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GROUNDING FOUNDATION MODELS IN REALITY
PHYSICS- & CAUSALITY-INFORMED WORLD MODELS
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Problem solving instinct of a crow is

CROW VS FRONTIER MODELS just incredible.

ChalGPT

You are on a bench, and | throw red cubes of sugar inside a transparent cylinder like in the
p cture. You really wanna get them, what do you do?

Tc reach the red cubes of sugar inside the transparent cylinder, a few options come to mind:

. Unscrewing the Clamp: The metal strip holding the cyiinder in place is secured with a screw. Ycu could use a screwdriver or a similar
fool to remove the screw, loosen the clamp, and slide the cylinder out to get the cubes.

2. Tilting or Lifting the Cylinder: If possible, try tilting or lifting tha cylinder by loosening it or shifting the pipe without removing the
clamp entirely. This might allow the cubes to slide out.

3. Using a Tool: If you cannct easily remove the cylinder or shift it, you could use a long tool like a stick or a pieca of wire to push the

cubes out of the cylinder from one end.

Which approach seems most viable to you depends on your surroundings and the tools available!

Ok, these are general possibilities. What will you do in this situation. Assume you are a bird and
you can only use your beak.

As a bird, with cnly my beak to rely on, | would likely use a more creative approach:

1. Peck at the Clamp or Screw: | would first try pecking &t the metel clamp or the screw, attempting to loosen it. While | might not be ‘
able to fully remove the screw, pecking repeatedly could loosen the connection enough for me to shift the cylinder. *0 ®

2. Tiltthe Cylinder: If | can’t remove the screw, | would attempt to peck at the bottom or side of the transparent cylinder to tilt cr knock Ge m I n I
it slightly, hoping tc shake the red cubes loose and make them move towards the opening.

3. Insert Beak Inside: If part of the cylinder is cpen or if | car tilt it enough, | would insert my beak inside and try to push the cubes

towards the opening by nudging them, or even pulling cng of th ¥ Jes out with the tip of my teak.

Claude 3 vs ChatGPT vs Gemini



Problem solving instinct of acrow s
justincredible.

QUO VADIS AIl?

| : An article in the Wall Street Journal in wkich | express my opinion on the
‘ N D l | ‘ | N G P |—| Y S | < S & ‘ A l | S A L ‘ Y v IImitations of LLMs and on the potential power of new architectures capable of
Bar understanding the physical world, have persistent memory, can reason and can

plan: ‘our features of intelligent behavior that LLMs are incapable of, but that
your cat poscesses

SPATIAL MEMORY & NAVIGATIOIN | s

OO You and 318 others

R E A S O N | N G :le;c:t ::;:of:;tion point, Fei-Fei Li says.

The renowned Al researcher shares her thoughts on the harc problems that lie
ahead for the field.
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WITH PHYSICS AND CAUSALITY

GROUNDING ROBOT WORLD MODELS

Dynamics/Physics inductive biases

- ———

Causal inductive biases

Embodied inductive biases

4*0( ’

Open World —_—




DREAM TO MANIPULATE

COMPOSITIONAL
MANIPULATION
WORLD MODELS

https://dreamtomanipulate.github.io/DreMa/
w. L. Barcellona, A. Zadaianchuk, D. Allegro, S. Papa, S. Ghidoni




COMPOSITIONAL MANIPULATION WORLDS

OUR INDUCTIVE BIASES

Object-centric Gaussian Splatting Physics Simulation Imagination

o
¥

Gaussians Update —

EXPLICIT GROUNDING == PHOTOREALISTIC RECON@OBJECT-CENTRIC+ EXPLICIT PHYSICS
> COMPOSITIONAL MANIPULATION WORLD MODELS = IMAGINATION
=17 ROBOT IMITATION LEARNING




PHOTOREALISTIC RECONSTRUCTION

Gaussian Splatting is like ‘sparse 3D pixels'’
Real-time rendering

High-quality

Good depth rendering

Fast training

Explicitly grounded representation
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MADE OBJECT-CENTRIC WITH OBJECT ASSETS...

e /ero-shot object localization

— Grounded SAM, DEVA, or our VISAT & LV-VIS2

e Prompts: “object” & "table”

e Segment and group objects across views

Only Image Inputs

[1] Wang, Gavves et al., Towards Open-Vocabulary Video Instance Segmentation, ICCV 2023
[2] Yan, Wang, Gavves et al., VISA: Reasoning Video Object Segmentation via Large Language Models, ECCV 2024



.. WITH "SELF-AWARENESS”

 The robot is also an object asset
e Articulated but with known joints

e Movement given by the URDF file, no need to estimate




... AND MANIPULABLE WITH PYBULLET ...

e |ntegrate explicit physics engines

e Manipulate object assets by
exerting forces on them

e PyBullet requires mesh grids

e Convert Gaussian Splats to Meshes

e "Decode” effect ot manipulations
with Gaussian Splatting

12



... TO RECONSTRUCT PAST TRAJECTORIES

TN Py B B wi bt st T O FALL Gbeme v

BNIOHE WO e:
BN E-BEDE:

e Play seen trajectories

i TR (o
T 1

 And render it from any angle

e "Re-imagining” past experiences

13



... AND IMAGINE NEW ONES

e Since we have a 'digital twin’

e That reconstructs photorealistically
e Understands physics

e And can be intervened with

e \We can "imagine” novel trajectories

14



EQUIVARIANT OBJECT-ROBOT TRANSFORMATIONS

=

“___

2 i’

Transformed Transformed Transformed
Environment: Environment: . Environment: X
Objects: Objects: Objects:

Original trajectory:

Figure 3: The effect of equivariant translation, equivariant rotation, and the object rotation transfor-
mations. Top row: start of demonstration. Bottom row: target of demonstration.

15
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. FOR ONE-SHOT IMITATION LEARNING ...

Table 1: Comparison of PerAct (Shridhar et al., 2023) trained on original demonstrations to

Single demonstration per variant
Excluding tasks with articulation
60-110 imaginations generated

Works even with pure imagination

DREMA trained on only imagination demonstrations and the combination of both. The table reports
the mean + std and maximum success rate over 5 test runs.

PerAct (Original data)
DREMA (Imagined data)

DREMA (All data)

PerAct (Original data)
DREMA (Imagined data)
DREMA (All data)

RVT2 original four cameras

RVT2 original three cameras (val results)
RVT2 drema three cameras (val results)
PERACT original

PERACT drema
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close jar

Single-task
slide block
mean + std max

484 =320 50  31.1 32.7
9.6 + 1.50 12 544 =215 62 35.1 40.0
1.2 £ 1.60 12 620=2.19 66 415 44.0

Multi-task

avg single-task
mean max

place shape
mean + std max

6.4 £ 1.50 8

close jar
mean — std max

384 £ 080 40
412+ 240 46
51.2+ 1.60 54

slide block
mean + std max
34.0 =5.06 38 224 25.3
480 = 1.79 50 31.3 34.7
540 = 2.19 58 35.5 4.7

avg multi-task
mean max

place shape
mean + std max

7.2+ 1.60 10
18.0 + 283 22
6.4 + 3.20 12

close jar
mean = std  max

26.0 + 3,10 28
28.0+ 335 32
46.0 £ 3.58 52

place cups place shape  put groceries slide blocks stack block
62 0.4 24 8.8 41.2 3.2
175 25 7.5 5 50 25
25 0 15 10 50 10
26 16 7.2 1.2 34 3.6
0.4 6.4 16 54 0.4

AVERAGE
19.67
14.17
18.33
12.27
18.13

@wJeam B "
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... THAT WORKS EVEN WITH REAL ROBOTS
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... THAT WORKS EVEN WITH REAL ROBOTS

Table 3: Localization errors. Table 4: In- and out-of-distribution evaluation with real robots.

Task Error (m) pick block pick shape push
pick block 0010 Indist. OOD Indistrr OOD Indistrr OOD

pick shape 0.050 PerAct 55 50 30 10 40 10
push 0.049 DREMA (All) 90 90 35 30 80 60

Average 0.038

T

3

Figure 5: Original (top) and 1magined demonstration (bottom) after a 90° rotation transformation.

18



MORE IMAGINED AUGMENTATIONS HELP

e Simple transformations for now

 Main challenge: make sure demonstrations are valid

Place Shape Task Slide Block Task

e Lower efficacy but better scalability

Table 2: Performance of DREMA trained on single-task demonstrations from different types of
transformations. The table reports the mean =+ std and maximum success rate over S test runs.

Accuracy
Accuracy
w b u

751 0
5.0 20

close jar place shape slide block
mean +=std max mean =std max mean + std max

o N 1

o n
-
-

T 1 1 0 T 4  §
5 10 20 4 10 20
Demonstrations Demonstrations

Replay 10.0 & 3.10 16 1.2 4+ 0.98 2 26.0+0.00 26
Object Rotation 2524098 26 1044+265 14 42.04+0.00 42
Roto-translation 41.2+240 44 10.0 + 2.53 14 504+£150 52
DREMA (All data) 51.2+1.60 54 11.2 4+ 1.60 12 62.01+2.19 66

| PerAct (original cnly) B DreMa (imagination only)

Figure 4. Imagined demonstrations keep improving imita-
tion learning even with increasing number of original data.

Cquivariant transformations are complementary ... ... and scale

19



WHAT MAKES IT NOT A WORLD MODEL?

e Not end-to-end yet
e Dynamics are not learned
e |ntact, not much learning (from us) yet

e BUT the idea is not to return to teature
engineering

World Model Learning Value and Environment

Learning Actor Networks _ Interaction
.) L | 2 \ ' P | .
W ;-‘.;1‘}“’/ 5 4’ by l ' ;i ; !
- S T ‘i-". N3 g A
(N S ‘! 2

e Start with grounding explicitly

® Th e n eve ryt h I n g e ‘ Se n e u ra ‘ Ai Quadrubed : URS Multi-Object XArr-'r-l:VisuaI Pick Sphero Ollie Val

Walking Visual Pick Place and Place Navigation

20



LEARNING & GENERALIZATIO E%

e For one, add representations to object assets

e Learn (fine-tune) on observed trajectories
e |earn with differentiable physics

e Learn with partial observability

e [ earn with manipulations

e Learn dynamics beyond physics (eg, causality, third-
person actors, theory of mind, ...)

e [earn with dynamic scenes
21



BEYOND IMITATION:
LEARNING RL POLICIES

e \Why stop with imitation learning?

e Grounded imagination & reasoning opens up
lots of exciting possibilities

e Maximizing future reward in future imagination?
g g

22



SKY IS THE LIMIT

e Articulated objects (identitying joints)

e Deformable objects (with complex physics
engines)

e Closed feedback loop (‘eye-hand coordination’) {
e Physical parameter identitication (friction, etc)
e Safety and interpretability

e Stochasticity (many possible futures)
23




Unknown

LIPPE ET AL, ICLR, ICML, UAI, 2022-23

CAUSAL INDUCTIVE
BIASES

Generated Output Latents from image 2

Microwave Active
Stove (front-left)

Manipulating Image 1 by turning on the Microwave and the front-left Stove. Note the egg staying
uncooked despite the stove being turned on, which the model has never seen in training and shows
BISCUIT's ability to perform novel interventions.




BISCUIT: LIPPE, MAGLIACANE, COHEN, GAVVES, ET AL, ICLR, ICML 2022-2024

TEMPORAL CAUSAL REPRESENTATION LEARNING

[1] B Scholkopf, F Locatello, S Bauer, N R Ke, N Kalchbrenner, A Goyal, Y Bengio, Towards Causal Representation Learning, Proceedings of the IEEE, 2021


https://phlippe.github.io/BISCUIT/

BISCUIT: LIPPE, MAGLIACANE, COHEN, GAVVES, ET AL, ICLR, ICML 2022-2024

TEMPORAL CAUSAL REPRESENTATION LEARNING

Environment Representation Learning Tasks

What are the causal variables of the

environment?

Representation

é Agent
Action

[1] B Scholkopf, F Locatello, S Bauer, N R Ke, N Kalchbrenner, A Goyal, Y Bengio, Towards Causal Representation Learning, Proceedings of the IEEE, 2021


https://phlippe.github.io/BISCUIT/

BISCUIT: LIPPE, MAGLIACANE, ASANO, LOWE, COHEN, GAVVES, UAI 23

CAUSAL LEARNING FROM BINARY INTERACTIONS

« BISCUIT: Causal Representation Learning from Binary Interactions
We aim to learn the causal variables by interactions with a dynamical environment.

Environment

 Many interactions are binary
(Turn lights on/oft, open/close door ...)

e |earn latents to reflect change

Observations

Xf:—l

e Provable & manipulable causal tactors

* By integrating probabilistic causal priors

https://phlippe.github.io/BISCUIT



https://phlippe.github.io/BISCUIT/

BISCUIT: LIPPE, MAGLIACANE, ASANO, LOWE, COHEN, GAVVES, UAI 23

CAUSAL LEARNING FROM BINARY INTERACTIONS

e Causal model: a temporal DAG
e Observed: images X' and “regime” variables R’

o Latents: causal C*~! and interactions I' = f(R!, C"™1)

@ Observations

Temporal causal

Causal variables selations

" Interactions

-~ Regimes

-
”
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-
”
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- -~
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e o . — — e . e

https://phlippe.github.io/BISCUIT
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https://phlippe.github.io/BISCUIT/

UP TO PERMUTATION AND COMPONENT-WISE TRANSFORMATIONS

BINARY INTERACTIONS FOR IDENTIFIABILITY

Time step t+1

. ] . Time step t B ‘l;
e Assumption #1: interactions - - —

described by a binary variable i

:;. ' \‘- /. ‘u
N i
e Assumption #2: distinct interaction e

patterns — Interactions not
-I: un C-tl ONS O-F O-t h er | N -te ra C-tl ONS A. (Dynamics Variability) Each variable’s log-likelihood

difference is twice differentiable and not always zero:

PACHC)
H(Ch? ’

® ASS Um ptl on 3 me Ch an |S IMms Va ry B. (Time Variability) For any C* € C, there exist K + 1

different values of C*~1 denoted with ¢, ...,cE 1! € C,

sufficiently with interactions or time for which the vectors vy, ..., v € R**" with

. {&)A(Crlcf—lzcl) UA(C1t Cf—1=L:I\r+1)j|‘T
Vi = aC? o aC*

vCE 3ot

are linearly independent.

https://phlippe.github.io/BISCUIT/



https://phlippe.github.io/BISCUIT/

BISCUIT: LIPPE, MAGLIACANE, ASANO, LOWE, COHEN, GAVVES, UAI 23

OPTIMIZING WITH VARIATIONAL INFERENCE

Reconstruction

| Latent
| \ VariableS /
ﬁ o
Encoder Decoder
[ ]
\V
Prev time step : B
/ interaction :> [ Prior J > L= ['PTiOT + Lyec



https://phlippe.github.io/BISCUIT/

BISCUIT: LIPPE, MAGLIACANE, ASANO, LOWE, COHEN, GAVVES, UAI 23

TWO-STAGE LEARNING

Autoencoder
latents

Reconstruction

.github.io/BISCUIT

Autoencoder
latents

.

Normalizing
Flow

IN COMPLEX SETTINGS

“Causal”
latents

g
PV
| Prior

15
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https://phlippe.github.io/BISCUIT/

Example Sequence Ground Truth

CAUSALWORLD TRI-FINGER

DISCOVERING
INTERACTIONS

R? scores (diag 1/sep |)

Models CausalWorld

1VAE (Khemakhem et al., 2020a) 0.28 /0.00
LEAP (Yao et al., 2022b) 0.30/0.00
DMS (Lachapelle et al., 2022b) 0.32/70.00
BISCUIT-NF (Ours) 0.97/70.01

https://phlippe.github.io/BISCUIT



https://phlippe.github.io/BISCUIT/

ITHOR OBJECTS AS CAUSAL VARIABLES

CAUSE-AND-EFFECT
DRIVES SEMANTICS (7)

R? scores (diag 1/sep |)
Models ITHOR

1VAE (Khemakhem et al., 2020a) 0.48/0.35
LEAP (Yao et al., 2022b) 0.63/0.45
DMS (Lachapelle et al., 2022b)  0.61/0.40
BISCUIT-NF (Ours) 0.96/0.15

https://phlippe.github.io/BISCUIT



https://phlippe.github.io/BISCUIT/

ELEMENTS OF “IMAGINATION”

HACKING THE
SIMULATOR

M THET TP e M TERT R T MR TEEOT 2 T

Input Image 1 Input Image 2  Generated Output

Scaling-up with foundation vision models
towards autonomous learning?

https://phlippe.github.io/BISCUIT



https://phlippe.github.io/BISCUIT/

BISCUIT: LIPPE, MAGLIACANE, ASANO, LOWE, COHEN, GAVVES, UAI 23

« BISCUIT: Causal Representation Learning from Binary Interactions
We aim to learn the causal variables by interactions with a dynamical environment.

Environment

o Sufficient intervention data

Observations BISCUIT &

e \Works with temporal data only

Latent variables

- m m O
 Assumes binary interactions

H OpenObject ‘----‘ MLP

\A-

https://phlippe.github.io/BISCUIT/



https://phlippe.github.io/BISCUIT/

S IT REALLY CAUSAL?

e Patterns are often correlations e “Essent"La'l'ly .
e Cause-and-effect is a strong (albeit _‘ _ \ all models
sometimes biased) framework to learn 8% @ @ dre wrong,
Ws ", Dbut some are
e |f we go past the chicken-egg problem « _ useful.”

N \&dGeorge E. P. Box
e Power of causal representations is in

autonomousness and controllability

(imho)

https://phlippe.github.io/BISCUIT/



https://phlippe.github.io/BISCUIT/

BISCUIT+ +

SCALE & ROBOT LEARNING

Observations BISCUIT &

Latent variables

e Scale up to many environments — reuse semantics e | i N Y=

OpenObject [==== \\
\

e LLMs for guidance and sample efficiency? ;

e |deally, Gaussian Splats for de novo interactive
environments and scaling-up

e System lla: First causal principles tor novel
poroblem-solving & Causal World Models

e System llb: Safe & human-robot-aligned planning

https://phlippe.github.io/BISCUIT/



https://phlippe.github.io/BISCUIT/

LIU ET AL, ICML 2023, ONGOING
AUZINA ET AL, NEURIPS 2023

PERVEZ ET AL, ONGOING

DYNAMICS

INDUCTIVE BIASES

,'I)//

Forward:
i =5.18 — 0.82y + 0.17zy

y = 0.42 4 0.16zy
Backward:

& = —4.39 — 0.66y + 0.212*

g = —0.72 + 0.03y*

(a) Forward and Backward

Trajectory vy coordinate

Earth (MNN)
— Mars
— Mars (MNN)

f
t

%
S
LI T
B True Field
B Learned Field
—— True Sample 1
Learned Sample 1 N N
- True Sample 2
Learned Sample 2 &, Ty,

/777

A

Y & =473- 1.04z% +0.28
v =127 0902y +0.07;

(b) Clockwise

Bl Ground Truth Force
Bl MNN Learned Force
Bl Node Learned Force

2 4 6
Trajectory x coordinate



SWITCHING DYNAMICS IN
INTERACTING SYSTEMS

In many settings in perception and sciences, we
have systems of multiple objects

 These objects may interact (or not) with higher-
order complex & switching temporal dynamics'.2

e Finding dynamical patterns is often critical

e (Generalization of temporal clustering

[1] Z Gharamani, G Hinton, Variational learning for switching state-space models, NeurlPS, 2020
[2] A Ansari, K Benidis, R Kurle, A Turkmen, H So, A Smola, B Wang, T Januschowski, NeurlPS, 2022




LIU, MAGLIACANE, KOFINAS, GAVVES, ICML 2023

GRAPH SWITCHING DYNAMICAL SYSTEMS

TIME

e Switching Dynamical Systems focus on finding out
when objects behave differently

e Keyidea #1: Scale up by NN function approximation

to amortize pairwise transition dynamics between
Latent temporal graph

N objects
K motion modes

multiple objects and dynamic behaviors

e Key idea #2: Graph NNs and message passing and

VI for dynamic interactions between objects

e Divide and Conquer: Breaking complex dynamics m—n
into switching between simpler systems

https://github.com/yongtuoliu/Graph-Switching-Dynamical-Systems



https://github.com/yongtuoliu/Graph-Switching-Dynamical-Systems

LIU, MAGLIACANE, KOFINAS, GAVVES, ONGOING

EQUATION DISCOVERY+SWITCHING DYNAMICS

e Hypothesis #1: Symbolic learning critical for extrapolation

e Hypothesis #2: Disentangled representation learning critical for generalization?2

e Hypothesis #3: Graph learning critical for interacting dynamics
Hybrid-SINDy Latent dynamics as governing equations

Hvbrid Systems TIME .

\ luster 0
(—a
!

SINDy 0 SINDy 1 SINDy 2 SINDy 3 <=
Equations
} | v ! Segmentation
1=2.840.2y 0=2-5y =3 )=1.8—1.Ty ***

[1]1 J von Kigelgen*, Y Sharma*, L Gresele*, W Brendel, B Scholkopf, M Besserve, F Locatello, Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style, NeurlPS, 2021
[2] | Auzina, CYildiz, S Magliacane, M Bethge, E Gavves, Moduleated Neural ODEs, NeurlPS, 2023



LIU, MAGLIACANE, KOFINAS, GAVVES, ONGOING

EQUATION DISCOVERY+SWITCHING DYNAMICS

e #H1: Link GRASS dynamics modes to parametric basis functions O(y,)

o #H2: Learn k-th latent dynamics y' =~ O(y)w, modulated by w,_ in shared NN

e Think of SINDy-governed latent spaces

SINDy The dynamic mode z; indexes candidate basis ©, - w;

[dentified System

..... ) p(Ct|Ct—l) Zt—l)

@ —> p(2¢|zi—1,¢t,¥t-1)

->» p(yelyi—1, 2¢)



LIU, MAGLIACANE, KOFINAS, GAVVES, ONGOING

EQUATION DISCOVERY+SWITCHING DYNAMICS

e So far, single-object dynamics

e #H3: Graph message passing for interacting dynamics

e Approximate inference for edges, exact inference for discrete variables

Latent temporal graph
N objects

K motion modes

l:a\'. ].I.'\'- lia\'. 11.'\'-:
t—~1:C 7 Y16

| m—n
1:N|1:N ,1:N et
-] P(Yt“ |Yt‘—‘1azt." )

plz," |z

v i v
m ,.m ,m
— C
Probabilistic model ‘ @ {Zf » G5 }



RESULTS

EQUATION DISCOVERY+SWITCHING DYNAMICS

Scientific data Perception data

Ground Truth Modes False Posilive Modes |l Observalion Reconslruction ) _
Forward:

Ground Trulh e TN T=295.18 0.3y

i = .42 4 010Gy . ' . _
’ D=y | 2%y | 1IN #=3.13 — 1.%6r?y + 0.332"

Hybrid-SINDy & o

AMORE (ours) e e e T EEIIiiiiie.e.- " /7 4 Backward:
0 -\ = 434 iy | 0

‘. i =4
1

~3
U ]
27

27— 0.90xy + 0.07° "ah G= 257 | 084" 014y
i = —0.72 + 0.034°
Table 1. Segmentation resulls on Mass-spring Hopper datasel 1able 5. l'orecasting results on non-hybrid dynamical systems. Re (a) Forward and Backward (b) Clockwisc (¢) Counter Clockwise
sults are shown in log ,(NRMSE) where lower is better.

Method NMIT ARI* Accuracy T Fi ]

Hybrid-SINDy  0.426 0.3383 0.705 0.091 : 4
AMORE (ours) 0.934 0970 0.993  0.994 Coupled linear -39 -113 -1.18 - : : . _
—_——m m -or ro Cubic oscillator 0.45 1.02 -1.06 lable 8. Segmentation results on the Salsa-dancing dataset.

[orenz’ 63 -0.41 -1.27 -1.23 —
Hopf bifurcation 0.32 0.94 -1.03 Method NMIT ARIT Accuracy T I1 1]
Selkov glycolysis -(1.68 -1.55 -1.49 .

Dutfing oscillator 0.53 1.12 1.17 Hybrid-SINDy 0.102  0.097 (.325 .309

AMORE (ours) 0.167 0.173 (.565 0.518

Method NMAE | NRMSE Table 6. Segmentation results on ODE-driven Particle Dataset. w
LLMTime 0.120/0.320 0.430/0.500

SVI 0.063/0.070 0.140/0.250 Method NMIT ARIT Accuracy * F\ 1

AMORL (ours)  0.009/0.037 0.024/0.056 Hybrid-SINDy 0205 0.192 0414 0.407 _ , i
_— AMORE (ours) 0418 0405  0.692 0_68; Table 9. Forecasting results in terms of NMAE / NRMSE on the

AMORE-MIO (ours) 0453 0.442 0.741 0.735 Salsa-dancing dataset.

Svstem LLMTime SVI AMORE (ours) Figure 5. Discovered equalions on the Salsa-dancing dalasel. Tocations (ir, i) of the hip joints are used as observations.,

Table 2. Forecasting results of Location/Velocity on the Mass-
spring Hopper dataset.

1able 7. I'orecasting results of in terms of NMAL / NRMSL on
ODE-driven Particle datasel. : ' Methad
T T Table 10. Analyses on robustness 0 different orders of polynomial
Method One-step Multi-step . A . _ A .
as candidate basis functions on Mass-spring Hopper dataset. LLMTime 040270452 0.449/0.480
LLMTime 0.335/0.438 0.370/0.473 -_— SVI 0.384 /0441 0.423/0.465
SVI 0.319/0432 0,346/ 0465 Folynomial pedex -2 3 : 285 /0.3 313/ 0.359
Vi L7 AASS . 2a0 f .20, NMIT RER| NMIT RER| NMIt RER| GRASS 0.285/0.344  0.313/0.359
GIEASS .12k suLe W1I3792]0 _— AMORE (ours) 0.291/0.361 0.334/0.373
AMORL (ours) 0.184/0.265 0.217/0.302 Hybrid-SINDy 0426 7.5e~0 0.384 8.1¢7° 0316 9.7¢° MIO (ours 0'272 / 0‘33 36 / 0'3 i
AMORE-MIO (ours) 0.146/0.217  0.186/ 0.259 AMORE (ours)  0.934 2.1~ 0,936 2.3¢* 0.933 2.8¢* AMORE-MIO (ours) 0. 335 0.301/0.35

One-step Multi-step
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MECHANISTIC NEURAL NETWORKS

Neural Networks built on data-driven
numeﬂcal represeﬂta'uor]s Predict and Forecast

Uninterpretable — unfit for scientitic

ODE representation

exploration and analysis Uy Flo,2) = 0

Mechanisms would be a great alternative
but cannot easily learn from data’

d r

Mechanistic NN modules built on Flaon =Y ctou®+ Y g 0gtuwi,...) - bt
k

governing equations as representations :

https://github.com/alpz/mech-nn

[1] B Scholkopf, F Locatello, S Bauer, N R Ke, N Kalchbrenner, A Goyal, Y Bengio, Towards Causal Representation Learning, Proceedings of the IEEE, 2021


https://github.com/alpz/mech-nn

PERVEZ, LOCATELLO, GAVVES, ONGOING

KEY IDEA

Detine general tamily of ODEs as governing mechanisms

Mechanistic NN simultaneously

Mechanistic ,"ll\\ 7]
e |earns the governing ODE explicitly |[ ,,.

I

1.0

ODE representation
U, : F(a,x) =0

e generate new ODEs that explain input

e solves the ODEs

d r
Forward pass through the ODE Fla,x) = Y ct:0u® + Y ¢t 0gtuu,...) = bt x)
k

Backward pass requires custom, NN-native solver

https://github.com/alpz/mech-nn



https://github.com/alpz/mech-nn
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THE MODEL

Traditional ODE solvers suboptimal: Hard to parallelize, no learned step sizes

Young showed that Linear ODEs can be solved as Linear Programs’

d r
Continuous ODE: Z ci(t; Xu' + Z O (t;x)g (t,u,u'y...)—b(t;x) =0
i k

d r
Discretize it: Z Ci,tu(i) + Z G &t u g, ...) —b, =0
i k

Set up the linear program and solve for u, u i=12...

https://github.com/alpz/mech-nn

[1] J Young, Linear Programming Applied to Linear Differential Equations, Lawrence Berkeley National Laboratory, 1961


https://github.com/alpz/mech-nn
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NEURAL RELAXED LP SOLVER

e Define ODE coefficients etc as LP variables

e But LP solvers are not neural network friendly

e Solutions not differentiable wrt parameters

Table 2: Comparing the NeuRLP solver with the RK4 solver
with a step size of 0.1 on fitting noisy sinusoidal waves of

e Specialized solvers cannot parallelize easily ot T . B L e

Steps QP (seconds) RK4 (seconds) QP Loss RK4 Loss

e Constraint matrices too large for solvers w0 1s T R TR T

100 1.61 64.57 27.9 35.6
300 1.76 211.52 52 96.8
128 301

e Relaxing LP to QP and GPU solve KKT conditions 021 o7 18l

e Similar error bounds like the Euler solver and much faster

e For nonlinear ODEs, the nonlinear terms pushed to the NN loss function

https://github.com/alpz/mech-nn


https://github.com/alpz/mech-nn
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MECHANISTIC NEURAL NETWORKS

e \Weaving in governing equations to an NN impacts lots of scientific applications

e With the same framework, we outperform per task specialized methods

Neural ODE,UDE SINDy Neural Operators Mech. NN
Chen et al| (2018) Brunton et al. (2016) |Lietal (2020¢)
Rackauckas et all (2020)

Linear discovery = v

Nonlinear discovery = —
Physical parameters v v
Forecasting v
Interpretability =

https://github.com/alpz/mech-nn
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MECH NN FOR DISCOVERY

Solve ODEs of the form: u’ = g(®¢&) Chaotic Lorenz

Parameters —» Threshold

| L QP ODE MSE ‘ 7/ < N >
I Data —>» | MLP —> Basis Library Solver (K
‘ I% ‘ -’ ol — MNN L eamad

-20 -10

True Feld

SINDy Leaned Feld
—— Traln Sample

SNy Tz A Sample
— lest 5amo 2

SINDy Tast Samgle L p— tanh(*‘zr 4* y)

= tanh(z + y)

.
-
. h \
Truc Fleld
¥ s MNN earnes Fald
—— Tair S5ample
MNN Train Sample

N Tes Samnple
— NN Test Sampe

10 12 1.4 00 02 04 06 08 10 12 1.4

Figure 2: Learned ODE vector fields for MNN and SINDy with non-linear tanh function of basis
combination and training and test trajectories. Ground truth equation 1s on the right.
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MORE APPLICATIONS

Forecasting

B Ground Truth Force
Bl MNN Learned Force
B Node Learned Force

o
+J
©
—
T
-
O
O
()
>
>
-
O
b
O
R
O
|_

Trajectory x coordinate

JPL Horizon planetary ephemerides

w— Eartn GT
=artn (MNN)

- Mars GT

— Mars (MNN)

Method Eval. MSE

ANODE
NODE
SONODE

0.0470
0.0485
12.200

MNN 0.0034

Method

RMSE

N=512

N=256

Method Force MSE Cosine sim. Mass Ratio

l 4 GT=2

ResNel

ResNet-LPSDA-1
ResNet-LPSDA-2
ResNet-LPSDA-3
ResNet-LPSDA-4

0.0223
0.0200
0.0111
0.0155
0.0113

0.0392
0.0284
0.0185
0.0269
0.0184

SONODE
MNN

879 -0.26 2.11
345 0.85 2.02

ENO
ENO-LPSDA
ENO-AR
ENO-AR-LPSDA

0.0276
0.0035
0.0030
0.0010

0.0407
0.0132
0.0058
0.0037

Mechanistic NN (50 sec)

0.0039

0.0086

Discovering physical parameters
Mass ratio & force distribution 2-body problem

Ground Truth

/

x|Imlj
MNN Prediction

Neural PDE Solving
1d KdV and 2d Darcy Flow




WANG ET AL, CVPR, ICCV, 2022-24

OPEN-WORLD
INDUCTIVE BIASES
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REASONING VIDEO INSTANCE SEGMENTATION

Segment, classity, track by w.r.t. the pixels and world knowledge
Key idea: Scale-up sequence length in the input and relay to LLMs for ‘reasoning’

Fantastic it we could pair this with formal reasoning

It is <SEG>.
Multi-Model

ST 45| LoRA 1010

LJ
O
[
-
L)
O
O

i Object
Tracker

Visual
Encoder

“Which ball should first be hit according to the rules?”

“Which ball is the target of this shot?”
“If this shot goes in, which ball is most likely to be hit next?”




PRO-SOCIAL & HUMAN-CENTRIC ROBOT Al

MY VISION & GOAL

System | Perception and Manipulation Reusable foundation ‘world" dynamics from pixels
System Il Causal Learning for Robotics Neural+'Symbolic’+Equivariance Learning
'System |lI" Pro-social behavior Critical for true extrapolation

~! & SSS Dynamic Scene Understanding
Multi-modal Human-robot interfacing - T £ e o ”_“O[B’[If[*“l [_l’ N
> J - ‘ " ",A"‘ » B ) . o

Pro-social human robot |r|teract|ons

Humen: Fm the TV remotz”

KEY OBJECTIVE
"The rcbct kehaves
satfinly™

Novel problem-solving

i

KEY OBJ/ECTIVE#3
Homebot: Grak screwdriver » G to
-+ ¥ind bartaries = (In&en
- A ———
rencote with acrawdsiver » Tut
betteries in — Close remote

KEY OBJECTIVE ##3
Homebot: 2¢ caraZal of plart &

2 W

Safe human-aligned tagk planning : : Anthropomorphic robot manipulation

KEY OBJECTIVE

— Fully-tesxleices anthropoemorpac limbs
— Sott end-aftectdrs “or satety and comtort

KEY OBJECTIVE omebot — Wnst with mulo.e degrees ot actuation £nd compact dezign ; \
Humanoic Brain $ {, — Oplimal fur ubject manipulation in srnall spacey ‘ |
Prototype & simulatcr o3 7'_5'2«2::; — Softrapte rtaraction

CVPR 2024 Workshop on Causal and Object-centric Representations for Robotics
|deally repeated with NeurlPS/ICLR/ICML and CORL/ICRA/IROS




ACADEMIC Al IN THE YEARS OF CHATGPT

TO WRAP UP

“BOLOLY G0

- Where no man has gane heFore




CONCLUSION

* Not yet end-to-end training, but all parts can
be made differentiable

e "Physics & causal grounding”: great start
toward fully neural robot world models

e And lots of exciting possibilities towards
generalization and extrapolation

e We are in good company of Fei Fei Li: https://gt |
github.com/cremebrule/digital-cousins |

o6


https://github.com/cremebrule/digital-cousins
https://github.com/cremebrule/digital-cousins
https://github.com/cremebrule/digital-cousins

Simple processing based

El 1950s on rules and models
Rule-based Data Processing e —"

1980s l Data classification }
Machine Learning

Imitate the human brain for

labeling and training
1990s - 2000s "CNN (Convolutional Neural |
Neural Network Network)
l'\ RNN {Recurrent Neural ’
‘ Network) |
GAN (Generative Adversarial
2017

g l Network) ’

Transformer

Focus on human brain
2018 - Now o !eammg processes
GPT. BERT - Train with large amount of data
; - Feedback from pecl PG INE AR . ['Attention is all you need"]

0

the learning content = e . T

CHEERS!

RoBERTa |}

?

® | ALBERT Em

KOS _ |, -
52 -
i

ELECTRA ChatGPT

=

egavves@uva.nl
@egavves

S/


mailto:egavves@uva.nl

