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Understand how real people:

• Look

• Move

• Interact

Long term goal:

• Develop *human-centered AI*

• Assistive AI that:

• Perceive humans in their environment

• Understand their behavior

• Help them achieve their goals

Research Direction



Holistic 3D Scene Understanding:
• Modelling how people, objects, spaces look
• Estimating their 3D shape and pose
• Inferring their semantics and spatial relationships
• Employing all above information to reason about:

• how people act
• how they interact with objects & people
• how they perform tasks

Effortless for humans and animals

Challenging for computers

• Ill-posed 3D inference from a 2D image

• Semantic interpretation

→        Challenges exist at all levels of abstraction

Research Direction
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3D Human Understanding

• in ‘isolation’
• in interaction …

• hands
• whole body

(body + face + hands)

… using their



Scans & Registrations SMPL Model

SMPL specs:

Look like real people
Move like real people
Small number of parameters
Easy to animate
Easy to fit to data

[1] - Loper et al. “SMPL: A Skinned Multi-Person Linear Model”. ToG/SIGA 2015

pose
shapemodel

M(θ, β) =

SMPL Body Model



3D mesh

3dMD Scanner

Raw images (5 views) →

MANO Hand Model



Scans Registrations

MANO Hand Model



Shape Space (PCA) Pose Space
Diff. Background → Diff. PCA Component

(PCA)(PCA)

MANO Hand Model



Input
Output

MANO Hand Model
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Personalized 
3D Hand Mesh

Automatically
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Hands:
Only part of the story



SMPL+H: Body + Hands



SMPL+H: Body + Hands



SMPL+H: Body + Hands



MANO

SMPL

SMPL+H: Body + Hands



Input
Output

SMPL+H: Body + Hands
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Personalized 
Body + Hands (+ Face)

from
a Single RGB Image



FLAME

SMPL

HOMUNCULUS

MANO

[Li et al. TOG’17]

[Loper et al. TOG’15]

SMPL-X: Body + Face + Hands



[1]   Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh            Real-time multi-person 2D pose estimation using part affinity fields                 CVPR 2017
[2]   M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black          SMPL: A skinned multi-person linear model                          SIGA  2015
[3]   G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. A. Osman, D. Tzionas and M. J. Black        Expressive Body Capture: 3D Hands, Face, and Body from a Single Image        CVPR 2019

[1] [1] [2] [3]
✓

SMPL-X
SMPL eXpressive

[4]   F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, M.J. Black             Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image      CVPR 2019

SMPL-X: Body + Face + Hands



Deep
Neural

Network

Goal:  Train a DNN to directly map RGB pixels to SMPL-X
Problem:  No existing training data !

Impossible to manually annotate full-3D bodies !

SMPL-X: Body + Face + Hands



Solution:  Optimization methods need no training
Proxy 2D joints are easy to annotate / detect

[1]   Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh.   Real-time multi-person 2D pose estimation using part affinity fields. CVPR, 2017

Bottom-Up
[1]

𝐽2𝐷−𝑒𝑠𝑡

Match !

EJ = 𝐽2𝐷−𝑒𝑠𝑡 − ΠΚ J3𝐷  2
2

ΠΚ J3𝐷

Projection
Camera K

Top-Down

SMPL-X: Body + Face + Hands



𝑀(𝛽, 𝜃, 𝜓) ∈ ℝ10475x3

𝜃=[𝜃𝑏 , 𝜃𝑓 , 𝜃ℎ]

- 𝜃𝑏  Main Body Pose

- 𝜃𝑓: Jaw Pose

- 𝜃ℎ: 𝐻𝑎𝑛𝑑 𝑃𝑜𝑠𝑒

𝜓 Facial Expression

Body Pose:   

𝛽 Body Shape

Objective Function to Optimize – SMPLify-X

𝐸 𝜃, 𝛽, 𝜓 =
𝐸𝐽 𝜃, 𝛽, 𝐾, 𝐽𝑒𝑠𝑡 +
𝜆𝜃𝑏𝐸𝜃𝑏(𝜃𝑏) +𝜆𝜃𝑓𝐸𝜃𝑓(𝜃𝑓) +𝜆𝜃ℎ𝐸𝜃ℎ(𝜃ℎ) +𝜆𝜃𝛼𝐸𝜃𝛼(𝜃𝑏) +

𝜆 𝛽𝐸𝛽(𝛽) + 𝜆ℰ Εℰ (𝜓)+

𝜆𝑃 Ε𝑃 (𝜃, 𝛽, 𝜓)

2D Joints data term
“Standard” Priors

Shape & Expression priors

Self-penetration penalty

Whole-Body
Pose

Whole-Body
Shape

Facial
Express.

Estim.
Camera

Estim.
2D Joints

SMPL-X: Body + Face + Hands



Convergence Visualization

Optimization-
based Fitting

SMPL-X: Body + Face + Hands



SMPL-X: Body + Face + Hands
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Humans in ‘Isolation’
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Humans in ‘Interaction’



Reference RGB

3D Scan PROX
Overlay on RGB

PROX
in 3D scene

PROX
in 3D scene

PROX
in 3D scene✓ ✓ ✓

✗ ✗ ✗SMPLify-X
Overlay on RGB

SMPLify-X
in 3D scene

SMPLify-X
in 3D scene

SMPLify-X
in 3D scene

PROX: Human Scene Interaction



Reference RGB

3D Scan PROX
Overlay on RGB

PROX
in 3D scene

PROX
in 3D scene

PROX
in 3D scene✓ ✓ ✓

✗ ✗ ✗SMPLify-X
Overlay on RGB

SMPLify-X
in 3D scene

SMPLify-X
in 3D scene

SMPLify-X
in 3D scene

Contact constraints:

• Object cannot inter-penetrate
• Interaction means proximity

PROX: Human Scene Interaction



Reference RGB

3D Scan PROX
Overlay on RGB

PROX
in 3D scene

PROX
in 3D scene

PROX
in 3D scene✓ ✓ ✓

✗ ✗ ✗SMPLify-X
Overlay on RGB

SMPLify-X
in 3D scene

SMPLify-X
in 3D scene

SMPLify-X
in 3D scene

PROX: Human Scene Interaction



[1]   G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. A. Osman, D. Tzionas and M. J. Black.   Expressive Body Capture: 3D Hands, Face, and Body from a Single Image.   CVPR 2019

Contact:
• Manually annotate likely contact vertices
• Encourage close proximity between:                   &  Scene 
• If vertices          are “close by” in distance & orientation

෍

𝑉𝑃

𝑉𝑃

𝑀𝑠

Penetrations
• 3D Distance Field @ room level

𝑉𝑃

PROX: Human Scene Interaction



𝐸 𝜃, 𝛽, 𝜓 =
𝐸𝐽 𝜃, 𝛽, 𝐾, 𝐽𝑒𝑠𝑡 +
𝜆𝜃𝑏𝐸𝜃𝑏(𝜃𝑏) +𝜆𝜃𝑓𝐸𝜃𝑓(𝜃𝑓) +𝜆𝜃ℎ𝐸𝜃ℎ(𝜃ℎ) +𝜆𝜃𝛼𝐸𝜃𝛼(𝜃𝑏) +

𝜆 𝛽𝐸𝛽(𝛽) + 𝜆ℰ Εℰ (𝜓)+

𝜆𝑃 Ε𝑃 (𝜃, 𝛽, 𝜓)+

2D Joints data term
“Standard” Priors

Shape & Expression priors

self-Penetration (penalty)

Whole-Body
Pose

Whole-Body
Shape

Facial
Express.

Estim.
Camera

Estim.
2D Joints

𝜆 ෠𝑃 Ε ෠𝑃 (𝜃, 𝛽, 𝜓, M𝑆)+

3D Scene
Mesh

Human-Scene Penetration (penalty)

𝜆𝐶  Ε𝐶 (𝜃, 𝛽, 𝜓, M𝑆) Contact (encourage)

PROX: Human Scene Interaction



[Structure Sensor → RGB-D camera]
[Skanect → 3D scanning software by Occipital]

PROX: Human Scene Interaction



PROX: Human Scene Interaction



PROX Dataset – Key for training ML

PROX: Human Scene Interaction



[Hassan et al. 2020]

Example Application:  
Learn to Populate a 3D Scene

"Populating 3D Scenes by Learning Human-Scene 
Interaction”
M. Hassan, P. Ghosh, J. Tesch, D. Tzionas, M. Black
CVPR 2021

PROX: Human Scene Interaction
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Pre-scanned objects
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Single 2D Image



3D Objects from Single Images

Bodies      VS      Objects

Single class
(human-body class)

Many classes
(chairs, sofas, cars, etc)

Intra-class
shape variance

Intra- & Inter-class
shape variance

‘Fixed’
Topology

Arbitrary
Topology

OpenPose-like
keypoint detection & 

2D-3D correspondences

Unsolved
keypoint detection & 

2D-3D correspondences

What is a SMPL-like generative 
model for Objects?

Pavlakos*, Choutas*, 
Ghorbani, Bolkart, 
Osman, Tzionas, Black

CVPR 2019

Generative 3D 
model

Shape & Pose 
params

What is a SMPLify-like reconstr. 
method for Objects?



3D Objects from Single Images

What is a SMPL-like generative 
model for Objects?

Bodies      VS      Objects

Single class
(human-body class)

Many classes
(chairs, sofas, cars, etc)

Intra-class
shape variance

Intra- & Inter-class
shape variance

‘Fixed’
Topology

Arbitrary
Topology

OpenPose-like
keypoint detection & 

2D-3D correspondences

Unsolved
keypoint detection & 

2D-3D correspondences

Pavlakos*, Choutas*, 
Ghorbani, Bolkart, 
Osman, Tzionas, Black

CVPR 2019

Generative 3D 
model

Shape & Pose 
params

What is a SMPLify-like reconstr. 
method for Objects?



3D Objects from Single Images

Many classes
(chairs, sofas, cars, etc)

Intra- & Inter-class
shape variance

Arbitrary
Topology

Unsolved
keypoint detection & 

2D-3D corresp.

Objects
Rich 3D databases [1, 2]

[1]  Objaverse-XL,  Deitke et al.,  NeurIPS 2023

[2]  ShapeNet,  Chang et al.,  arXiv 2015

Robust detectors & classifiers [3, 4]

[3]  Mask R-CNN,  He et al.,  ICCV 2017

[4]  SAM 2,  Ravi et al.,  arXiv 2024

Category-level
models



3D Objects from Single Images

Many classes
(chairs, sofas, cars, etc)

Intra- & Inter-class
shape variance

Unsolved
keypoint detection & 

2D-3D corresp.

Objects

Deep implicit shape models [1, 2]

Traverse latent space → Morphable

Category-level
models

Morphable SDF
(mSDF) model..

[1]  Occupancy Networks,  Mescheder et al.,  CVPR 2019

[2]  DeepSDF,  Park et al.,  CVPR 2019

Arbitrary
Topology



3D Objects from Single Images

Many classes
(chairs, sofas, cars, etc)

Intra- & Inter-class
shape variance

Arbitrary
Topology

Unsolved
keypoint detection & 

2D-3D corresp.

Objects

Foundational features:
- 2D input image [1, 2]

Category-level
models

Morphable SDF
(mSDF) model..

Deep Features
+PnP Corresp..[1]  DINOv2, Oquab et al.,  TMLR 2024

[2]  ControlNet,  Zhang et al.,  ICCV 2023

- 3D mesh [3] from mSDF

[3]  Diff3F,  Dutt et al.,  CVPR 2024

2D-3D Corresp. → RANSAC & PnP



3D Objects from Single Images

mSDF choice:
DIT [1] model

[1]  Deep implicit templates for 3D shape representation,  Zheng et al.,  CVPR 2021

Template

Morphed Shapes
compact latent space

Cross-shape
Corresp!

Category-level
models

Morphable SDF
(mSDF) model..

Deep Features
+PnP Corresp..



3D Objects from Single Images

Category-level
models

Morphable SDF
(mSDF) model..

Deep Features
+PnP Corresp..

fit Render-n-Compare

Reconstruction
Visualized as 

mSDF normals

Mask Normals Depth 2D DF

Input Img
[Zheng et al. 

CVPR’21]

DIT model

SDFit - Framework



3D Objects from Single Images

Category-level
models

Morphable SDF
(mSDF) model..

Deep Features
+PnP Corresp..

fit Render-n-Compare

Reconstruction
Visualized as 

mSDF normals

Mask Normals Depth 2D DF

Input Img
[Zheng et al. 

CVPR’21]

DIT model

SDFit - Framework



3D Objects from Single Images

Shape Initialization

Input 
Img

OpenShape
[Liu et al., NeurIPS’23]

Multi-Modal 
latent space

Embed img
Get latent code 𝒁

Nearest 
neighbor 𝒁𝑵𝑵

Shape 1

Shape 2

Shape Z

Shape Y

Shape X

Input
Img

ShapeNet
3D shapes

Image 
data …

𝑺𝒊𝒏𝒊𝒕

Decode as mSDF 
shape 𝑺𝒊𝒏𝒊𝒕



3D Objects from Single Images

Pose Initialization

**[Oquab et al., arXiv’24]
*[Rombach et al., CVPR’22]

Diff3F*** 
feat. decoration

Initial Feature
Correspondences

RANSAC
+ PnP

SD* + DINOv2**

features

***[Dutt et al., CVPR’24]

Intrisincs
[PerspectiveFields, CVPR’23]

Template 𝑇

Initial shape 𝑆𝑖𝑛𝑖𝑡
or



3D Objects from Single Images

fit Render-n-Compare

Reconstruction
Visualized as 

mSDF normals

Mask Normals Depth 2D DF

Input Img
[Zheng et al. 

CVPR’21]

DIT model

SDFit - Framework
Initial Shape

                 &

   Initial Pose



3D Objects from Single Images



3D Objects from Single Images



3D Objects from Single Images



3D Objects from Single Images



3D Objects from Single Images

Input Image SDFit (Ours) SDFit (Ours) ZeroShape [1]
[1]  ZeroShape: Regression-based 
Zero-shot Shape Reconstruction,  
Huang et al.,  CVPR 2024

Recovers Self-Occluded parts 
via its inherent Shape Prior

SDFit:



3D Objects from Single Images

3D Shape Reconstruction

Robust to 
occlusions

SDFit:

CVPR
#15263

CVPR
#15263

CVPR 2025 Submission #15263. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

SDFit: 3D Object Poseand Shapeby Fitting aMorphableSDF to a Single Image
Supplementary Material

FigureS.1. Featurematching examples. On theleft, weshow PCA
color-coded per-pixel features, F I , and on the right, we show the
corresponding 3D points of mSDF initial shape, FS , where each
3D point is colored with the color of thematched pixel.

6. 2D-3D Pixel-Vertex Matching904

Thetask of single-imageposeandshapeestimation presents905
significant challenges due to imaging conditions, depth am-906
biguities, and (self-)occlusions. To address these issues, we907
proposeazero-shot pose initialization technique leveraging908
deep foundational features [51, 76], inspired by image-to-909
image (2D-2D) matching methods [74].910

Starting from a shape initialization obtained through911
our procedure (see Sec. 3.3), the goal is to establish 2D-912
3D correspondences by matching 2D pixels to 3D points913
of the mSDF. Using pretrained ControlNet [76] and DI-914
NOv2 [51], we extract feature descriptors for the image,915
FI , and shape, FS , as detailed in Sec. 3.4. These descrip-916
tors are matched via cosine similarity (Eq. (9)) to obtain a917
set of 2D-to-3D pixel-vertex correspondences.918

By leveraging the semantic and geometric cues encoded919
in thefeaturesof ControlNet andDINOv2 [5], our approach920
implicitly identifies visible 3D vertices from 2D pixels. Ex-921
amples of thesematches areshown in Fig. S.1, color-coded922
via thePCA of FI .923

Figure S.2. Occlusion augmentation example. The labels denote
the percentage of object (bounding-box) occlusion. Note that, for
the bottom-right example, a 60% bounding-box occlusion might
mean that more than 60% of object pixels get occluded.

7. Occlusion-aware3D ShapeReconstruction 924

Weevaluate the robustness of our fitting method under oc- 925
clusions against ZeroShape [28]. To this end, we augment 926
thePix3D [63] test images for thisexperiment by randomly 927
sampling rectangle occluders within the object segmenta- 928
tionmask. Specifically, weconduct sensitivity analysiswith 929
rectangles occluding 10%, 20%, 30%, 40%, 50%, and 60% 930
of theobject bounding box; seeFig. S.2. TheChamfer Dis- 931
tance for each occlusion scenario is reported in Fig. S.3. 932
SDFit outperforms ZeroShape across almost all levels 933

of occlusion. Notably, our mSDF-based approach retains 934
the coherence of reconstructed objects even when pixel- 935
aligned supervision signals, such as normals and depth 936
maps (Eq. (1)), aredisrupted. In contrast, ZeroShape strug- 937
gles to reconstruct objects accurately, even under minor oc- 938
clusion levels (e.g., 10% or 20% occlusion). These results 939
highlight therobustnessof our framework under occlusions. 940

8. RuntimeDetails 941

In the main paper, SDFit performs shape decoration (see 942
Sec. 3.4) with the default Diff3F [18] parameters. That is, 943
it renders 100 views and runsControlNet for 100 diffusion 944
steps, requiring roughly 10minutesper mesh (Tab. S.1, first 945
row). Ablating these parameters, as shown in Tab. S.1, re- 946
veals that using 10→lessviewsand10→lessdiffusion steps 947
heavily reduces runtime (up to 60→ times, see last row) 948
while having minimal impact on reconstruction accuracy. 949
Wehypothesize that this is due to “noise” when extracting 950
and aggregating features from an “excessively” large num- 951
ber of viewsfor our needs, asthedefault Diff3F parameters. 952
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Pix3D-Chair (CD@XX)→ Pix3D-Sofa (CD@XX)→

0% 10% 20% 30% 40% 50% 60% 0% 10% 20% 30% 40% 50% 60%

ZeroShape [28] 4.54± 1.82 4.61± 1.63 5.46± 1.48 6.34± 1.31 7.08± 1.82 7.80± 2.43 8.65± 2.43 2.34± 1.08 2.98± 1.21 3.91± 0.92 4.72± 1.03 5.71± 1.23 6.23± 2.10 6.24± 2.53
SDFit 4.03± 1.08 4.04± 1.15 4.04± 1.08 4.29± 1.23 4.08± 1.08 4.07± 1.29 4.11± 1.18 3.03± 0.55 3.25± 0.91 3.25± 0.90 3.34± 0.76 3.40± 1.17 3.54± 1.04 3.55± 1.12

Figure S.3. Sensitivity analysis on occlusion. Weevaluate shape reconstruction accuracy under varying levels of object occlusion on the
Pix3D [63] test set, by reporting theChamfer Distance (CD) metric, both in tableand plot format. With yellow highlighting, we indicate
corrections w.r.t. Tab. 1 (column “CD@occ”) in themain paper after a bug-fix in the evaluation code. The table includes a 0% occlusion
scenario as a baseline for comparison, representing the unoccluded case of the main paper (see Tab. 1, last row). As evident, SDFit
outperforms ZeroShape for both themean and standard-deviation (the lower, the better). In fact, SDFit’s performance remains relatively
stablewhile occlusions get stronger, while ZeroShape’sperformance deteriorates. This suggests that SDFit has an practical advantage for
occlusion scenarios.

# Views #Diff. Steps Dec. (sec) Pix3D-Chai r (CD)→ Pix3D-Sof a (CD)→

100 100 600 4.03 3.03
16 10 27 4.02 3.35
8 30 30 4.06 3.33
8 10 10 4.02 3.15

Table S.1. Runtime study – Parameter ablation (Sec. 8). We evaluate different shape decoration strategies (see Sec. 3.4) and the effect
on reconstruction quality. We report the: number of views for shape rendering (first column), number of diffusion steps for ControlNet
(second column), decoration runtime in seconds (third column), and reconstruction accuracy asChamfer Distance; weuse thePix3D [63]
dataset. Wesee that reducing thenumber of viewsand diffusion stepsheavily reduces runtime, while having minimal impact on accuracy.
Thissignificantly speedsup our framework while retaining its practical benefits, such as robustness to occlusions (seeSec. 7, Fig. S.3).
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outperforms ZeroShape for both themean and standard-deviation (the lower, the better). In fact, SDFit’s performance remains relatively
stablewhile occlusions get stronger, while ZeroShape’sperformance deteriorates. This suggests that SDFit has an practical advantage for
occlusion scenarios.
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[1]  ZeroShape: Regression-based Zero-shot Shape Reconstruction, Huang et al., CVPR 2024
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GRAB: Whole-body Grasps



High-res & 54-camera Vicon MoCap system
1.5mm radius hemi-spherical markers
Semi-automatic MoCap data cleaning & labeling
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High-res & 54-camera Vicon MoCap system
1.5mm radius hemi-spherical markers
Semi-automatic MoCap data cleaning & labeling

GRAB: Whole-body Grasps



MoSh++
[1]

[1]   N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, M. J. Black.   AMASS: Archive of Motion Capture as Surface Shapes.   ICCV 2019

Adapt MoSh++ [1] for SMPL-X (body + face + hands)
Rigid fitting for object meshes to markers

High-res & 54-camera Vicon MoCap system
1.5mm radius hemi-spherical markers
Semi-automatic MoCap data cleaning & labeling

GRAB: Whole-body Grasps



4 Interaction Intents

GRAB: Whole-body Grasps



Whole-Body Interaction

GRAB: Whole-body Grasps



Data-driven likely contacts

GRAB: Whole-body Grasps



GrabNet: Grasp Synthesis



CoarseNet
output

RefineNet
output

GrabNet: Grasp Synthesis



GrabNet: Grasp Synthesis
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3D Grasp Synthesis

How do we go beyond (scarce) data?

Promising → FLEX [1] method

[1]  FLEX: Full-Body Grasping Without Full-Body Grasps.  Tendulkar et al. , CVPR 2023

• Divide & conquer!
• Generate a hand-only grasp [2]

• Sample random bodies in scene
(500 samples, random location & pose)

• Optimize:
• Hand-only grasp to match body
• Body to match hand-only grasp

[2]  GrabNet, Taheri et al., ECCV 2020

• Prune implausible Bodies



3D Grasp Synthesis

[1]  FLEX: Full-Body Grasping Without Full-Body Grasps.  Tendulkar et al. , CVPR 2023
[2]  GrabNet, Taheri et al., ECCV 2020

Great idea!

Exhaustive sampling

Intensive post-processing

Roots of limitations:

• Non-controllable components [2]

How do we go beyond (scarce) data?

Promising → FLEX [1] method
• Divide & conquer!
• Generate a hand-only grasp [2]

• Sample random bodies in scene
(500 samples, random location & pose)

• Optimize:
• Hand-only grasp to match body
• Body to match hand-only grasp
• Prune implausible Bodies • Too late reasoning: body & scene



3D Grasp Synthesis

Grasping hands

[1]  GRAB: A Dataset of Whole-Body Human Grasping of Object, Taheri et al., ECCV 2020

Vanilla GrabNet [1] Draw 5 different samples

Hands with random palm directionOnly condition @ inference:  Object shape



3D Grasp Synthesis

Grasping hands

Extend GrabNet and Re-train …3D direction vector

CGrasp → ‘Controllable Grasp synthesis’

with palm-direction control

Draw 5 different samples



Start with vanilla GrabNet
3D direction vector

3D Grasp Synthesis

Reaching bodies with arm-direction control

CReach → ‘Controllable Reach synthesis’

Start with vanilla GrabNet
3D direction vector

S
M
P
L
X

GRAB dataset   [Taheri et al. ECCV’20]
CIRCLE dataset [Araujo et al. CVPR’23]

3D wrist location



3D Grasp Synthesis

Grasping hands Reaching bodies

Conditioned on 
desired 3D direction



Conditioned on 
desired 3D direction

3D Grasp Synthesis

Where does the 
3D direction come from ?

Answer the question: 
Where can an object be 

reached from? ?



3D Grasp Synthesis

‘Local scene’ reasoning

• Object on a receptacle



3D Grasp Synthesis

‘Local scene’ reasoning

• Object on a receptacle
• Sample a sphere around object
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• Sample a sphere around object
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3D Grasp Synthesis

‘Local scene’ reasoning

• Object on a receptacle
• Sample a sphere around object

• Further refined filtering:
• Project rays → parallel to floor

• Shoot rays
• Keep only non-intersecting ones



3D Grasp Synthesis

‘Local scene’ reasoning

• Object on a receptacle
• Sample a sphere around object

• Project rays → parallel to floor
• Shoot rays to floor → Check collisions w. receptacles

• Further refined filtering:

• Shoot rays
• Keep only non-intersecting ones



3D Grasp Synthesis

‘Local scene’ reasoning

• Object on a receptacle
• Sample a sphere around object

• Project rays → parallel to floor

• Also wiggle around a bit → Check collisions (arms take up volume)

• Shoot rays to floor → Check collisions w. receptacles

• Further refined filtering:

• Shoot rays
• Keep only non-intersecting ones



3D Grasp Synthesis

‘Local scene’ reasoning

• Object on a receptacle
• Sample a sphere around object

• Project rays → parallel to floor

• Also wiggle around a bit → Check collisions again
• Final set of filtered rays

• Shoot rays to floor → Check collisions w. receptacle

• Shoot rays
• Keep only non-intersecting ones
• Further refined filtering:



• Final set of filtered rays

• Shoot rays to floor → Check collisions w. receptacle

• Shoot rays
• Keep only non-intersecting ones
• Further refined filtering:

3D Grasp Synthesis

‘Local scene’ reasoning

• Object on a receptacle
• Sample a sphere around object

• Project rays → parallel to floor

• Also wiggle around a bit → Check collisions again

ReachingField.
→→ Sample a 3D ray .

Condition on this. 
both CGrasp & CReach.



CWGrasp (Controllable Whole-Body Grasps)

CGrasp

CReach

ReachingField Optimiz.

Sample 3D 
reach vector

Palm 
direction

Arm 
direction

*

*

*

* Draw only 1 sample

**

** ** Grasping Hand
Reaching Arm

Compatible
direction!

→ Small refinement only for body!

Refine (only) body
to match the hand

3D Grasp Synthesis



3D Grasp Synthesis

Medium-height positions



3D Grasp Synthesis

Big-height positions



3D Grasp Synthesis

Low-height positions



3D Grasp Synthesis

Left-hand grasps



3D Grasp Synthesis

CWGrasp
(ours)

FLEX [1]

[1]  FLEX: Full-Body Grasping Without Full-Body Grasps.  Tendulkar et al. , CVPR 2023

VS



3D Grasp Synthesis

Perceptual study: CWGrasp vs FLEX

33 participants (+2 filtered out)

24 samples (+4 catch trials)

Each sample (gif): Full-body & hand-zoom view
  (rated separately – random order)

Full-body view

Participants preferring 
CWGrasp:

70.8% 

Hand-zoomed view 71.6% 

Both views 71.23% 

500x less 10x less
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Resolving 3D Human Pose Ambiguities with 3D Scene Constraints
M. Hassan · V. Choutas · D. Tzionas · M. J. Black
ICCV 2019

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image
G. Pavlakos* · V. Choutas* · N. Ghorbani · T. Bolkart · A.A.A. Osman · D. Tzionas · M. J. Black
CVPR 2019

Embodied Hands: Modeling and Capturing Hands and Bodies Together
J. Romero* · D. Tzionas* · M. J. Black
SIGGRAPH-Asia 2017

Publications / Preprints

https://prox.is.tue.mpg.de/
https://smpl-x.is.tue.mpg.de/
https://mano.is.tue.mpg.de/


3D Whole-body Grasp Synthesis with Directional Controllability
Georgios Paschalidis · R. Wilschut · D. Antić · O. Taheri · D. Tzionas
3DV 2025

GRAB: A Dataset of Whole-Body Human Grasping of Objects
Omid Taheri · N. Ghorbani · M. J. Black · D. Tzionas
ECCV 2020

Publications / Preprints

SDFit: 3D Object Shape and Pose by Fitting a Morphable SDF to a Single Image
Dimitrije Antić · S. K. Dwivedi · S. Tripathi · T. Gevers · D. Tzionas
arXiv, Sep. 2024

https://arxiv.org/abs/2408.16770
https://grab.is.tue.mpg.de/
https://www.arxiv.org/abs/2409.16178
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Thank you!

3D Human-centric 
Perception and Synthesis
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