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Abstract

Computer vision has been first revolutionized since the year 2000. Learning
from examples became leading. Another revolution happened in 2012, with
deep learning from examples. The latest revolution happened in 2022, with
the introduction of foundation models.

Progress in computer vision by learning is fast. In the course we will discuss
recent methods presented by researchers who are all very active in the field.

The course is supplemented with practical work and is completed with an
assignment.



Where and When

Monday 13" to Thursday 16" of January
Lectures 09:30-12:00  Turing § |

Lunch (included) 12:00-13:30 Newton 4
Lab 13:30-16:00  Euler -

Friday 17t" of January
Invited tutorial 09:30-12:00 Turing
Lunch (included) 12:00-13:30 Newton

Turingzaal




Program

Monday Foundations

Tuesday Machine learning for computer vision

Wednesday 3D vision by learning

Thursday Computer video by learning

Friday Invited tutorial by Yuki Asano Yuki Asano

Guest speakers

Pascal Mettes  Martin Oswald Dimitris Tzionas Hazel Doughty Andrii Zadaianchuk



Lab

Practical 1 Vision by multi-layer perceptron

Practical 2 Vision by convnet

Practical 3 Vision by transformer

Practical 4 Vision by geometric learning or Vision by self-supervised learning

TA team every afternoon available for support.

Each group of 2 students submits a report about their findings during the practicals.
Your report should have rquth 1 page per practical, with a maximum of 8 pages. See
lab assignments for all details on format, questions, PyTorch code etc.

Deadline: January 31t", 2025

http://computervisionbylearning.info
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Human vision consumes 50% brain power

Van Essen, Science 1992



Source: wikipedia

Human invention of written language
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Human invention of ChatGPT

OpenAl, 11/2022

eoe [+ < openai.com €O & O Mt + O
@OpenAl Research~ APIv ChatGPTv Safety Companyv Search Login2 | Try ChatGPT ~

Blog

Introducing
ChatGPT

We've trained a model called ChatGPT which
interacts in a conversational way. The dialogue
format makes it possible for ChatGPT to answer
followup questions, admit its mistakes, challenge
incorrect premises, and reject inappropriate
requests.

| Try ChatGPT 7 | Read about ChatGPT Plus




CLIP, 7/2021

Vision and language even more powerful

3.

Collect millions of images and their description from the Internet
Learn associations between encoded image and text

Amazing zero-shot abilities

(1) Contrastive pre-training (2) Create dataset classifier from label text
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Flamingo, 11/2022

What works well in vision and language?

Input Prompt
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BLIP-2,6/2023

What works well in vision and language?

Is this photo unusual?

Yes, it's a house that looks like it's
upside down.

How could someone get
out of the house?

house.

é It has a slide on the side of the

What are shown in the photo? 8

A man and a chicken.

What does the man feel
and why? 8

He is scared of the chicken
because it is flying at him.




This talk

Looks into what multimodal foundation models cannot perceive:

Scarcity
Space
Time

o

Human values



Yunhua Zhang Hazel Doughty

1. Scarcity

Yunhua Zhang, Hazel Doughty, Cees G M Snoek: Low-Resource Vision
Challenges for Foundation Models. In: CVPR, 2024.

& CVPR

| SEATTLE \WZ.Y JUNE 17-21, 2024



Hedderich et al. ACL 2020

Low-Resource Natural Language Processing

NLP Solutions by Language Population Size of Languages

3 Billion Speakers

Low Resource Low Resource

6%
68%
\’ . 9
e
o
1 Billion Speakers
English
English

430 Million Speakers

No previous works on low-resource vision tasks.



High-resource vs. Low-resource
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Limited Data

Coarse-Grained Fine-Grained

General Domain <« == Specialized Domain



Circuit diagram classification

Pictorial Representation of a Circuit Label of Circuit Function
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Historic map retrieval

Historic Map Today’s Satellite Map




Mechanical drawing retrieval

3D Rendered Image Three-View Drawing
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Low-Resource Image Transfer Evaluation

Task Formulation Train Val Test
Circuit Diagram Classification  Image Classification 154 100 1,078
Historic Map Retrieval Image-to-Image Retrieval 102 140 409

Mechanical Drawing Retrieval Image-to-Image Retrieval 300 100 754

Number of images (or image pairs) per split

We have collected as much data as we can find freely available online for each task, yet,
the amount of data is still incredibly small showing how low-resource these tasks are.



Poor performance for low-resource vision challenges

Circuit diagram classification W SAM mBLIP ® CLIP ® ImageBind

Historic map retrieval

Mechanical Drawing Retrieval

0 10 20 30 40 50 60 70 80 90 100



Low-Resource Vision Challenges

Challenge I: Data Scarcity > Baseline I: Generated Data for Data Scarcity
Challenge Il: Fine-Grained > Baseline Il: Tokenization for Fine-Grained
Challenge lll: Specialized Domain > Baseline llI: Attention for Specialized Domains

Our goal: adapt foundation models, pre-trained on large-scale
datasets, to low-resource tasks.



Baseline |: Generated Data for Data Scarcity

Low-Resource
Image

Generative
Model

Generative
Model
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Label-Preserving
Augmentation

e

Label-Breaking Augmentation

T e G

Llabel—breaking
Ltask

L = Lk + /ullabel—breaking

We generate images close to the input image where the label is preserved
as well as more diverse images which break the label.



Circuit diagram examples
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Baseline Il: Tokenization for Fine-Grained
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As we have limited data we cannot train a tokenization layer from scratch
Instead, we divide the linear projection kernel into sub-kernels for image patches.
Then create patch-level features with a learned weighting



Baseline Ill: Attention for Specialized
Domains

1. Learn global attention maps — ——
with common patterns particular  =s=., .. .° & 278" = Attention for Specialized Domain
to the specialized domain s TAm

2. For each token, crop its region
from the global attention map.

3. Combine with multi-head self-
attention.

Cropped Map () O Feature Token




Results of baselines for the three challenges

Clrcuit Classification

Toprr e Top=S{ar-T
Zero-Shot Transfer 19.3 45.1
Simple Transformation Cha”enge I:
Random Crop and Flip 19.8 43.3

Mixup 20.8 46.0 Data Scarcity

Cuthix 20.0 45.5
Random Erasing 20.8 46.2
Generative Models

DA-Fusion 19.6 45.1

SyntheticData 20.8 46.0

. ACO
Circuit Classificat 0
Top-1 (%) ‘T b
Zero-Shot Transfer 19 29.1
Fine-Grained a
17

Our Baselines
Generated Data for Data Scarcity

Combination of Baselines

Adaptive-FGSBIR 7 43.2
PLEor 1 44.1
A" 16.2 43.5

el

Challenge II:
Fine-Grained

zation for Fine-Grained

Combination of Baselines

. ﬂ

Ci\it CI¥ification

( %) T Top-5 (%) T
Zero-Shot Transfer 19.3 451

Transfer Learni

in he 18.7 45.9
TONQL 16.4 43.3
3 18.2 45.4
VPT 19.4 45.2
LoRA 15.5 42.2

AdaptFormer 19.8 45 5
Our Baselines
Attention for Specialized Domains

Combination of Baselines

Challenge IlI: Specialized Domain



Effective adapter for several foundation

Mo d e I S Results for Historic Map Retrieval
CLIP BLIP
Zero-Shot Transfer
AdaptFormer
Our Baselines
30 35 0 10 20
Recall@1 1 Recall@11
ImageBind SAM
Zero-Shot Transfer :I
AdaptFormer
Our Baselines
27 32 37 0 5 10 15

Recall@1 1 Recall@11



Qualitative results: hard samples

. \ e e e T ) e [ 3 =
| P Innsbruck, Austria ‘%?
Model Input 553::* Ll | * =~
y ‘
f ; = LT 0]
"Cfuneo,- Italy.
Prediction Motor Driver Audio Amplifier |EEEEESSE /
- _
( (
Groundtruth LED Bell W
. . .

Our predictions are overconfident, often basing predictions on one key region such
as the presence of the battery in the LED circuit.

We cannot yet generalize to rare image styles such as used for the Innsbruck map



Michael Dorkenwald Nimrod Barazani Yuki Asano
2. Space

Michael Dorkenwald, Nimrod Barazani, Cees G M Snoek, Yuki M Asano: PIN:
Positional Insert Unlocks Object Localisation Abilities in VLMs. In: CVPR, 2024.

& CVPR
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w/ Kien Nguyen et al. CVPR 2022 / ICLR 2024

Special purpose object localizatioW s Very"

mature




Can vision-language models localize objects?

The bounding box
is a box that is
you want to find. used to help the <empty string>
person to get into

| the air.

Provide a bounding box
around the person

A




Perhaps we need another type of prompt?

The person is located
at grid cells

A

33 34 35 36 37 38 39 40

43 44 45 46 47 48

Given an image with a
chessboard grid overlay,
the grid coordinates
where the person is
located are

E

T




Can vision-language models do spatial reasoning?

To the left of
the pizzais a ‘

A

Above the
pizzais a

B

To the right of '_' 5
the pizzaisa BB

C




Our proposal

EE JOk

Frozen VLM, PIN: positional Self-generated
e.g. Flamingo learnable prompt supervision signal




Vanilla Flamingo next token prediction

monkey.
Visi Fusi I
ISion . usion |
Encoder - Network | Large Language Model
I
Prompt I

In the image is a

Frozen VLM

Alayrac, et al. Flamingo: a visual language model for few-shot learning. In NeurlPS, 2022.



Positional Insert (PIN)

Vision

Encoder Network

‘ Prompt T

In the image is a monkey located at

|
Fusion |

— @ — [ | Large Language Model J
|

Trained weights
Frozen VLM

N

Constant Sinusoidal
embedding

_. MLP



Positional Insert (PIN)

?

T

|
Fusion |

— EB — [ | Large Language Model ]
|

Vision

Encoder Network

‘ Prompt I

In the image is a dog located at

il
iiu"' “

Frozen VLM Constant Sinusoidal
embedding

Trained weights ‘ — | MLP



Do we need labeled data?

g ) 150, 10, 224, 120
Annotated data | E(G) [ T ]
Visi Fusion |
Ision |
crase e EB | Network | Large Language Model
I

‘ Prompt I

In the image is a dog located at

,,,,.,.,' ul(‘
il
o il
Trained weights }H."‘H,

Frozen VLM Constant Sinusoidal
embedding

_. MLP



Self-generated supervision signal

Generate objects via Stable Diffusion for 1203 categories from LVIS.
Paste objects into BG20k background dataset

Hanqging Zhao et al. X-Paste: Revisiting Scalable Copy-Paste for Instance Segmentation using CLIP and Stable Diffusion. ICML 2023.
Jizhizi Li et al. Bridging composite and real: towards end-to-end deep image matting. IJCV 2022.



Self-generated supervision signal

—_ P

Pasting |—> Pasting

Background




Training

Self-generated supervision



Training: next-token prediction

[150, 10, 224, 120]

I
Fusion |
—»[ Network | Large Language Model ]
I
Prompt I

In the image is a monkey located at

'II\H\

Trained weights H H ‘ — | MLP

Frozen VLM Constant Sinusoidal
embedding Only the MLP parameters are optimized



Inference

[80, 80, 200, 180]

I
Vision Fusion |
Encoder @ "| Network | Large Language Model
u I
Prompt I

In the image is a banana located at

lH””IH

N

Frozen VLM Constant Sinusoidal
embedding

Trained weights ‘ — | MLP



The PIN module unlocks spatial localisation




The PIN module unlocks spatial localisation




PIN outperforms PEFT alternatives

0.35
0.35] 0.35
Open Flamingo 033 =33 I BLIP-2
0.30] I
0.25] I S5
0.21
> 0.20 I
e
=
0.15] I
0.12
0.10. 0.10 I
0.05] I
0.00 . \ . | . \ . \ .
random- 10-shotCoOp LLM VPT F VPT VE LoRAVE PIN VPT F  VPT VE
shot

PIN



Piyush Bagad Makarand Tapaswi

3. Time

Piyush Bagad, Makarand Tapaswi, Cees G M Snoek: Test of Time: Instilling
Video-Language Models with a Sense of Time. In: CVPR, 2023.

JUNE 18-22, 2023 ' "

CVPRA2EEA
VANCOUVER, CANADA




The problem

® Foundation models: Language interface + a few (or no) training samples

— AR - S

m .I —) ‘A dog running”

1

[ What does this picture show? Q]




The problem

® Foundation models: Language interface + a few (or no) training samples
® Particularly attractive for videos given high cost

— A k1d eatlng 1ce-cream

[ What does this video show? Q}




The problem

® Do video foundation models truly understand time?

— A k1d eatling 1ce-cream’

[ What does this video show? Q}




The problem

® Do video foundation models truly understand time?
® Our idea for a “test of time”: ask questions that have temporal relations

—— g ]l se’”

1

[The baby eats ice-cream before walking down hill? True or Fa&}




The test of time

® Synthetic benchmark
® Simple ‘true’ or ‘false’ predictions

v A red circle appears before a yellow circle A red circle appears

° A yellow circle appears before a red circle A yellow circle appears
B Time order task Control task



Existing models fail this test of time

® We pick a suite of seven openly available video-language models
®* While excelling at the control task, they all fail at the time-order task

Chance

BridgeFormer

VindLU

A red circle appears

I
[
A yellow circle appears before a red circle : A yellow circle appears

I Time order task 8 Control task

A red circle appears before a yellow circle

Frozen in Time

VideoCLIP

CenterCLIP

i

CLIP2Video

-=-='" Chance
I I Control task
P Time order task

CLIP4Clip

|

20 40 60 80 100
Accuracy (%)

=}



How to instil this sense of time?

® Post-pretraining: instead of training from scratch, we run another round of pre-training



How to instil this sense of time?

® Data: any dense video-captioning dataset!

Video Stream

Event X

Description(X)

Description(Y). before Description(X)

Video

Atime

EventY

Description(Y)

y

Description(X) before Description(Y)

Q O

Description(X) before Description(Y)



How to instil this sense of time?

® Base model: We start with a pre-trained model: VideoCLIP

Video
representation

S3D features

Video Encoder Mean

‘ ' ‘———) (BERT) e POOliNG  s—

00 0— i ——»I

(BERT)

[CLS] Baby eats ice-cream
Sentence
representation

Xu et al, VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding, EMNLP 2021.



How to instill this sense of time?

A red circle appears
before a yellow circle Usual Positives

Usual Negatives




How to instill this sense of time?

T

A red circle appears A yellow circle appears
beforeayellowcircle | beforeared circle Usual Positives
? h 4
o {
Usual Negatives
L . .
. . Time-order reversed negatives
* *

(same sample)

Time-order reversed
negatives (cross sample)

L, .
., . Time-order reversal
‘ ‘ function




Experiments

Little girl eats from

E | -

cup after the child walks downbhill Putting on shoe/shoes before holding a mirror
I S = B .

(a) TEMPO

A woman is standing in a room holding a hula hoop before she begins to use the hula hoop

(c) Charades

a broom from somewhere before holding a dish
. [ o

p—

The team shakes hands with the opposi

L e T IRA T y TR Y-
g - i p Y 2t
WA D P N

(b) ActivityNet (d) Charades-Ego



Experiments

TEMPO
265
9 80 1
—_
2
S 60/
< 70 |
3
5 55 1
-
¢ 60 1
Q
= 50
=
50 |
0 5 10
Retrieval (R@1)
Random

ActivityNet

0

5 10
Retrieval (R@1)

75

701

65 1

60

55 1

50

Charades

0

5 10

Retrieval (R@1)

® Baseline: VideoCLIP without temporal ordering

*

Charades-Ego

651
60
551
50
0 5 10
Retrieval (R@1)
Ours Desirable area



4. Human values

Work in progress with the UvA Data Science Center HAVA-Lab.

UNIVERSITY OF AMSTERDAM
X

Data Science Centre
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UNIVERSITY OF AMSTERDAM

X .
Data Science Centre

HAVA-Lab

What defines human-aligned video-Al, how

can it be made computable, and what o s -
. . . asca

determines its societal acceptance? Snoek Mettes Groen

How can we embed laws, societal values, and
ethics in video Al’s algorithm lifecycle?

Heleen Tobias

Is there one solution for all, or do we need
specialized algorithms for each domain?

Marie Erwin Stevan Marlies
Lindegaard Berkhout Rudinac Schijven



Conclusions

Foundation models are amazing.

But have perceptual difficulty with scarcity, space, time and human values.

Small-capacity adapters and synthetic data generation may help.

Bonus: both sustainable and responsible.



Contact info

V | S Prof. dr. Cees Snoek
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