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How 1t started...

Laptev & Lindeberg, ICCV 2003



Du Tran et al., ICCV 2015

How it’s going...
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w/ Jiaojiao Zhao et al., CVPR 2022
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w/ Kirill Gavrilyuk Amir Ghodrati, & Zhenyang Li, CVPR 2019 |




w/ Hazel Doughty, CVPR 2022

Action: peel
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How is the action done?
evenly, backwards, carefully, quickly, properly




What assumption do all these works have in
common at training time?

w/ Hazel Doughty, CVPR 2022

Action: peel

How is the action done?
evenly, backwards, carefully, quickly, properly

S AANARANN
[y ., CVPR 2020

w/ Shuo Chen, Zenglin Shi & Pascal Mettes, ICCV 2021




Empirical risk minimization and the 1.1.d. assumption

Empirical risk minimization

Definition. Given a set of labeled data points S = ((Z1,Y1), - (Tn,Yn)), the
empirical risk of a predictor f : X — Y with respect to the sample S is defined as

Rslf] = 3 loss(f(@i), )

i.i.d. assumption

It is typically assumed that training, validation and test set are
independent and identically distributed.



Machine learning inspiration

Domain-invariant learning

+ sample

® mean

c

d

w/ Zehao Xiao et al., ICML 2021

Meta-learning
ii —m\ Y
O observed during meta-training only h rchical memory

O observed during meta-training ai dmtthItt iable

w/ Yingjun Du et al., ICLR 2022

Prompt learning

Covariate Shift Label Shift Concept Shift
,._ mﬁ! ﬁg o=
[dogl 'a [dog] [cat] [dog] Ipet] [dog]

(a) Various distribution shifts

Training Test
[ CLIP ’°| | cupﬁ
v
[dog} //'-v(a +=  [dog] [cat] lpet] =
J J
Various distribution shifts Jomt distribution shifts

(b) Generalization over distributions by any-shift prompting

w/ Zehao Xiao et al.,, CVPR 2024



More is difterent

4 August 1972, Volume 177, Number 4047

SCIENCE

Philip Anderson crystallized the idea of emergence, arguing
that “at each level of complexity entirely new properties
appear” — that is, although, for example, chemistry is
subject to the laws of physics, we cannot infer the field of
chemistry from our knowledge of physics.

The reductionist hypothesis may still
be a topic for controversy among phi-
losophers, but among the great majority
of active scientists I think it is accepted
without question. The workings of our
minds and bodies, and of all the ani-
mate or inanimate matter of which we
have any detailed knowledge, are as-
sumed to be controlled by the same set

planation of phenomena in terms of
known fundamental laws. As always, dis-
tinctions of this kind are not unambiguous,
but they are clear in most cases. Solid
state physics, plasma physics, and perhaps
also biology are extensive. High energy
physics and a good part of nuclear physics
are intensive. There is always much less
intensive research going on than extensive.
Once new fundamental laws are discov-
ered. a largce and ever increasing activitv

search which 1 think 1s as fundamental
in its nature as any other. That is, it
seems to me that one may array the
sciences roughly linearly in a hierarchy,
according to the idea: The elementary
entities of science X obey the laws of
science Y.

X Y
solid state or
many-body physics
chemistry
molecular biology

elementary particle
physics

many-body physics

chemistry



Supervised learning

Labeled

Neural Predict
Network Putting on a jacket

Putting on a
jacket

Depends on a manual labeling effort, which is costly, errorprone, and biased



Self-supervised learning using a proxy task

Un:jabteled Neural Predict 90°
4 a' Network rotation
Neural Predict 270°
a | & - Network rotation }
J...j”’ Shared
Rotate 270° Parameters

Self-supervised learning exploits (imposed) regularities in the data to learn from.
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Example proxy tasks

Temporally Correct order

S

shuffled clips

Original video

order 1 - ¢

Shuffle and Learn, Mishra et. al., ECCV 2016 Video Clip Order Prediction, Xu et al., CVPR 2019

X

Temporally Incorrect order



A more advanced proxy task: contrastive learning

Uses Instance discrimination and enforces augmentation invariance.

Adaptation of image-based methods like MoCo, SimCLR, to video domain.



Masked auto encoding transformers

VideoMAE masks random cuboids and reconstructs the missing one

Time Time Time
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Tokens w/o [M]

Time

Encoder — 0 ~ Decoder

Downsampled video clip Tube masking with an extremely high ratio

Target video clip

keeping masking

Zhan Tong, Yibing Song, Jue Wang, Limin Wang. VideoMAE: Masked Autoencoders are Data-
Efficient Learners for Self-Supervised Video Pre-Training. In NeurIPS, 2022.



This talk

Looks into the generalization abilities of modern video Al

1. The problem of video evaluation

2. The problem of video contrastive-learning

3. The problem of video masked auto encoding



1. The problem of video evaluation

Fida Mohammad Thoker Hazel Doughty Piyush Bagad Cees Snoek
University of Amsterdam University of Amsterdam University of Amsterdam University of Amsterdam

How Severe is Benchmark-Sensitivity in Video Self-Supervised Learning? In ECCV 2022.

@ Project Website
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Fine-tuning & Evaluation

Pre-training

Problem




Problem: Video sell-supervised learning evaluation

Pre-training and evaluation video too similar?
Pre-training Fine-tuning & Evaluation
g, 20909090 T T TS - —m——m———=—==n Kinetics-400 UCF-101 HMDB-51
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What if downstream video task is different?
Airport, shopping mall, hospital, etc.
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Proposed evaluation: four factors of sensitivity

Pre-training
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Kinetics-400



Proposed evaluation: four factors of sensitivity

Pre-training
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Proposed evaluation: four factors of sensitivity

Pre-training
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Proposed evaluation: four factors of sensitivity

Pre-training
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Proposed evaluation: four factors of sensitivity

Pre-training

S s e e o b C MARLREeS
| . Downstream domains | aELL' a..a
I i - UCF-101 I
I FineGym-99 | A I I‘i =
1 | b & sy
' -
| I P s
L | = J
_________________________ T
: II. Downstream samples : > e
I B = | u;
| O : [ —
Sume D= |
|
! EaEEEurE |
| .Y EEERT=S I 4 =3 =
I Do [ |~ gl ™ 1 : ¥ = . . . . e :
] I Action recognition Action detection  Repetition counting
"""""""""""" ldnﬂﬂﬂﬁ_h

Kinetics-400



7 datasets / 6 tasks / 500 experiments

Considerable variety in video domain, the actions and tasks

UCF-101 FineGym

Something Something _EPIC-Kitchens-100

UCF-101 NTU-60 SS-v2 EPIC-Kitchens-100 Charades AVA
Label overlap Label overlap Label overlap Label overlap Label overlap Label overlap Label overlap
X
Temporal . Temporal Temporal . Temporal Temporal Temporal Temporal Temporal
awareness PoV awareness PoV' awareness V' awareness arenes: POV gwareness & 3 POV awareness ‘ POV gwareness PoV

Environment it Action

Action . o
length length length length length length length

Tasks: Action classification, Action detection, Repetition counting, Arrow of time prediction,
Spatio-temporal detection, Multi-label classification



9 video sell-supervised learners

MoCo

Contrastive Loss

Similarity
q ko ky kp ..
momentum
encoder encoder

key _key _key
Xg Xy~ Xy am

xAuery

AVID-CMA

Video MoCo

Contrastive Loss

Similarity
q (t0, ko) (1, ky) ..
momentum
encoder encoder
yQuery

generator R
x temporal decay

Prior Work Ours
Audio-Visual Instance-based  Cross-modal agreement Beyond Instances
Correspondence AVID (CMA AVID + CMA
—— Contrastive Postive DNegalwe Within modalty learning
stance-oese cross-modallearring Se v
binary verfication o c\ 9
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TCLR

= MLP Projection Head Feature Map
L 30.CNN backbone Time Slice the Feature Map
temporally and project in

Representation space

PR e hd
l|l| i ClipA___Clip-8_!

(b) Local-Local Temporal Contrastive Loss (L) | (¢) Global-Local Temporal Contrastive Loss (£q.)

Pretext Contrast

E -I —> Pretext tasks

¢ Repeat the process ¢

- —> Pretext tasks
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RSPnet

GDT

! Same speed label | I Different speed labels |
' ' but different content i __but similar content :
f_/%

1x speed 2x speed

Y

........ 4’/}(}’

@ <~ Repulsive
Attractive

SelaVi

........ training
. !
Sinkorn
- Eufo(W(2)] clustering y

training

All methods come with weights for a R(2+1)D-18 network pre-trained on Kinetics-400



Sensitivity factor I: Downstream domain

Pre-trainin

1. Downstream domains

FineGym-99 UCF-101
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Sensitivity factor I: Downstream domain

Downstream Domains

. . Finetuning
Pre-training
UCFI101 NTU60 Gym99 SSv2 EK 100

None 75.4 92.9 89.4 56.8 25.7
MoCo 83.5 93.4 90.6 57.0 26.4
SelLaVi 84.9 92.8 88.9 56.4 33.8
VideoMoCo 85.8 94.1 90.5 58.8 43.6
Pretext-Contrast 86.6 93.9 90.3 57.0 34.3
RSPNet 88.5 93.9 91.3 59.4 42.7
AVID-CMA 89.3 94.0 90.6 53.8 29.9
CtP 89.8 94.3 92.2 60.2 42.8
TCLR 90.8 94.1 91.5 60.0 36.2
GDT 91.1 93.9 90.4 57.8 37.3
Supervised 94.1 93.9 91.8 61.0 47.7

Increasing domain shift




Sensitivity factor I: Downstream domain

Downstream Domains

Finetuning
UCF101 | NTU60 Gym99 SSv2 EK 100

Pre-training

None 92.9 89.4 56.8 25.7
MoCo 93.4 90.6 57.0 26.4
SelLaVi 92.8 88.9 56.4 33.8
VideoMoCo 94.1 90.5 58.8 43.6
Pretext-Contrast 93.9 90.3 57.0 34.3
RSPNet 93.9 91.3 59.4 42.7
AVID-CMA 94.0 90.6 53.8 29.9
CtP 94.3 92.2 60.2 42.8
TCLR 94.1 91.5 60.0 36.2
GDT 93.9 90.4 57.8 37.3
Supervised 93.9 91.8 61.0 47.7

Increasing domain shift




Sensitivity factor I: Downstream domain

Downstream Domains

Finetuning

Pre-training

None 75.
MoCo 83.5
SeLaVi 84.9
VideoMoCo 85.8
Pretext-Contrast 86.6
RSPNet 88.5
AVID-CMA 89.3
CtP 89.8
TCLR 90.8
GDT 91.1
Supervised

Increasing domain shift




Sensitivity factor I: Downstream domain

Downstream Domains

Finetuning
NTU60] Gym99 [SSv2{ EK 100

Pre-training

UCF101

Downstream Domains

UCF-101 finetuning performance does not
generalize to other target domains.

GDT 91.1 93.9 90.4 5!
Supervised 94.1 93.9 91.8 61.

Increasing domain shift




Sensitvity factor 1I: Downstream samples

Pre-trainin

II. Downstream samples
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Sensitvity factor 1I: Downstream samples

Top-1 (%)

901

801

701

UCF-101

601 °
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Downstream Samples
The gap and rank between methods

changing considerably across
sample sizes on each dataset.

Downstream samples



Sensitivity factor I & IV: Downstream actions & tasks

Downstream Actions Downstream Tasks

Most self-supervised UCF-101 action classification
methods are sensitive to performance is mildly
action granularity indicative on other tasks.
in downstream dataset.




Key takeaways

No clear winner, different methods standing out in different settings.

Contrastive methods encouraging temporal distinctiveness transfer well.

We select a subset of experiments as the ‘SEVERE’ benchmark



SEVERE benchmark: subset of our experiments

Existing SEVERE-benchmark
Pre-training Domains Samples Actions Tasks

UCF101 SS-v2 Gym-99 UCF (10°) Gym-99 (10°) FX-S1 UB-S1 UCF-RC Charades-MLC
None 75.4 56.8 89.4 43.1 23.1 45.0 84.0 (5282 7.9
MoCo 83.5 57.0 90.6 60.7 29.0 65.1 85.0 0.220 8.1
SeLaVi 84.9 56.4 88.9 69.2 28.3 50.2 81.5 0.171 8.2
VideoMoCo 85.8 58.8 90.5 65.8 19.2 60.4 82.1 0.171 10.5
Pretext-Contrast 86.6 57.0 90.3 62.7 25.9 65.8 86.2 0.168 8.9
RSPNet 88.5 59.4 91.3 TilanTi 3212 63.5 85.1 0.151 9.1
AVID-CMA 89.3 53.8 90.6 68.8 32.1 67.2 88.4 0.162 8.4
CtP 89.8 60.2 92.2 63.7 2l 79.7 88.4 0.178 9.6
TCLR 90.8 60.0 91.5 70.6 24.5 61.0 85.3 0.149 11.1
GDT 91.1 57.8 90.4 77.8 44.1 65.7 81.6 0.137 8.5
Supervised 94.1 61.0 91.8 86.0 512 81.0 86.9 0.137 23.6

Enables future video self-supervised methods to evaluate generalization along 4 factors.



2. The problem of video-contrastive learning

Fida Mohammad Thoker Hazel Doughty Cees Snoek
University of Amsterdam University of Amsterdam University of Amsterdam

Tubelet-Contrastive Self-Supervision for Video-Efficient Generalization. In /CCV 2023.



Problem of holistic contrastive learning

Uses Instance discrimination and enforces augmentation invariance.

¥ Favours coarse-grained features ¥ Limits generalizability

¥+ Exploits background shortcut ¥ Motion-variety constraints cause data hunger



Solution: add synthetic tubelets during pretraining




Step 0: Crop a random patch from one clip

Patch from
U1
ﬁ



Step 1: Generate a tubelet




Step 2: Add motion to the patch

Linear

Tubelet

Motion Non-linear




Step 3: Add motion complexity by transformations

4
Tubelet Tubelet Tubelet
Generatlon Motion Transformat|on l




Step 4: Overlay identical tubelet on two clips

Tubelet

positive pair

Tubelet Tubelet
Motion Transformatnon




Step 5: Tubelet-contrastive learning

Tubelet

Motion Transformatlo positive pair

Tubelet Tubelet j
n

Patch from
V1

1 [=

A\ 4

v2 Negatives



Ablations

UCF (10%) Gym (10%) SSv2-Sub UB-S1

Video Contrast

Baseline 575 29.5 44.2 84.8
Tubelet Contrast

Tubelet Generation 48.2 28.2 40.1 84 1
Tubelet Motion 63.0 45.6 47.5

Tubelet Transformation  65.5 48.0 479 90 9

Table 2: Tubelet-Contrastive Learning considerably out-

performs video  contrast on multiple downstre
tings. Tubelet motion and transformations are k aﬁ

Tubelet Motion UCF (10%) ¢ Gy,

-Sub UB-S1

40.1 84.1
34.6 45.3 88.5
45.6 47.5 90.3

. Learning from tubelets with
ar motion benefits multiple downstream settings.

Transformation UCF (10%) Gym (103) RN

None 63.0 43 \ 90.5

Scale \ ; 90.5

Shear S5 47.3 90.9

| Rotation © 0 479 909
Table 4 t sformation. Adding motion patterns

% el -c@ntrastive learning through transformations im-

downstream performance. Best results for rotation.

#Tubelets UCF (10%) Gym (10%) SSv2-Sub UB-S1

1 62.0 395 471 895
[ 2 65.5 48.0 479 909
3 66.5 46.0 475 909

Table 5: Number of Tubelets. Overlaying two tubelets in
positive pairs improves downstream performance.



What does the model learn?

Video-contrastive learning Proposed tubelet-contrastive learning

T — e — —_—

Without seeing any FineGym videos during training, our approach attends to motion




Adding synthetic motion improves data efficiency

Top-1

70

65
60 -
55 -
50
45
40

35

UCF (10" 3)

0 25 50 75 100
Pretraining Data %

—— Tubelet-Contrastive Learning (This paper)

—=— \ideo-Contrastive Learning

From Scratch



Key benefit: we need 4x less video data

UCF (1073) o Gym (10" 3) SSv2-Sub UB-S1 HMDB51

94 : 70

50

1 1 1 1
65 1 ' 45 - ! 48 1 . 92 1 | 65 |
60 | 40 - I 46 - | 90 - . 60 - "
1 1 1 1 1
155— I 35 - | il : %8 | 55 - i
O 50 - | | 42 i 86 - | ../.:,.»—-/.
= ! 30 | e '
45 - ! ! 40 ! 84 ! !
1 ] 1 1 1
1 1 1 1
1 1 1
1 1 1

50 -
[}
40 25 ! 38 82 - 45 i
35 L . : : — 20 | - : — 36 - : : — 80 = - - : — 40 = ! : : :
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Pretraining Data %
—e— Tubelet-Contrastive Learning (This paper) —a— Video Contrastive Learning From Scratch

Tubelets simulate a richer variety of fine-grained motion than present in the original video



Solid accuracy gain on UCF-101 and HMDB-51

R(2+1)D Backbone pretrained on Kinetics-400

Method Modality UCF101 HMDBS5I1 Pre-training
Pace Prediction [76] RGB 77.1 36.6 Eﬂ%g@'ﬁ
VideoMoCo [56] RGB 78.7 49.2 ik &1
RSPNet [55] RGB 81.1 44.6 o TR ¢
el R
SRTC [46] RGB 82.0 51.2 e P R R
FAME [10] RGB 84.8 53.5 e o
MCN [45] RGB 84.8 54.5 I e ol s M 3T
AVID-CMA [52] ~ RGB+Audio  87.5 60.8 -
TCLR [9] RGB 88.2 60.0 T
TE [31] RGB 88.2 62.2 Eﬁﬁg% 4o
CtP [74] RGB 88.4 61.7 =1 el [
MotionFit [20] RGB+Flow 88.9 61.4 Egzgf ‘E
GDT [57] RGB+Audio 89.3 60.0 BUsDBRGT—
LOurs w/ mini-Kinetics RGB 90.7 65.0 } ineties- 40
Ours w/ Kinetics RGB 91.0 64.1




Generalization on SEVERE-benchmark

Pre-training
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Generalization on SEVERE-benchmark

Domains Samples Actions Tasks
Backbone SSv2 Gym99 UCF (10%) Gym (103) FX-S1 UB-SI UCF-RC] Charades Mean Rank]
SVT [61] ViT-B 59.2 62.3 83.9 18.5 354 i e M 0.421 o e 51.0 8.9
VideoMAE [71] ViT-B 69.7 85.1 {78 . e 37.0 78.5 0.172 12.6 58.1 8.3
Supervised [ 7] R2+1)D-18 60.8 92.1 86.6 513 79.0 87.1 0.132 .2 e 70.9 3.9
None R2+1)D-18 57.1 89.8 3838 227 46.6 82.3 0.21% 9 529 11.6
SelLaVi [ 7] R(2+1)D-18 56.2 88.9 69.0 302 < W2 80.9 0.162 8.4 58.6 11.0
MoCo [27] R2+1)D-18 57.1 90.7 60.4 30.9 65.0 84.5 0.208 8.3 59.5 9.1
VideoMoCo [56] R@2+1)D-18 59.0 90.3 65.4 20.6 573 83.9 0.185 10.5 58.6 9.1
Pre-Contrast [6Y] RQ2+1)D-18 56.9 90.5 64.6 255 66.1 86.1 0.164 8.9 60.5 9.0
AVID-CMA [51] R@2+1)D-18 52.0 904 68.2 334 68.0 87.3 0.148 8.2 61.6 9.0
GDT [57] R(2+1)D-18 58.0 90.5 78.4 45.6 66.0 834 0.123 8.5 64.8 8.6
RSPNet [58] R2+1)D-18 59.0 91.1 74.7 32 65.4 83.6 0.145 9.0 62.6 8.0
TCLR [8] R(2+1)D-18 59.8 91.6 726 26.3 60.7 84.7 0.142 12.2 61.7 7.6
CtP [74] R2+1)D-18 59.6 92.0 61.0 32.9 79.1 88.8 0.178 9.6 63.2 5.6
Ours w/ mini-Kinetics R(2+1)D-18 59.4 92.2 65.5 48.0 78.3 90.9 0.150 9.0 66.0 54
Ours w/ Kinetics R(2+1)D-18 60.2 92.8 65.7 47.0 80.1 91.0 0.150 10.3 66.5 4.1

Better generalization, even when using the 3x smaller Mini-Kinetics for pretraining.



Key takeaways

Contrastive learning with synthetic tubelets provides:

Simple and effective self-supervised video representation learning.

Data-efficient pretraining with less unlabelled video data.

Better generalization to diverse video domains and fine-grained tasks.



3. The problem of video masked auto encoding

Fida Mohammad Thoker Michael Dorkenwald Fida Mohammad Thoker
University of Amsterdam University of Amsterdam KAUST

Efstratios Gavves Cees Snhoek Yuki Asano
University of Amsterdam University of Amsterdam University of Amsterdam

SIGMA: Sinkhorn-Guided Masked Video Modeling. In ECCV 2024. QUVA

Deep Vision Lab



Input video Masked input (80%) Reconstructed output video



Video MAE Challenge: Poor motion modeling

Input video

Masked input

Reconstructed video




From pixel to feature reconstruction

Video Model ¥ x¥
) O J )
Masking — @ Encoder @ @ Decoder @
f : - - s
Patchify = 00 0
*
4 I ‘ .2 loss | Trivial Solution! Mode Collapse.
x? Online clustering methods can help
wjn &
Projection 9 _, Inverse (7
Network ¥ Masking

96 -




SIGMA: Sinkhorn-Guided Masked Video Modeling

Video Model ¥ v

x
O 0 J 0 |
Masking — @ Encoder 0 O Reeoaes 7 —()— [Scores 7t — Smkhom\p
A : Do : A targets q
w/
Patchify oo ) \\{
/ gradient

* /

Prototypes C
—  Lop(x*,qY) Lop(XY,q”
” 9990 csEbA) [fozttho)

x‘P % gradient
9 J J |
Projection @ @ . Inver.se . @ . é_» 5 -, _, Sinkhorn
Network ¥ P Masking : U 2 targets q*

0 0



Generalization on SEVERE-benchmark

Domains Samples (10°%) Actions Tasks Mean
Gym99 UCF Gym FX-S1 UB-S1 UCF-RC| Charades
SVT 62.3 83.9 18.5 354 55.1 0.421 D 49.8
MVD 79.1 NZ DO 35.0 3 B 0.184 16.1 54.2
VideoMAE 85.1 ThE 2D 37.0 78.5 0.172 12.6 57.3
MGM 86.5 75.1 27.0 41.0 84.4 0.181 17.9 59.1
SIGMA-MLP (ours) 88.6 81.2  33.6 51.0 85.2 0.178 20.1 63.1

SIGMA-DINO (ours) 90.3 86.0 35.0 64.8 87.5 0.169 233 67.1




Unsupervised video object segmentation on DAVIS
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Key takeaways

Sinkhorn-clustering leads to more abstract mask reconstruction

Alleviates training collapse, profits from pretrained image models

Better generalization to video domains, samples and fine-grained actions.



Concluding encouragement

Learning to generalize in video space and time, and across
modalities and tasks, is an open research challenge.

First ideas have started to appear, much more research is needed.

V | S Prof. dr. Cees Snoek

https://ivi.fnwi.uva.nl/vislab/
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