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Motivation: 3D reconstruction is hard!
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Video Generation: Sora
[OpenAI, 2024]
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Video Generation: Sora
[OpenAI, 2024]

Limited 3D consistency
due to lack of 3D modeling!



7

Vanishing Points!?
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Video Generation: Sora
[OpenAI, 2024]
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Dall-E3

Man looking through telescope Woman on a surfboard
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“Sora is also a Physics Engine!
[OpenAI, 2024]

“Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup of coffee”
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“Sora is also a Physics Engine!
[OpenAI, 2024]

Ski jumping man
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Scene Representations
[https://arxiv.org/pdf/1803.03352.pdf]
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(a) CAD Model (b) Point Cloud (c) Mesh (d) Voxelized (e) Octree (f) TSDF

Fig. 2: Visualization of different types of 3D data representations for Stanford bunny.

Representation Data Memory Shape Computation
Dimension Efficiency Details Efficiency

Point cloud 3D ?? ??? ???
Voxel 3D ??? ?? ???
Mesh 3D ? ??? ??
Depth 2.5D ??? ? ???
Octree 3D ??? ?? ??
Stixel 2.5D ??? ? ?
TSDF 3D ?? ??? ??
CSG 3D ??? ??? ?

TABLE 1: Comparison between data representations. The

symbols ?, ?? and ??? represent low, moderate and high

respectively.

sentations and datasets for RGB-D and 3D data in the next

two sections.

3 DATA REPRESENTATIONS

In the following, we highlight the popular 2.5D and 3D data

representations used to represent and analyze scenes. An

illustration of different representations is provided in Fig. 2,

while a comparative analysis is reported in Table 1.

• Point Cloud: A ‘point cloud’ is a collection of data points

in 3D space. The combination of these points can be used

to describe the geometry of the individual object or the

complete scene. Every point in the point cloud is defined by

x, y and z coordinates, which denote the physical location

of the point in 3D. Range scanners (typically based on laser,

e.g., LiDAR) are also used to capture 3D point clouds of

objects or scenes.

• Voxel Representation: A voxel (volumetric element) is the

3D counterpart of a pixel (picture element) in a 2D image.

Voxelization is a process of converting a continuous geomet-

ric object into a set of discrete voxels that best approximate

the object. A voxel can be considered as a cubic volume

representing a unit sample on a uniformly spaced 3D grid.

Usually, a voxel value is mapped to either 0 or 1, where 0

indicates an empty voxel while 1 indicates the presence of

range points inside the voxel.

• 3D M esh: The mesh representation encodes a 3D object

geometry in terms of a combination of edges, vertices, and

faces. A mesh that represents the surface of a 3D object

using polygon (e.g., triangles or quadrilaterals) shaped faces

is termed as the ‘polygon mesh.’ A mesh might contain

arbitrary polygons but a ‘regular mesh’ is composed of

only a single type of polygons. A commonly used mesh

is a triangular mesh that is composed entirely of triangle

shaped faces. In contrast to polygonal meshes, ‘volumetric

meshes’ represent both the interior volume along with the

object surface.

• Depth Channel and Encodings: A depth channel in a 2.5D

representation shows the estimated distance of each pixel

from the viewer. This raw data has been used to obtain more

meaningful encodings such as HHA [28]. Specifically, this

geocentric embedding encodes depth image using height

above the ground, horizontal disparity and angle with grav-

ity for each pixel.

• Octree Representations: An octree is a voxelized repre-

sentation of a 3D shape that provides high compactness.

The underlying data structure is a tree where each node

has eight children. The idea is to divide 3D occupancy of

an object recursively into smaller regions such that empty

and similar voxels are represented with bigger voxels. An

octree of an object is obtained by a hierarchical process

as follows: start by considering 3D object occupancy as a

single block, divide it into eight octants. Then, octants that

partially contain an object part are further divided. This

process continues until a minimum allowed size is reached.

The octants can be labeled based on the object occupancy.

• Stixels: The idea of stixels is to reduce the gap between

pixel and object level information, thus reducing thenumber

of pixels in a scene to few hundreds [41]. In stixel repre-

sentation, a 3D scene is represented by vertically oriented

rectangles with a certain height. Such a representation is

specifically useful for traffic scenes, but limited in its capa-

bility to encode generic 3D scenes.

• Truncated Signed Distance Function: Truncated signed

distance function (TSDF) is another volumetric representa-

tion of a 3D scene. Instead of mapping a voxel to 0 or 1,

each voxel in the 3D grid is mapped to the signed distance

to the nearest surface. The signed distance is negative if the

voxel lies with in the shape and positive otherwise. RGB-

D camera (e.g., Kinect) representations are based on TSDF

further fuse them to obtain a complete 3D model.

• Constructive Solid Geometry: Constructive solid geom-

etry (CSG) is a building block technique in which simple

objects such as cubes, spheres, cones, and cylinders are com-

bined with a set of operations such as union, intersection,

addition, and subtraction to model complex objects. CSG

is represented as a binary tree with primitive shapes and

the combination operations as its nodes. This representation

is often used for CAD models in computer vision and

graphics.
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Learned / Deep Representations:
OccNet [https://arxiv.org/pdf/1812.03828.pdf]
DeepSDF [https://arxiv.org/pdf/1901.05103.pdf]
IM-Net [https://arxiv.org/pdf/1812.02822.pdf] [NeRF - Neural Radiance Fields, ECCV 2020]

[DeepVoxels CVPR 2019]

Neural implicit

[Peng et al., Convolutional Occupancy Networks, ECCV 2020]

https://arxiv.org/pdf/1803.03352.pdf
https://arxiv.org/pdf/1812.03828.pdf
https://arxiv.org/pdf/1901.05103.pdf
https://arxiv.org/pdf/1812.02822.pdf
http://www.cvlibs.net/publications/Peng2020ECCV.pdf
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Scene Representations
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two sections.

3 DATA REPRESENTATIONS

In the following, we highlight the popular 2.5D and 3D data

representations used to represent and analyze scenes. An

illustration of different representations is provided in Fig. 2,

while a comparative analysis is reported in Table 1.

• Point Cloud: A ‘point cloud’ is a collection of data points

in 3D space. The combination of these points can be used

to describe the geometry of the individual object or the

complete scene. Every point in the point cloud is defined by

x, y and z coordinates, which denote the physical location

of the point in 3D. Range scanners (typically based on laser,

e.g., LiDAR) are also used to capture 3D point clouds of

objects or scenes.

• Voxel Representation: A voxel (volumetric element) is the

3D counterpart of a pixel (picture element) in a 2D image.

Voxelization is a process of converting a continuous geomet-

ric object into a set of discrete voxels that best approximate

the object. A voxel can be considered as a cubic volume

representing a unit sample on a uniformly spaced 3D grid.

Usually, a voxel value is mapped to either 0 or 1, where 0

indicates an empty voxel while 1 indicates the presence of

range points inside the voxel.

• 3D M esh: The mesh representation encodes a 3D object

geometry in terms of a combination of edges, vertices, and

faces. A mesh that represents the surface of a 3D object

using polygon (e.g., triangles or quadrilaterals) shaped faces

is termed as the ‘polygon mesh.’ A mesh might contain

arbitrary polygons but a ‘regular mesh’ is composed of

only a single type of polygons. A commonly used mesh

is a triangular mesh that is composed entirely of triangle

shaped faces. In contrast to polygonal meshes, ‘volumetric

meshes’ represent both the interior volume along with the

object surface.

• Depth Channel and Encodings: A depth channel in a 2.5D

representation shows the estimated distance of each pixel

from the viewer. This raw data has been used to obtain more

meaningful encodings such as HHA [28]. Specifically, this

geocentric embedding encodes depth image using height

above the ground, horizontal disparity and angle with grav-

ity for each pixel.

• Octree Representations: An octree is a voxelized repre-

sentation of a 3D shape that provides high compactness.

The underlying data structure is a tree where each node

has eight children. The idea is to divide 3D occupancy of

an object recursively into smaller regions such that empty

and similar voxels are represented with bigger voxels. An

octree of an object is obtained by a hierarchical process

as follows: start by considering 3D object occupancy as a

single block, divide it into eight octants. Then, octants that

partially contain an object part are further divided. This

process continues until a minimum allowed size is reached.

The octants can be labeled based on the object occupancy.

• Stixels: The idea of stixels is to reduce the gap between

pixel and object level information, thus reducing thenumber

of pixels in a scene to few hundreds [41]. In stixel repre-

sentation, a 3D scene is represented by vertically oriented

rectangles with a certain height. Such a representation is

specifically useful for traffic scenes, but limited in its capa-

bility to encode generic 3D scenes.

• Truncated Signed Distance Function: Truncated signed

distance function (TSDF) is another volumetric representa-

tion of a 3D scene. Instead of mapping a voxel to 0 or 1,

each voxel in the 3D grid is mapped to the signed distance

to the nearest surface. The signed distance is negative if the

voxel lies with in the shape and positive otherwise. RGB-

D camera (e.g., Kinect) representations are based on TSDF

further fuse them to obtain a complete 3D model.

• Constructive Solid Geometry: Constructive solid geom-

etry (CSG) is a building block technique in which simple

objects such as cubes, spheres, cones, and cylinders are com-

bined with a set of operations such as union, intersection,

addition, and subtraction to model complex objects. CSG

is represented as a binary tree with primitive shapes and

the combination operations as its nodes. This representation

is often used for CAD models in computer vision and

graphics.
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In the following, we highlight the popular 2.5D and 3D data

representations used to represent and analyze scenes. An

illustration of different representations is provided in Fig. 2,

while a comparative analysis is reported in Table 1.

• Point Cloud: A ‘point cloud’ is a collection of data points

in 3D space. The combination of these points can be used

to describe the geometry of the individual object or the

complete scene. Every point in the point cloud is defined by

x, y and z coordinates, which denote the physical location

of the point in 3D. Range scanners (typically based on laser,

e.g., LiDAR) are also used to capture 3D point clouds of

objects or scenes.

• Voxel Representation: A voxel (volumetric element) is the

3D counterpart of a pixel (picture element) in a 2D image.

Voxelization is a process of converting a continuous geomet-

ric object into a set of discrete voxels that best approximate

the object. A voxel can be considered as a cubic volume

representing a unit sample on a uniformly spaced 3D grid.

Usually, a voxel value is mapped to either 0 or 1, where 0

indicates an empty voxel while 1 indicates the presence of

range points inside the voxel.

• 3D M esh: The mesh representation encodes a 3D object

geometry in terms of a combination of edges, vertices, and

faces. A mesh that represents the surface of a 3D object

using polygon (e.g., triangles or quadrilaterals) shaped faces

is termed as the ‘polygon mesh.’ A mesh might contain

arbitrary polygons but a ‘regular mesh’ is composed of

only a single type of polygons. A commonly used mesh

is a triangular mesh that is composed entirely of triangle

shaped faces. In contrast to polygonal meshes, ‘volumetric

meshes’ represent both the interior volume along with the

object surface.

• Depth Channel and Encodings: A depth channel in a 2.5D

representation shows the estimated distance of each pixel

from the viewer. This raw data has been used to obtain more

meaningful encodings such as HHA [28]. Specifically, this

geocentric embedding encodes depth image using height

above the ground, horizontal disparity and angle with grav-

ity for each pixel.

• Octree Representations: An octree is a voxelized repre-

sentation of a 3D shape that provides high compactness.

The underlying data structure is a tree where each node

has eight children. The idea is to divide 3D occupancy of

an object recursively into smaller regions such that empty

and similar voxels are represented with bigger voxels. An

octree of an object is obtained by a hierarchical process

as follows: start by considering 3D object occupancy as a

single block, divide it into eight octants. Then, octants that

partially contain an object part are further divided. This

process continues until a minimum allowed size is reached.

The octants can be labeled based on the object occupancy.

• Stixels: The idea of stixels is to reduce the gap between

pixel and object level information, thus reducing thenumber

of pixels in a scene to few hundreds [41]. In stixel repre-

sentation, a 3D scene is represented by vertically oriented

rectangles with a certain height. Such a representation is

specifically useful for traffic scenes, but limited in its capa-

bility to encode generic 3D scenes.

• Truncated Signed Distance Function: Truncated signed

distance function (TSDF) is another volumetric representa-

tion of a 3D scene. Instead of mapping a voxel to 0 or 1,

each voxel in the 3D grid is mapped to the signed distance

to the nearest surface. The signed distance is negative if the

voxel lies with in the shape and positive otherwise. RGB-

D camera (e.g., Kinect) representations are based on TSDF

further fuse them to obtain a complete 3D model.

• Constructive Solid Geometry: Constructive solid geom-

etry (CSG) is a building block technique in which simple

objects such as cubes, spheres, cones, and cylinders are com-

bined with a set of operations such as union, intersection,

addition, and subtraction to model complex objects. CSG

is represented as a binary tree with primitive shapes and

the combination operations as its nodes. This representation

is often used for CAD models in computer vision and

graphics.
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Implicit Volumetric Representation
• Voxel grid: sample a volume containing the surface of interest uniformly

• Label each grid point as lying inside or outside the surface 

• The modeled surface is represented as an isosurface (e.g. SDF = 0 or OF = 0.5) of the labeling 
(implicit) function

• Advantages: simple handling of topological changes, watertight surfaces, no self-occlusions
Disadvantages: Large memory requirement, bad scalability to large scenes (cubic growth)

SDF = 0

SDF > 0

SDF < 0

Signed distance function Occupancy function 

OF = 0.5
OF = 0

OF = 1
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Represent Scenes with TSDFs

Geometric Reconstruction Lecture[Newcombe & Lovegrove, Geometric Reconstruction Lecture]

https://courses.cs.washington.edu/courses/csep576/18sp/lectures/5_2_reconstruction.pdf
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Real-time Mapping - KinectFusion
[Newcombe et al, ISMAR 2011]
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Scene Representations
[https://arxiv.org/pdf/1803.03352.pdf]
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ric object into a set of discrete voxels that best approximate

the object. A voxel can be considered as a cubic volume

representing a unit sample on a uniformly spaced 3D grid.

Usually, a voxel value is mapped to either 0 or 1, where 0

indicates an empty voxel while 1 indicates the presence of

range points inside the voxel.
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is termed as the ‘polygon mesh.’ A mesh might contain

arbitrary polygons but a ‘regular mesh’ is composed of

only a single type of polygons. A commonly used mesh

is a triangular mesh that is composed entirely of triangle

shaped faces. In contrast to polygonal meshes, ‘volumetric

meshes’ represent both the interior volume along with the

object surface.

• Depth Channel and Encodings: A depth channel in a 2.5D

representation shows the estimated distance of each pixel

from the viewer. This raw data has been used to obtain more

meaningful encodings such as HHA [28]. Specifically, this

geocentric embedding encodes depth image using height

above the ground, horizontal disparity and angle with grav-

ity for each pixel.

• Octree Representations: An octree is a voxelized repre-

sentation of a 3D shape that provides high compactness.

The underlying data structure is a tree where each node

has eight children. The idea is to divide 3D occupancy of

an object recursively into smaller regions such that empty

and similar voxels are represented with bigger voxels. An

octree of an object is obtained by a hierarchical process

as follows: start by considering 3D object occupancy as a

single block, divide it into eight octants. Then, octants that

partially contain an object part are further divided. This

process continues until a minimum allowed size is reached.

The octants can be labeled based on the object occupancy.

• Stixels: The idea of stixels is to reduce the gap between

pixel and object level information, thus reducing thenumber

of pixels in a scene to few hundreds [41]. In stixel repre-

sentation, a 3D scene is represented by vertically oriented

rectangles with a certain height. Such a representation is

specifically useful for traffic scenes, but limited in its capa-

bility to encode generic 3D scenes.

• Truncated Signed Distance Function: Truncated signed

distance function (TSDF) is another volumetric representa-

tion of a 3D scene. Instead of mapping a voxel to 0 or 1,

each voxel in the 3D grid is mapped to the signed distance

to the nearest surface. The signed distance is negative if the

voxel lies with in the shape and positive otherwise. RGB-

D camera (e.g., Kinect) representations are based on TSDF

further fuse them to obtain a complete 3D model.

• Constructive Solid Geometry: Constructive solid geom-

etry (CSG) is a building block technique in which simple

objects such as cubes, spheres, cones, and cylinders are com-

bined with a set of operations such as union, intersection,

addition, and subtraction to model complex objects. CSG

is represented as a binary tree with primitive shapes and

the combination operations as its nodes. This representation

is often used for CAD models in computer vision and
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Neural Implicit Scene Representations

Voxel Grid Point cloud Mesh (Neural) Classifier

Learned / Deep Representations:
OccNet [https://arxiv.org/pdf/1812.03828.pdf]
DeepSDF [https://arxiv.org/pdf/1901.05103.pdf]
IM-Net [https://arxiv.org/pdf/1812.02822.pdf]

SDF / 
Occupancy
[Color, …]

MLP

https://arxiv.org/pdf/1812.03828.pdf
https://arxiv.org/pdf/1901.05103.pdf
https://arxiv.org/pdf/1812.02822.pdf
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Neural Implicit Representations
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Scene Representations
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Usually, a voxel value is mapped to either 0 or 1, where 0

indicates an empty voxel while 1 indicates the presence of
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geometry in terms of a combination of edges, vertices, and

faces. A mesh that represents the surface of a 3D object

using polygon (e.g., triangles or quadrilaterals) shaped faces

is termed as the ‘polygon mesh.’ A mesh might contain

arbitrary polygons but a ‘regular mesh’ is composed of

only a single type of polygons. A commonly used mesh

is a triangular mesh that is composed entirely of triangle

shaped faces. In contrast to polygonal meshes, ‘volumetric

meshes’ represent both the interior volume along with the

object surface.

• Depth Channel and Encodings: A depth channel in a 2.5D

representation shows the estimated distance of each pixel

from the viewer. This raw data has been used to obtain more

meaningful encodings such as HHA [28]. Specifically, this

geocentric embedding encodes depth image using height

above the ground, horizontal disparity and angle with grav-

ity for each pixel.

• Octree Representations: An octree is a voxelized repre-

sentation of a 3D shape that provides high compactness.

The underlying data structure is a tree where each node

has eight children. The idea is to divide 3D occupancy of

an object recursively into smaller regions such that empty

and similar voxels are represented with bigger voxels. An

octree of an object is obtained by a hierarchical process

as follows: start by considering 3D object occupancy as a

single block, divide it into eight octants. Then, octants that

partially contain an object part are further divided. This

process continues until a minimum allowed size is reached.

The octants can be labeled based on the object occupancy.

• Stixels: The idea of stixels is to reduce the gap between

pixel and object level information, thus reducing thenumber

of pixels in a scene to few hundreds [41]. In stixel repre-

sentation, a 3D scene is represented by vertically oriented

rectangles with a certain height. Such a representation is

specifically useful for traffic scenes, but limited in its capa-

bility to encode generic 3D scenes.

• Truncated Signed Distance Function: Truncated signed

distance function (TSDF) is another volumetric representa-

tion of a 3D scene. Instead of mapping a voxel to 0 or 1,

each voxel in the 3D grid is mapped to the signed distance

to the nearest surface. The signed distance is negative if the

voxel lies with in the shape and positive otherwise. RGB-

D camera (e.g., Kinect) representations are based on TSDF

further fuse them to obtain a complete 3D model.

• Constructive Solid Geometry: Constructive solid geom-

etry (CSG) is a building block technique in which simple

objects such as cubes, spheres, cones, and cylinders are com-

bined with a set of operations such as union, intersection,

addition, and subtraction to model complex objects. CSG

is represented as a binary tree with primitive shapes and

the combination operations as its nodes. This representation

is often used for CAD models in computer vision and

graphics.
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Learned / Deep Representations:
OccNet [https://arxiv.org/pdf/1812.03828.pdf]
DeepSDF [https://arxiv.org/pdf/1901.05103.pdf]
IM-Net [https://arxiv.org/pdf/1812.02822.pdf]

[NeRF - Neural Radiance Fields, ECCV 2020]

[DeepVoxels CVPR 2019]

[Peng et al., Convolutional Occupancy Networks, ECCV 2020]

3D Gaussian Splatting

Neural implicit

Plenoxels / Plenoctrees

implicit

https://arxiv.org/pdf/1803.03352.pdf
https://arxiv.org/pdf/1812.03828.pdf
https://arxiv.org/pdf/1901.05103.pdf
https://arxiv.org/pdf/1812.02822.pdf
http://www.cvlibs.net/publications/Peng2020ECCV.pdf
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Scene Representations for 3D Reconstruction

YouTube[Metthew Brennan, “Photogrammetry / NeRF / Gaussian Splatting comparison”, YouTube 2023]

https://www.youtube.com/watch?v=KFOy354zf9E
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Structure-from-Motion
Pipeline

4Large-scale	3D	Modeling	from	Crowdsourced	Data

Unstructured	Images

Scene	Graph

Assoc. Sparse	Model

SFM Dense	Model

MVS

Image Set

Pipeline

4Large-scale	3D	Modeling	from	Crowdsourced	Data

Unstructured	Images

Scene	Graph

Assoc. Sparse	Model

SFM Dense	Model

MVS

Scene Graph (Semi-) Dense Model

Sparse Model

[Large-scale 3D Modeling Tutorial, CVPR 2017] 
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Structure-from-Motion (SfM)

COLMAP[Johannes L. Schönberger, Jan-Michael Frahm. Structure-from-Motion Revisited. CVPR, 2016; COLMAP]

https://colmap.github.io/
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Neural Radiance Fields
(NeRF)2 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

Input  Images Opt imize NeRF Render new views

Fig. 1: We present a method that opt imizes a cont inuous 5D neural radiance

field representat ion (volume density and view-dependent color at any cont inuous

locat ion) of a scene from a set of input images. We use techniques from volume

rendering to accumulatesamplesof thisscenerepresentat ion along rays to render

the scene from any viewpoint . Here, we visualize the set of 100 input views of the

synthet ic Drums scene randomly captured on a surrounding hemisphere, and we

show two novel views rendered from our opt imized NeRF representat ion.

points, 2) use those points and their corresponding 2D viewing direct ions as

input to the neural network to produce an output set of colors and densit ies,

and 3) use classical volume rendering techniques to accumulate those colors and

densit ies into a 2D image. Because this process is naturally di↵erent iable, we

can use gradient descent to opt imize this model to represent a complex scene by

minimizing the error between each observed image and the corresponding views

rendered from our representat ion. Minimizing this error across mult iple views

encourages the network to predict a coherent model of the scene by assigning

high volume densit ies and accurate colors to the locat ions that contain the true

underlying scene content . Figure 2 visualizes this overall pipeline.

We find that the basic implementat ion of opt imizing a neural radiance field

representat ion for a complex scene does not converge to a sufficient ly high-

resolut ion representat ion and is inefficient in the required number of samples per

camera ray. We address these issues by t ransforming input 5D coordinates with

a posit ional encoding that enables the MLP to represent higher frequency func-

t ions, and we propose a hierarchical sampling procedure to reduce the number of

queries required to adequately sample this high-frequency scene representat ion.

Our approach inherits the benefits of volumetric representat ions: both can

represent complex real-world geometry and appearance and are well suited for

gradient -based opt imizat ion using projected images. Crucially, our method is

designed to overcome the prohibit ive storage costs of discretized voxel grids

when modeling complex scenes at high-resolut ions.

In summary, our key technical cont ribut ions are:

– An approach for represent ing cont inuous scenes with complex geometry and

materials as 5D neural radiance fields, parameterized as basic MLP networks.

– A di↵erent iable rendering procedure based on classical volume rendering tech-

niques, which we use to opt imize these representat ions from standard RGB

images. This includes a hierarchical sampling strategy to allocate the MLP’s

capacity towards space with visible scene content .



26

Neural Implicit Representations

[Color,
Density]

[3D point, 
viewing
angle] ≈ Occupancy
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Why view-dependent colors?
[NeRF: Mildenhall et al., 

ECCV 2020]
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Neural Radiance Fields (NeRFs)
[NeRF: Mildenhall et al., 

ECCV 2020]
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Neural Radiance Fields (NeRFs)
[NeRF: Mildenhall et al., 

ECCV 2020]
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Neural Radiance Fields (NeRFs)
[NeRF: Mildenhall et al., 

ECCV 2020]
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Gaussian Splatting
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Point Splatting

[Zwicker et al. 2001; Yifan Wang,  2019]
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Gaussian Splatting

[Matsuki et al., Gaussian Splatting SLAM, CVPR 2024]

https://rmurai.co.uk/projects/GaussianSplattingSLAM/
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Gaussian Splatting

[pinkpocketTV, YouTube 2024]

https://www.youtube.com/watch?v=xdDzChfFY_A
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Hybrid NeRF / GS: RadSplat

[Niemeyer et al., RadSplat: Radiance Field-Informed Gaussian Splatting for Robust Real-Time Rendering with 900+ FPS, Arxiv 2024]

https://m-niemeyer.github.io/radsplat
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Neural Implicit Representations

ConvONet [Peng et al., ECCV’20] NeRF [Mildenhall et al., ECCV’20]
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Simultaneous Localization and Mapping
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Simultaneous Localization and Mapping
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Neural Implicit SLAM: iMAP
[iMAP: Sucar, Liu, Ortiz, Davison, 

ICCV 2021]



40NICE-SLAM[Zhu et al., NICE-SLAM, CVPR 2022]

Dense SLAM with a Neural Implicit Scene Represenation
[Zhu, Peng, Larsson, Xu, Bao,

Cui, Oswald, Pollefeys, CVPR’22]

https://pengsongyou.github.io/nice-slam
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Mapping

Dense SLAM with a Neural Implicit Scene Represenation

NICE-SLAM[Zhu et al., NICE-SLAM, CVPR 2022]

[Zhu, Peng, Larsson, Xu, Bao,
Cui, Oswald, Pollefeys, CVPR’22]

https://pengsongyou.github.io/nice-slam
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NICER-SLAM: RGB-only SLAM
[Zhu, Peng, Larsson, Cui, Oswald,

Geiger, Pollefeys, 3DV’24]
Best Paper Honorable Mention Award
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NICER-SLAM: RGB-only SLAM

[Zhu, Peng, Larsson, Cui, Oswald, Geiger, Pollefeys, NICER-SLAM , Arxiv 2023]

https://pengsongyou.github.io/nice-slam
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Gaussian-SLAM: Dense SLAM with Gaussian Splatting
[Yugay, Li, Gevers,
Oswald, Arxiv’23]

Radience field sampling &
feature aggregation

Set of Gaussians encodes geometry and color

SDF
Color
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Gaussian-SLAM: Dense SLAM with Gaussian Splatting
[Yugay, Li, Gevers,
Oswald, Arxiv’23]

ESLAM Point-SLAM

Gaussian-
SLAM GT
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MAGiC-SLAM: Multi-Agent Gaussian SLAM
[Yugay, Gevers,

Oswald, Arxiv’24]
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Splat-SLAM
[Sandtröm, Tateno, Oechsle, Niemeyer,

Oswald, Tombari, Arxiv’24]

Globally Optimized RGB-only SLAM with 3D Gaussians

Rendering

Mapping

Keyframe Pose

RGB

Depth

Proxy Depth 𝐷

Estimated Keyframe Depth 𝐷𝑚𝑜𝑛𝑜
Monocular Depth 
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Compute Proxy DepthTracking

Multi-view
Filter

Keyframe
Buffer

Loop Closure Global BALocal BA

Keyframe
Selection

DSPO Layer

Conv GRU Flow Revision 
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Optimize Depth, Scale, Pose
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Results: Rendering on TUM-RGBD
[Sandtröm, Tateno, Oechsle, Niemeyer,

Oswald, Tombari, Arxiv’24]

GlORIE-SLAM MonoGS Ours Ground Truth
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Results: Color & Depth Rendering on Replica
[Sandtröm, Tateno, Oechsle, Niemeyer,

Oswald, Tombari, Arxiv’24]
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Results: Rendering on ScanNet
[Sandtröm, Tateno, Oechsle, Niemeyer,

Oswald, Tombari, Arxiv’24]
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Results: Reconstruction on Replica
[Sandtröm, Tateno, Oechsle, Niemeyer,

Oswald, Tombari, Arxiv’24]

GlORIE-SLAM MonoGS Ours Ground Truth
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Deblur Gaussian SLAM

CVPR

#16311
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Deblur Gaussian Splatting SLAM

Anonymous CVPR submission

Paper ID 16311

Figure 1. Deblur-SLAM can successfully track the camera and reconstruct sharp maps for highly motion-blurred sequences. We directly

model motion blur, which enables us to achievehigh-quality reconstructions, both on challenging synthetic (top) and real (bottom) data.

Abstract

Wepresent Deblur-SLAM, a robust RGB SLAM pipeline de-001

signed to recover sharp reconstructions frommotion-blurred002

inputs. The proposed method bridges the strengths of both003

frame-to-frame and frame-to-model approaches to model004

sub-frame camera trajectories that lead to high-fidelity re-005

constructions in motion-blurred settings. Moreover, our006

pipeline incorporates techniques such asonline loop closure007

and global bundleadjustment to achievea denseand precise008

global trajectory. We model the physical image formation009

process of motion-blurred images and minimize the error010

between the observed blurry images and rendered blurry im-011

ages obtained by averaging sharp virtual sub-frame images.012

Additionally, by utilizing a monocular depth estimator along-013

side the online deformation of Gaussians, we ensure precise014

mapping and enhanced image deblurring. The proposed015

SLAM pipeline integrates all these components to improve016

the results. We achieve state-of-the-art results for sharp017

map estimation and sub-frame trajectory recovery both on018

synthetic and real-world blurry input data.019

1. Introduction 020

The challenge of reconstructing the real world with high 021

fidelity has long been a core problem in computer vision, 022

essential for applications such as robotic navigation, VR/AR, 023

architecture, and autonomous vehicles. Achieving accurate, 024

detailed representations of physical environments is crucial, 025

and dense visual Simultaneous Localization and Mapping 026

(SLAM) systems address this by estimating aprecise recon- 027

struction of an environment while simultaneously localizing 028

the camera frames. 029

Traditional 3D SLAM approaches typically rely on geo- 030

metric representations, implemented in various forms, such 031

asweights of an MLP [1, 39, 45, 64], features anchored in 032

densegrids[5, 31, 44, 54, 65, 76, 77, 90, 91], hierarchical oc- 033

trees[80] and points/surfels [27, 55, 69], mesh [3], and voxel 034

hashing [8, 40, 49, 86, 87]. Recent visual SLAM approaches 035

further capture visual appearance, drawing on advances in 036

Neural RadianceFields(NeRF) [42] and itsvariants [28, 43], 037

allowing for photorealistic image synthesis of environments. 038

These advances enable new possibilities in complex down- 039

stream tasks, including detailed semantic scene understand- 040
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essential for applications such as robotic navigation, VR/AR, 023

architecture, and autonomous vehicles. Achieving accurate, 024

detailed representations of physical environments is crucial, 025

and dense visual Simultaneous Localization and Mapping 026

(SLAM) systems address this by estimating aprecise recon- 027

struction of an environment while simultaneously localizing 028

the camera frames. 029

Traditional 3D SLAM approaches typically rely on geo- 030

metric representations, implemented in various forms, such 031

as weights of an MLP [1, 39, 45, 64], features anchored in 032

densegrids[5, 31, 44, 54, 65, 76, 77, 90, 91], hierarchical oc- 033

trees [80] and points/surfels [27, 55, 69], mesh [3], and voxel 034

hashing [8, 40, 49, 86, 87]. Recent visual SLAM approaches 035

further capture visual appearance, drawing on advances in 036

Neural RadianceFields(NeRF) [42] and itsvariants [28, 43], 037

allowing for photorealistic image synthesis of environments. 038

These advances enable new possibilities in complex down- 039

stream tasks, including detailed semantic scene understand- 040
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Blurry Input Reconstruction
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Deblur Gaussian SLAM
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Language and 3D

[LERF: Language Embedded Radiance Fields, ICCV 2023]
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Open-vocabulary Online SLAM
[Martins, Oswald, Civera, arxiv’24]
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Auto-Vocabulary Segmentation2 ECCV 2024 Submission # 9036

Fixed-Vocabulary Segmentation Open-Vocabulary Segmentation Auto-Vocabulary Segmentation

Image Image Image
Predefined Dataset 
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User-Specified Classes

Generated Classes

Segmented ImageSegmented Image Segmented Image

F ig. 1: D i ffer ent Sem ant ic Segm ent at ion Tasks in Com par ison. In t radit ional

Semant ic Segmentat ion, an image is segmented into fixed, predefined dataset classes

used during annotat ion. In Open-Vocabulary Segmentat ion, the user specifieswhich ob-

ject categories (from the open vocabulary) need to be segmented. In Auto-Vocabulary

Segmentat ion, relevant object categories are generated from the image automat ically,

enabling a t rue open-ended underst anding of scenes without a human in the loop.
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Fig. 2: A u t o Seg Exem plar y R esul t s. While established segmentat ion datasets

have a fixed set of annotat ion categories, our method is able to ident ify and segment

object categories beyond the fixed-set ground t ruth, such as cub, dachshund or pagoda.

Images are from the PASCAL VOC [9] and ADE20K [41] datasets.

the ability to direct ly reason over local regions in the image. Previous attempts040 040

have employed a two-stage approach where masked regions are fed to the VLMs041 041

to produce CLIP embeddings, which are subsequent ly correlated with text en-042 042

codings of text prompts to perform classificat ion [7,17,38]. Other works direct ly043 043

align per-pixel embeddings with text embeddings ret rieved from CLIP [15] based044 044

on text prompts provided by the user at test t ime. While training these mod-045 045

els, the text prompts usually correspond to the ground truth class names of the046 046

dataset in quest ion. In this paper, we take the capabilit ies of VLMs one step047 047

further and tackle a more challenging task in which the relevant class names048 048

are automat ically generated. We enable Auto-Vocabulary Semantic Segmenta-049 049

tion (AVS), in which the goal is to produce accurate object segmentat ion and050 050

their pixel-level classificat ions for any class without the need for textual input051 051

from the user, predefined class names, addit ional data, t raining or fine-tuning.052 052

[Ülger, Kulicki, Asano, Oswald, Arxiv’23]
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the ability to direct ly reason over local regions in the image. Previous at tempts040 040

have employed a two-stage approach where masked regions are fed to the VLMs041 041

to produce CLIP embeddings, which are subsequent ly correlated with text en-042 042

codings of text prompts to perform classificat ion [7,17,38]. Other works direct ly043 043

align per-pixel embeddings with text embeddings retrieved from CLIP [15] based044 044

on text prompts provided by the user at test t ime. While t raining these mod-045 045

els, the text prompts usually correspond to the ground t ruth class names of the046 046

dataset in quest ion. In this paper, we take the capabilit ies of VLMs one step047 047

further and tackle a more challenging task in which the relevant class names048 048

are automat ically generated. We enable Auto-Vocabulary Semantic Segmenta-049 049

tion (AVS), in which the goal is to produce accurate object segmentat ion and050 050

their pixel-level classificat ions for any class without the need for textual input051 051

from the user, predefined class names, addit ional data, t raining or fine-tuning.052 052
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3D Auto-Vocabulary Segmentation for LiDAR
[Wie, Ülger, Karimi

Gevers, Oswald, Arxiv’23]
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Conclusion and Take-away

• 3D / 4D computer vision algorithms train faster and require less training data (vs. 2D)

• 3D modeling, but 2D supervision

• Scene understanding requires memory

• Photographic and deformable memory improves accuracy & enables new applications 

• Self-supervised learning via re-rendering error minimization

• Scene representation is important (local updates, deformable, catastrophic forgetting)

• SLAM can be a useful stepping stone for continual scene understanding
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Future Directions

• Beyond semantics: multi-modal output
open-vocabulary & foundation models

• 3D-Language maps and spatial 
language-based reasoning

• Learning and controlling forgetting (keeping track of 
task-relevant changes)

• Collaborative / distributed asynchronous 
learning with multiple agents

• Physics-based scene representations
(metric units, weights, gravity, etc.)

• 3D generative multi-modal models

• Dynamic scenes and temporal 
representations ETH 

LaMAR dataset
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