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Visual-Concept  
Search Solved?

Interpreting the visual signal 
that enters the brain is an 
amazingly complex task, 
deeply rooted in life experi-

ence. Approximately half the brain 
is engaged in assigning a meaning to 
the incoming image, starting with the 
categorization of all visual concepts 
in the scene (S.E. Palmer, Vision Sci-
ence: Photons to Phenomenology, MIT 
Press, 1999). 

Nevertheless, during the past five 
years, the field of computer vision has 
made considerable progress. It has 
done so not on the basis of precise 
modeling of all encountered objects 
and scenes—that task would be too 
complex and exhaustive to execute—
but on the basis of combining rich, 
sensory-invariant descriptions of all 
patches in the scene into seman-
tic classes learned from a limited 
number of examples.

Research has reached the point 
where one part of the community 
suggests visual search is practically 
solved and progress has only been 
incremental (T.-S. Chua, “Towards 
the Next Plateau: Innovative Multi-
media Research beyond TRECVID,” 
Proc. 15th Int’l Conf. Multimedia, ACM 
Press, 2007, p. 1054), while another 
part argues that current solutions are 
weak and generalize poorly (J. Yang 
and A.G. Hauptmann, “(Un)Reliabil-
ity of Video Concept Detection,” Proc. 

Int’l Conf. Image and Video Retrieval, 
ACM Press, 2008, pp. 85-94). We’ve 
done an experiment to shed light on 
the issue.

BRIDGING THE  
SEMANTIC GAP

The genera l visual-retrieva l 
problem is rooted in the seman-
tic gap: the lack of correspondence 
between the low-level features that 
machines extract from a visual signal 
and a human’s high-level concep-
tual interpretations. Researchers 
have proposed many solutions to 
bridge the gap—for example, by 
using text, speech, tags, or example 
images. However, the most cognitive 
approach is to type a concept from 
visual information and retrieve the 
images carrying that (automatically 
detected) concept, as Figure 1 shows. 

The first step is to extract from an 
image locally measured features—lots 
of them, ranging from 40 to 100,000. 
The features are invariant descriptors 
that cancel out accidental circum-
stances of the recording caused by 
differences in lighting, viewpoint, or 
scale. To capture the world’s complex-
ity, many texture, shape, and color 
descriptors must be extracted.

The second step is to project the 
descriptors per pixel onto one of 
4,000 words. These aren’t real words, 
but rather summarizations of one 

local patch of the image describing 
a single detail: a corner, texture, or 
point. Researchers initially only sum-
marized the image at the most salient 
points, but it now appears that full-
density descriptions are superior.

In the third step, a machine-
learning algorithm converts the 
visual words into one of the seman-
tic concepts. In fact, it assigns a 
probability to all of the concepts 
simultaneously. These probabilities 
are used to rank images in terms of 
concept presence.

Researchers train the algorithm 
with the help of manually labeled 
examples. Because there are far more 
negative examples than positive ones, 
they intensively compute the optimal 
machine-learning parameters using 
grids and GPUs.

Detecting an object such as the 
American flag is relatively simple if 
the variance in sensory conditions 
such as illumination and shading 
can be accounted for—the flag always 
shows the same colors and color tran-
sitions. Note that a geometrical model 
of a flag would almost always fail, 
as flags rarely appear like straight 
squares. Detecting a walking person 
from one image requires a richness 
of poses learned from a labeled set. 
Snow is even harder to detect because 
it’s white and texture-free and may 
assume all sorts of shapes.

Progress in visual-concept search suggests that machine 
understanding of images is within reach.
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Remarkably, although none of the 
features in current detection methods 
is specific to any of the concepts, the 
technique can still detect any of them 
with sufficient success.

SEARCH ENGINE 
BENCHMARKS

Crucial drivers for progress in 
visual-concept search are interna-
tional search engine benchmarks 
such as ImageCLEF (Cross-Language 
Evaluation Forum), Pascal VOC 
(Visual Object Classes), PETS (Per-
formance Evaluation of Tracking 
and Surveillance), and VACE (Video 
Analysis and Content Extraction). 
However, thus far the National Insti-
tute of Standards and Technology 
TRECVID (TREC Video Retrieval) 
benchmark has played the most sig-
nificant role.

TRECVID aims to promote progress 
in content-based retrieval from digital 
video via open, metrics-based evalu-
ation. With the support of 70 teams 
from academia and industry, includ-
ing the University of Oxford, Tsinghua 
University, and IBM Research, it has 

become the de facto standard for 
evaluating visual-retrieval research. 
TRECVID has been an important 
driver for the community in sharing 
resources to validate visual-search 
experiments, most notably the 
manual annotations provided by the 
Large-Scale Concept Ontology for 
Multimedia (LSCOM).

Benchmarks’ open character 
ensures the rapid convergence 
of ef fect ive concept-detect ion 
approaches. However, their reliance 
on relatively homogeneous train-
ing and test data has also prompted 
critics to suggest that overfitting 
has contributed to recent positive 
results. Given the community effort 
to push the envelope, it’s fair to 
question the progress of visual-con-
cept search.

MEASURING PROGRESS
We assessed image-categorization 

progress by comparing a state-of-the-
art search engine from 2006 (C.G.M. 
Snoek et al., “The Challenge Prob-
lem for Automated Detection of 101 
Semantic Concepts in Multimedia,” 

Proc. 14th Ann. ACM Int’l Conf. Multi-
media, ACM Press, 2006, pp. 421-430) 
with one from 2009 (C.G.M. Snoek et 
al., “The MediaMill TRECVID 2009 
Semantic Video Search Engine,” Proc. 
7th TRECVID Workshop, NIST, 2009, 
www-nlpir.nist.gov/projects/tvpubs/
tv9.papers/mediamill.pdf). 

We used four mixtures of two 
broadcast video data sets obtained 
from the 2005 and 2007 TRECVID 
video-retrieval benchmarks. The 
first data set was from the MediaMill 
Challenge and included 85 hours of 
shot-segmented news video from 
China, Lebanon, and the US; the 
second was the training set of the 
TRECVID 2007 benchmark and con-
tained 56 hours of shot-segmented 
Dutch documentary video. We sep-
arated both video data sets into an 
independent training (70 percent) and 
test (30 percent) set.

In our experiment, we used the 
two search engines to detect the 
most common visual concepts in the 
literature—namely, the 36 defined in 
LSCOM, as labeled manually for both 
data sets. We took into account both 
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Figure 1. General scheme for detecting visual concepts in images, with three typical concepts highlighted. First, researchers project 
extracted image features into visual words. Then they train concept models from both the visual words and the concept labels using 
machine learning. Finally, during testing, researchers assign concept probabilities to previously unlabeled images.
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our experiment shows that progress 
is substantial on both counts.

P rogress may be greater than 
expected, but it doesn’t imply 
that the general problem of 

visual search is solved. Our experi-
ment used only 36 concepts, whereas 
broad visual search would require 
thousands of detectors approach-
ing the vocabulary of a common 
user. Nevertheless, we believe that 
broad categorization, as the first 
step toward semantic interpretation 
of images, is within reach. 

the situation where the training set 
data was visually similar to the test-
ing set, and that where the training 
set data visually differed from the set 
used for testing (www.mediamill.nl/
progress).

As Figure 2 shows, search engine 
performance doubled in just three 
years. For learned concepts, detec-
tion rates degenerated when applied 
to data of a different origin yet still 
doubled in three years. Thus, con-
trary to the widespread belief that 
visual-search progress is incremen-
tal and detectors generalize poorly, 
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Figure 2. Visual-search progress as evaluated on 36 concept detectors (•) derived from broadcast video data using state-of-the-art search 
engines from 2006 and 2009. The figure highlights performance for three typical concepts. The top of the skewed bar indicates the 
maximum average performance by training on similar examples, and the bottom indicates the minimum performance when training 
on a data set of completely different origin. A mean average precision score of 0.25 (dotted line) is generally accepted to be sufficient 
for interactive search. The horizontal dashed line represents Google’s text-search performance. Contrary to belief in the community, 
progress in visual search is substantial and visual-concept search is quickly maturing in robustness for real-world usage of any concept. 

Editor: Naren Ramakrishnan, Dept. of 
Computer Science, Virginia Tech, Blacksburg, 
VA; naren@cs.vt.edu


