed Text Length
Short

Normal{
Long

Absent

Figure A.13: Overlayed text length detector.

consider it medium object motion. In all other cases we consider the shot to contain a
high amount of motion. The object motion detector scheme is visualized in Fig. A.12.

Overlayed Text Length

Whereas presence of overlayed text is an important indicator for layout style, the
length of the recognized overlayed text string tells us something about its intended
usage. Names for example are usually short. In contrast, product disclaimers in
commercials are usually long. We apply video optical character recognition [125] to
recognize overlayed text. We categorize the overlayed text length based on the number
of recognized characters. We consider the string to be absent if less than 5 characters
are recognized. This reduces the influence of false positives. We classify the recognized
string as short if it contains 5 to 20 characters. It is classified as normal if it contains
20 to 40 characters. In all other cases it is classified as long. The overlayed text length
detector scheme is visualized in Fig. A.13.

Video Text Named Entity

Besides the length of recognized overlayed text strings, it is interesting to know the
type of annotation, e.g. is it a name of someone who is interviewed or a city scene of
some known location. To obtain this information we rely on named entity recognition.
Named entity recognition is known from the field of computational linguistics. Given
a word, a named entity recognizer classifies it into one of eight categories: person,
location, organization, date, time, percentage, monetary value, or none of the above.
For our experiments we use a named entity recognizer based on [19], which is described
in [170]. Every string recognized by video optical character recognition is input for
the named entity recognizer. We distinguish four classes of named entities: none,
person, location, and others. Every recognized string is checked for presence of one or
more of the named entity types. To aggregate the string based classification to shot
level, every string that falls within the boundary of a shot is analyzed for presence of
named entities. This results in four features who are initially set to absent. If one of
the strings in the shot contain one of the four named entities, the respective feature is
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Figure A.14: Video text named entity detector.

set to present for the shot. The video text named entity detector scheme is visualized
in Fig. A.14.

Voice Named Entity

Similar to video text named entity, we also apply named entity recognition on the
transcribed speech obtained from [47]. In contrast to video text named entity, we now
classify each word as one of the eight named entities. We consider more named entity
types because the textual output of automatic speech recognition is more reliable then
the results from video optical character recognition. For each camera shot we define
eight features, initially set to absent. When one of the words that is uttered during
a shot belongs to one of the eight named entity types, the respective feature is set to
present. The voice named entity detector scheme is visualized in Fig. A.15.
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Figure A.15: Voice named entity detector.
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Figure A.16: Positive and negative keyword detection.

Positive and Negative Keywords

The transcribed speech is also analyzed to learn positively correlated and negatively
correlated keywords. First we relate all uttered words to a camera shot segmentation.
We then remove frequently occurring stopwords using SMART’s English stoplist [123].
Given a set of annotated shots containing a certain concept. We learn a list of words
that are uttered during these shots. The rationale is that these words probably have
a positive relation with the concept under consideration. In a similar fashion we learn
a list of words that have a negative relation, by taking all shots that do not have the
annotation with the concepts. For unseen data we also relate the uttered words to a
camera shot segmentation and remove the stopwords. The remaining words per shot
are then compared to the positive word list and the negative word list. Based on the
fraction of either positive or negative words in the shot we label a shot as positively
correlated, negatively correlated, or undecided. The positive and negative keywords
detector scheme is visualized in Fig. A.16.

A.3 Capture Detectors

Camera Distance

As an estimate for the camera distance we use a frame/face ratio proposed in [139].
The ratio relates the width of detected faces to the width of the frame. We compute
the face width from faces detected with a face detector [130]. Based on the frame/face
ratio we distinguish seven camera distance features: extreme long shot, long shot,
medium long shot, medium shot, medium close up, close up, and extreme close up.
For every detected face we determine the camera distance. To obtain a decision at
shot level we aggregate all camera distances per analyzed frame. If a camera distance
is present in 20% of the analyzed frames we consider this distance present in the
shot also. When no face is detected in a single frame of a camera shot the camera
distance is set to absent for all features. In this case, we consider the camera distance
unknown. The camera distance detector scheme is visualized in Fig. A.17.
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Figure A.17: Camera distance detector.

Camera Work

Several kinds of camera work exist, each creating its own specific effect, see Fig. A.18.
For computation of camera work we use an algorithm based on the one reported
in [74,151]. Within a camera shot, the algorithm classifies all frames as belonging to
one of six types of camera work: static, pan, tilt, pan and tilt, zoom, and unknown. To
aggregate the frame-based classification to a decision at shot level, we first determine
the fraction of frames in the shot that are assigned to one of the six types of camera
work. Initially all types of camera work are set as absent. The static camera feature
for the entire shot is set as present, if 90% of the frames in the shot are labeled as
static. Each of the other five types of camera work is set as present if 10% of the
frames in the shot are labeled with the respective operation. The rationale here is
that, in general, a camera doesn’t move for the entire duration of the shot. Hence, a
small fraction of camera work is enough evidence to detect its presence. The camera

Pan

Zoom

Tilt

Boom

Track

Dolly

Figure A.18: Several types of camera work, adapted from [151].
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Figure A.19: Camera work detector.

work detector scheme is visualized in Fig. A.19.

Camera Motion

Besides the detection of type of camera work, the above algorithm also indicates the
amount of motion that is attached to the camera operation used. We use this camera
motion as a feature. For each shot the average amount of camera motion is checked.
If the value is below 0.1 we consider camera motion low in the shot. If the camera
motion ranges from 0.1 to 10 we set the camera motion feature to medium. In all
other cases the camera motion is set to high. The camera motion detector scheme is
visualized in Fig. A.20.

A.4 Context Detectors

Commercial

Commercials are added by an author in between broadcasts of programs. In general,
viewers interpret commercials as interruptions. As a result we assume that most peo-
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Figure A.20: Camera motion detector.
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Figure A.21: Commercial detector.

ple are not interested in them. We detect commercials to prevent a false classification
of news related content in commercials. We apply the commercial detector proposed
in [60]. It labels key frames as a commercial or not. The output is aligned with the
camera shot segmentation. The commercial detector scheme is visualized in Fig. A.21.

News Anchor

In broadcast news an author adds a news anchor to summarize the news and to
connect news stories. The visual content of shots containing anchors is not very
interesting. However, because anchors speak on a large number of topics there textual
content may trigger a lot of false positive classifications of other concepts. To prevent
this misclassification we apply a news anchor detector [60]. It labels key frames as a
news anchor or not. The output is aligned with the camera shot segmentation. The
news anchor detector scheme is visualized in Fig. A.22.

News Reporter

Similar to news anchors, news reporters also occur frequently in broadcast news.
Again, the visual content of shots containing news reporters is usually of limited
interest. To prevent misclassification of shots containing news reporters we apply
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Figure A.22: News anchor detector.
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Figure A.23: News reporter detector.

a news reporter detector. It compares each recognized overlayed text string with a
database of learned CNN and ABC affiliates. Since results of video optical character
recognition contain errors we use the edit distance for comparison. If a match is found
during a shot, we label it as a news reporter shot. The news reporter detector scheme
is visualized in Fig. A.23.
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Samenvatting∗

Dit proefschrift levert een bijdrage aan het vakgebied dat zich bezighoudt met het
automatisch begrijpen van multimedia, hier verder multimedia-leren genoemd. Ons
ultieme doel is het structuren van de multimedia-chaos door de semantische kloof te
overbruggen tussen berekenbare data-eigenschappen enerzijds en de semantische in-
terpretatie van deze data door een gebruiker anderzijds. We maken daartoe eerst een
onderscheid tussen geproduceerde en ongeproduceerde multimedia, in het bijzonder
videodocumenten. We gaan uit van de aanname dat een geproduceerde video het re-
sultaat is van een auteursgedreven productieproces. Dit proces dient als een metafoor
voor multimedia-leren. We presenteren een geleidelijke uitwerking van deze metafoor
voor multimedia-leren. In deze uitwerking geven we een uitgebreid overzicht van het
veld, een theoretische grondslag voor multimedia-leren, state-of-the-art benchmark
validatie en praktische toepassingen voor het semantisch ontsluiten van video. De
auteursgedreven methodologie voor het semantisch indexeren van multimedia is de
voornaamste bijdrage van dit proefschrift.

In Hoofdstuk 2 leggen we de basis voor de auteursmetafoor. We introduceren een
multimediaal raamwerk waarbij we een videodocument bezien vanuit het perspectief
van de auteur. Binnen het raamwerk beschouwen we lay-out, inhoud en de semanti-
sche index als de significante componenten. Door een videodocument te zien als het
resultaat van een auteursproces zijn we in staat om de visuele, auditieve en tekstuele
media consistent te integreren. Bovendien vormt het raamwerk het leidende principe
voor het identificeren van indextypen waarvoor automatische methoden in de litera-
tuur bestaan. Het raamwerk verenigt en categoriseert deze methoden en dient als
een blauwdruk voor een generiek en flexibel semantisch video-indexeersysteem dat is
gebaseerd op multimediale analyse.

Het gebruik van meerdere typen media voor semantisch indexeren vormt een pro-
bleem met betrekking tot synchronisatie en integratie van temporele contextaanwij-
zingen. Om dit integratieprobleem aan te pakken, introduceren we in Hoofdstuk 3
het Time Interval Multimedia Event (TIME) raamwerk. Het raamwerk gaat expliciet
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om met context en synchronisatie en omdat het raamwerk gebaseerd is op statistiek
resulteert het in een robuuste methode voor multimediale integratie. We focusseren
op het probleem van het combineren van auteurselementen, in de vorm van inhoud en
lay-out segmentaties, in een algemeen analyseraamwerk. We modelleren deze lay-out-
en inhoudsegmentaties als tijdsintervallen om de beperkingen van bestaande metho-
den voor media-integratie te overwinnen. De tijdsintervalrepresentatie stelt ons in
staat om de integratie van temporele context en synchronisatie op een juiste manier
af te handelen. Daarnaast laten we zien dat een aantal statistische classificatoren toe-
pasbaar zijn voor het semantisch indexeren van video gebaseerd op een tijdsinterval
patroonrepresentatie. Om de effectiviteit van TIME aan te tonen is het geëvalueerd
op twee domeinen, te weten voetbal en nieuws. Het domein voetbal is gekozen om zijn
afhankelijkheid van context. Het domein nieuws is gekozen om zijn afhankelijkheid
van synchronisatie. We hebben drie statistische classificatoren, met variërende com-
plexiteit, vergeleken en hebben aangetoond dat er een duidelijke relatie bestaat tussen
de engte van de semantische kloof en de complexiteit van de benodigde classificator.
Bovendien, hebben we laten zien dat het TIME raamwerk, inclusief synchronisatie
en context, significant betere resultaten behaald dan de in de literatuur voorkomende
‘standaardmethoden’ voor multimediale analyse.

Zodra we in staat zijn om multimediale informatiebronnen correct te fuseren, zijn
we in Hoofdstuk 4 klaar om de notie van stijl toe te voegen aan het repertoire van
multimedia-leren. Naast lay-out en inhoud, identificeren we opname en context als
belangrijke aspecten van de auteursstijl. We beschrijven een generiek en flexibel
raamwerk voor geproduceerde video dat in staat is om rijke semantische concepten te
filteren uit multimediale bronnen gebaseerd op stijlanalyse. Met rijke semantiek be-
doelen we dat stijl in vele opzichten benut wordt door de auteur. Het raamwerk stelt
ons in staat om verscheidene rijke semantische concepten in geproduceerde video te
classificeren. We maken daartoe gebruik van een vaste kern van lay-out-, inhoud- en
opname-detectoren samen met variërende context-detectoren die gecombineerd wor-
den in een ensemble van statistische classificatoren. Resultaten op 120 uur videodata
van de TRECVID 2003 benchmark laten zien dat het de combinatie van stijlele-
menten is die het beste resultaat geeft voor het indexeren van geproduceerde video.
Bovendien demonstreren we dat de accuraatheid van het voorgestelde raamwerk voor
classificatie van verscheidene rijke semantische concepten state-of-the-art is.

In Hoofdstuk 5 weiden we verder uit over de auteursgedreven analysemethodolo-
gie. We introduceren een generieke methode voor semantisch indexeren, gebaseerd op
de auteursmetafoor, die we de semantische waardeketen noemen. Om de semantische
kloof te overbruggen verenigt de keten ons werk van Hoofdstuk 2, 3 en 4 met recente
ontwikkelingen in het vakgebied, in een algemene systeemarchitectuur. De architec-
tuur is gebouwd op verschillende gespecialiseerde detectoren, multimediale analyse,
hypothese selectie en automatisch leren en bovendien omvat het de noties van inhoud,
stijl en context. De semantische waardeketen extraheert semantische concepten van-
uit videodocumenten door drie opeenvolgende analyseschakels te doorlopen, genaamd:
de inhoudschakel, de stijlschakel en de contextschakel. De semantische waardeketen
bepaalt automatisch per concept een optimale configuratie van analyseschakels en op
basis hiervan komen we tot een techniektaxonomie voor detectoren van semantische
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concepten. Experimenten met een lexicon van 32 semantische concepten demonstreren
dat de semantische waardeketen in staat is om op generieke wijze video te indexeren.
Daarnaast is de semantische waardeketen succesvol geëvalueerd binnen de TRECVID
2004 benchmark als beste performer voor de semantische concept-detectietaak. De
resultaten laten zien dat de semantische waardeketen in staat is om generiek te in-
dexeren met state-of-the-art performance.

De semantische kloof dicteert dat slechts een beperkt lexicon van semantische
concepten automatisch geleerd kan worden, dus uiteindelijk is betrokkenheid van de
gebruiker essentieel. Daarom focusseren we in Hoofdstuk 6 op interactieve ontslui-
ting van multimedia. We presenteren een paradigma voor lexicongedreven ontsluiting
om multimedia-archieven toegankelijk te maken. Het fundament van het paradigma
wordt gevormd door het lexicon van 32 semantische concepten, zoals gedetecteerd in
Hoofdstuk 5. Gebaseerd op dit lexicon, wordt gebruikers semantische toegang tot
multimedia-archieven geboden in de vorm van zoekmogelijkheden op een conceptueel
niveau. Daarnaast wordt gebruikers een entree geboden in de vorm van similariteit,
door gebruik te maken van tekstuele en visuele voorbeelden. Interactie met de ver-
schillende zoekinterfaces wordt afgehandeld door een video zoekmachine, die feedback
geeft in de vorm van storyboard resultaten. Het lexicongedreven paradigma combi-
neert leren, similariteit en interactietechnieken om de semantische kloof in multimedia
ontsluiting te overbruggen. Het paradigma is geëvalueerd binnen de interactieve zoek-
taak van de TRECVID 2004 benchmark, gebruikmakend van een archief van 184 uur
aan nieuwsuitzendingen. Uit de experimenten blijkt dat het lexicongedreven zoekpa-
radigma hoogst effectief is voor interactieve ontsluiting van multimedia. Daarnaast
demonstreren we dat het paradigma resulteert in de best mogelijke zoekresultaten
wanneer gebruikers kennis hebben van de concepten in het lexicon en hun te verwach-
ten performance.

De in Hoofdstukken 3, 4, 5 en 6 ontwikkelde technologie leidt vanzelfsprekend naar
de concretisering van semantische zoekmachines voor video. In Hoofdstuk 7 presen-
teren we een algemene architectuur voor een dergelijke zoekmachine, die bestaat uit
een archief van televisie-uitzendingen, een indexeermachine, componenten voor index
afgeleidde diensten en een zoekinterface. We leggen de nadruk op verscheidene aspec-
ten van de algemene architectuur door middel van vier prototypesystemen: Goalgle,
News RePortal, Viper en het MediaMill systeem.

Aan het eind van dit proefschrift zijn we klaar om onszelf af te vragen of we
geslaagd zijn in het beantwoorden van de fundamentele vraag: hoe de semantische
kloof te overbruggen voor geproduceerde video? De geleidelijke uitwerking van de
auteursmetafoor levert ons een effectief oplossingspad. Voor automatische analyse
resulteert het in de semantische waardeketen, gepresenteerd in Hoofdstuk 5. We be-
reiken een voorlopig eindpunt in onze zoektocht naar multimedia-leren wanneer we
de semantische waardeketen combineren met het paradigma voor interactieve multi-
media ontsluiting in Hoofdstuk 6. Een combinatie van automatische auteursgedreven
analyse en gebruikersinteractie, resulteert in de meest effectieve benadering om de
semantische kloof te overbruggen.

Concluderend: met de auteursmetafoor hebben we het vakgebied voor automa-
tisch begrijpen van multimedia vooruit gestuwd met een effectieve methodologie die
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de semantische kloof substantieel nauwer maakt. We zijn vol vertrouwen dat een
verlengde verkenning langs de door ons ingeslagen weg, in de vorm van toekomstig
onderzoek, de alom aanwezige multimedia-chaos verder zal structureren.
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was immers door de wekelijkse één-op-één sessies al voorgeprogrammeerd: “Draai
het om!”. Marcel, mede door je professionele begeleiding en prettige manier van
samenwerken is het reisverslag voltooid, waarvoor mijn hartelijke dank.

Tegen het einde van de reis mocht ik nog even met promotor Arnold op pad. Het
werd een dollemansrit langs de richel van de semantische kloof. Arnold leerde me
op de valreep (nog) beter kijken, luisteren en schrijven. Het is een geruststellende
gedachte om te beseffen dat er ook na deze zoektocht nog veel te leren valt. Arnold,
bedankt voor de inspiratie, de schrijflessen en het faciliteren van de reis.

Besides the figurative journey, there was also a literal trip. I am grateful to Howard
for giving me the opportunity to be part of the Informedia team at Carnegie Mellon
University. Thanks to Alex’s supervision the period in the USA has been an eye
opener; not only for what can be achieved, but also for what can not. In that sense it
forms a landmark in my PhD process. I would like to thank all the Informedia folks
for their hospitality, assistance, and the many delicious pizza’s. Moreover, I thank
the team for the generous permission to use their ibox software after my return to
Amsterdam. Special thanks go to Pinar and Dorbin for the evenings out and the
Pittsburgh tours. I hope we will meet again someday soon.

Met medereizigers en ISIS collegae is het behalve gezellig keuvelen en koffiedrinken
ook uitstekend samenwerken. Ik ben veel dank verschuldigd aan Jeroen V. voor het
delen van zijn kennis en kunde betreffende video-analyse. Ook Jan-Mark, voor de
complexere beeldbewerking, en Frank S., voor de razendsnelle verwerking daarvan,

†Acknowledgements, mostly in Dutch.

165



166 Dankwoord

hebben een belangrijk steentje bijgedragen. Dennis verdient een eervolle vermelding.
Naast vaste waarde aan de koffietafel, heeft hij ook een substantiële invloed gehad
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