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Why do we need stuctured representations?

Q DeepMind

Player has to navigate a maze with multiple rooms in order to find the goal.



What about Zero-Shot Transfer?

B ID
B Zero-Shot Transfer

A3C
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Average reward signal on DeepMind Lab

How to represent the world around us robustly?
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DARLA: Improving Zero-Shot Transfer in Reinforcement Learning [Higgins et al. 2017]



Representation Learning from Pixels
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Binding Problem in Distributed Representation
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Figure: Greff et al. (2020)



Binding Problem in Distributed Representation

red b) - red

@ oreen
yellow

@ -cpple
pear

Figure: Greff et al. (2020)



Binding Problem in Distributed Representation

red

@ oreen
yellow

B @ opple
pear

Figure: Greff et al. (2020)



Representation Learning from Pixels

Single vector Dense grid of features
?

What if we can learn representations that are structured similarly to the original scene?
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Do we need structured representations if we have scale?

An image showing 12 plain tea cups from the same set, all
identical in style and design.

Here is the updated image showing exactly 12 plain tea cups, all identical in design and style.

Let me know if there's anything else you'd like adjusted!



How humans structure information about scene?

We group:
* regions that are largely independent of their context

* regions that exhibit strong internal predictive structure

Objects are good candidates for both!
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Objects are building blocks of the visual scene?

® |[nstance segmentation and tracking
® \isual reasoning and planning

e Combinatorial generalization



Unsurevised Object-Centric Representations
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Object-centric
representations

e Different objects are represented
by different vectors

® Those vectors are grounded on
particular image segments

® Trained end-to-end with
architectural inductive biases
and self-supervision objectives
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nsupervised Representation Learning

Image Encoder Decoder  Reconstruction
o s
Latent
representation
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Object-Centric Representation Learning
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Object-Centric Representation Learning
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Object-Centric Representation Learning

Self-supervised
Encoder Decoder targets
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Scene Decomposition Into Objects

Segregation  Representation

Dynamic Information Binding

Unstructured Input

® Dense pixels / features should be separated into discrete set of
vectors or slots

® Routing problem: which vector is responsible for which object?
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Figure: Greff et al. (2020)



Different Ways to Decompose

Sequential Slots Spatial Slots Instance Slots

Encoder inductive biases could be categorised in terms of
encoder outputs named s/ots:

® Sequential slots = ordered sequence of vectors
e Spatial slots — sparse grid of vectors

® |[nstance slots — permutation-invariant set of vectors

18
Figure: Greff et al. (2020)



Different Ways to Decompose

Sequential Slots Spatial Slots Instance Slots

AIR [Eslami et al., 2016] SPAIR [Crawford & Pineau, 2019]
SA [Locatello el al., 2020]
SQAIR [Kosiorek et al, 2018] SPACE [Lin et al., 2020]
DINOSAUR [Seitzer el al., 2023]
MONet [Burgess et al., 2019] SCALOR [Jiang et al., 2020]

19
Figure: Greff et al. (2020)



Instance Slots: Slot Attention Encoder

k, v ATTENTION:

SLOTS COMPETE
FOR INPUT KEYS

FEATURE MAPS
+ POSITION EMB.

Instance Slots

Slot Attention Pseudocode

# inputs: feature maps + position embedding
slots ~ normal (mean, std)
for t =0 .. T:

scores = dot(k(inputs), g(slots))

updates = weighted mean (weights, v (inputs))

slots = gru(slots, updates) # GRU update

= Object-Centric Learning with Slot Attention [Locatello et al.]



Instance Slots: Slot Attention Training

Instance Slots

k, v ATTENTION:

SLOTS COMPETE
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—
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Object-Centric Learning with Slot Attention [Locatello et al.]



Instance Slots: Slot Attention Results

Instance Slots

Image Recon.

Object-Centric Learning with Slot Attention [Locatello et al.]



Discovering Object-Centric Structure
from the Real-World Video Data



Object-Centric Learning for Real-World Data

Slot Attention Ground Truth

Image reconstruction as the target is not enough for grouping real-world scenes



Self-supervised Object-Centric Objectives

Semantics Motion ldentity
Reconstruction Prediction Preservation




Self-supervised Object-Centric Objectives

Semantics Motion Identity
Reconstruction Prediction Preservation

DINOSAUR VideoSAUR SlotContrast
[Seitzer el al., 2023] [Zadaianchuk et al., 2023] [Manasyan et al., 2024]



Self-supervised Semantic Features

Emerging Properties in Self-Supervised Vision Transformers [Caron el al.]



Self-supervised Semantic Features

XYWL1L40S

Cross

Entropy

d31LN3D
XYW1l40S

Multi-crop augmentations strategy:

many small crops for student &
28 larger crop for teacher Emerging Properties in Self-Supervised Vision Transformers [Caron el al.]



DINOSAUR: Self-supervised Features as Targets

Slots
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29 *e.g. DINO by Cathilde Caron at el.



DINOSAUR Results
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30 “Bridging the Gap to Real-World Object-Centric Learning”, ICLR 2023
Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, ..., Francesco Locatello



Can we extract even better targets from videos?

Downstream
tasks

Set Object
Representations masks
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Recurrent Slot Attention for Slot Consistency
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e DINOSAUR training objective: reconstruction of the current frame features

e Recurrent SA from SAVi9: connects slots from different frames via initialisation of
SA iteration

How can we facilitate video object discovery
from the temporal structure of the video?

32 [9] Kipf et al. Conditional Object-Centric Learning from Video. ICLR 2022



Temporal Features Similarity Prediction
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e Successful prediction of the temporal similarity requires

combining semantics and motion information
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Temporal Features Similarity Prediction
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VideoSAUR Results on Synthetic Videos
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VideoSAUR Results on Real-World Videos
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alitative VideoSAUR Results
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What about long-term consistency?

We need to maintain a consistent slot for an object throughout a video sequence.

No slot (ID) switches Reassign original slot: Reappeared objects should
get their original slot (object permanence).

Assign new slots: Newly appearing objects Preserve slot assignments: Do not reuse a slot of
should use unused slots. a disappeared object.

39




Video-level Contrastive Learning

Positive Negatives epr.

e Attract video frames of the same video

® Rebel frames from different videos In the dataset

How can we incorporate similar contrastive objective on more granular
slot representation level?

40



Slot-Slot Contrastive Loss (Intra-Video)




Batch-level Slot-Slot Contrast
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Video Object-Centric Learning Architecture
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Slot Contrast Architecture
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Object Discovery on Real-World Videos
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Object Discovery on Real-World Videos
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® Semantics reconstruction objective allows to scale
object-centric representations to real-world images

e Temporal similarity prediction further scales object-
centric representation to real-world videos

i e Slot Contrast loss further improves long-term
TN T consistency of learned representations




