

Technische Universität Nürnberg

### **Better Foundation Models:** Self-supervised Learning for Generalisation

**A25 - Computer Vision by Learning** 

#### Hi, I'm Yuki

- Full Professor and head of Fundamental AI Lab at UTN
  - Self-supervised Learning
  - Multimodal Learning
  - Large Model Adaptation

- More info: <u>https://fundamentalailab.github.io/</u>,
- yuki.asano@utn.de



#### Self-Supervised Representation Learning

- Novel SSL algorithms
- Better visual Foundation Models
- Synthetic data and generative models

#### Vision-language Learning

- Vision-Language Models
- Data-efficient training
- Fundamental understanding
- Bias, Privacy and Fairness



#### Fundamental AI Lab

#### Video and Temporal Learning

- Learning image models from video signals
- Cross-modal and multimodal learning frameworks
- Better video architectures and tasks

#### Large Language Models

Nuremburg image via Unspl

- Instruction-Tuning
- Reasoning, planning

the second second second

- Parameter-Efficient Finetuning
- Bias, Fairness



#### Currently we have ~three types of key Foundation Models



#### (Multimodal) Large Language Models

writing, coding, assistive tech, etc.



#### Text-conditional Generative Models

Image/video generation, editing, control



#### General Image Understanding Models

*Transfer learning, vision component in MLLMs etc.* 



#### What happened in the last ~2 years?



Flexible "model" + Predictable behavior + I

More (unsupervised) data



#### Current speed of progress requires exponential increase in dataset size



6



Self-Supervised Learning als Schlüssel zur Generalisierung

#### Effect of compute in video generation



UTN



Technische Universität Nürnberg

## **Self-supervised Learning**



But annotations are expensive

and often require experts

# Manual data annotations for supervised learning are limiting.

#### Data is cheap & ubiquitous



*ImageNet: A Large-Scale Hierarchical Image Database.* Dong et al. CVPR 2009 *The Cityscapes Dataset for Semantic Urban Scene Understanding.* Cordts et al. CVPR 2016 *Scene parsing through ADE20K dataset.* Zhou et al. CVPR 2017.



#### Self-supervised learning solves the problem of annotations.





#### Self-supervised Learning has benefits besides scalability



Fundamental UTN

How does self-supervised learning work?







#### How does self-supervised learning work for vision?





- Images don't have natural word "units"
- Images don't have fixed a vocabulary
- Image generation ≠ Image understanding

Diverse Self-Supervision Methods in Computer Vision

UTN

#### Today we'll talk about two research topics



#### Improving vision neural networks



#### Understanding visio-lingual models

UTN

#### Today we'll talk about two research topics





Understanding visio-lingual models



## Multi-modal Learning





#### What makes multimodal learning interesting?

#### Text is like an "augmentation" / broader description



The man at bat readies to swing at the pitch while the umpire looks on.

#### The meaning depends on both modalities (rarer)







#### What makes multimodal learning interesting?



#### Ground common sense knowledge in real-world





Visual Alignment in Text-Only LLMs: New Frontiers in Data Efficiency Jona Ruthardt, Gertjan J. Burghouts, Serge Belongie, Yuki M. Asano arxiv





#### **Motivation**

#### DEMYSTIFYING CLIP DATA

 Hu Xu<sup>1</sup> Saining Xie<sup>2</sup> Xiaoqing Ellen Tan<sup>1</sup> Po-Yao Huang<sup>1</sup> Russell Howes<sup>1</sup> Vasu Sharma<sup>1</sup>

 Shang-Wen Li<sup>1</sup>
 Gargi Ghosh<sup>1</sup>
 Luke Zettlemoyer<sup>1,3</sup>
 Christoph Feichtenhofer<sup>1</sup>

 <sup>1</sup>FAIR, Meta AI
 <sup>2</sup>New York University
 <sup>3</sup>University of Washington

#### ABSTRACT

Contrastive Language-Image Pre-training (CLIP) is an approach that has advanced research and applications in computer vision, fueling modern recognition systems and generative models. We believe that the main ingredient to the success of CLIP is its data and not the model architecture or pre-training objective. However, CLIP only provides very limited information about its data and how it has been collected, leading to works that aim to reproduce CLIP's data by filtering with its model parameters. In this work, we intend to reveal CLIP's data curation approach and in our pursuit of making it open to the community introduce Metadata-Curated Language-Image Pre-training (MetaCLIP). MetaCLIP takes a raw data pool and metadata (derived from CLIP's concepts) and yields a balanced subset over the metadata distribution. Our experimental study rigorously isolates the model and training settings, concentrating solely on data. MetaCLIP applied to CommonCrawl with 400M image-text data pairs outperforms CLIP's data on multiple standard benchmarks. In zero-shot ImageNet classification, MetaCLIP achieves 70.8% accuracy, surpassing CLIP's 68.3% on ViT-B models. Scaling to 1B data, while maintaining the same training budget, attains 72.4%. Our observations hold across various model sizes, exemplified by V/T-bigG producing 82.1%. Curation code and training data distribution over metadata is available at https://github.com/facebcokresearch/MetaCLIP.

We've heard that "CLIP generalises because of language"

#### BUT:

Does CLIP actually generalise?



#### Appendix p.14, Table 11:



Table 11: Measuring task-alignment. First row: MetaCLIP (400M) ViT-L/14 accuracy, second row: number of classes matched in metadata

"Interestingly, there seems to be a correlation with the accuracy and the number of classes matched in the metadata."





## CLIP, for the most part, is evaluated within-domain (it's just a big domain)



# But surely language features, e.g. from pretrained models should help generalise?



#### Setup of new benchmark & method: Shared Vision-Language-Locked Tuning



Data: supervised classification datasets, split into mutually exclusive categories.

--> Train with "a photo of a {class name}"

[AWA2, CUB, FGVCAircraft, and ImageNet+]



Text features are obtained from the last layer's feature of the last token



Figure 3. Text features. We obtain the final text features by processing the last caption token with an MLP. This allows avoiding expensive forward passes of the LLM during training by precomputing and storing the features  $(\times)$ .



Decoder representations are actually really good.

| Туре | Language Model      | Class<br>Names | What people previou<br>used     |
|------|---------------------|----------------|---------------------------------|
| Enc. | BERT-Large [9]      | 18.3           |                                 |
|      | T5-XL [47]          | 33.6 🛀         | New                             |
|      | Flan-UL2 [55]       | 37.0           | billion-scale                   |
|      | SentenceT5-XXL [39] | 39.5           | LLIVIS                          |
| Dec. | Gemma 7B [16]       | 39.7           |                                 |
|      | Llama-3 8B [11]     | 40.2           |                                 |
|      | NV-Embed [31]       | 40.5           | LLMs contain knowledge that he  |
|      |                     |                | visual zero-shot classification |



#### Moreover: LLM's ShareLock performance correlates with (text-only) MMLU evaluation!



#### And what if we train with actual image-caption datasets?



| Model         | Dataset     | [Size] | IN-1k       | IN-V2       | IN-R | IN-A        | IN Sketch | ObjectNet | Avg         |
|---------------|-------------|--------|-------------|-------------|------|-------------|-----------|-----------|-------------|
| LiT           | COCO        | 83k    | 23.3        | 20.8        | 34.4 | 21.1        | 18.4      | 29.2      | 24.5        |
| ASIF          | COCO        | 83k    | 9.4         | 8.7         | 14.4 | 8.8         | 6.9       | 16.1      | 10.7        |
| ShareLock     | COCO        | 83k    | 32.2        | 28.6        | 36.6 | 22.8        | 22.4      | 30.4      | <b>28.8</b> |
| LiT           | CC3M Subset | 563k   | 41.7        | 37.5        | 59.2 | 44.4        | 32.4      | 40.7      | 42.6        |
| ASIF          | CC3M Subset | 563k   | 21.6        | 20.5        | 27.7 | 24.4        | 14.9      | 21.5      | 21.8        |
| ShareLock     | CC3M Subset | 563k   | 50.5        | <b>45.8</b> | 60.5 | 47.0        | 36.9      | 41.1      | 47.0        |
| CLIP [12]     | CC3M        | 2.8M   | 16.0        | 13.2        | 17.6 | 3.6         | 6.4       | 8.2       | 10.8        |
| SLIP [38]     | CC3M        | 2.8M   | 23.5        | 20.2        | 26.8 | 6.8         | 12.1      | 14.3      | 17.3        |
| LaCLIP [12]   | CC3M        | 2.8M   | 21.3        | 18.6        | 23.5 | 5.0         | 10.6      | 10.2      | 14.9        |
| LiT           | CC3M        | 2.8M   | 44.1        | 39.3        | 62.7 | 45.6        | 34.8      | 43.3      | 45.0        |
| ShareLock     | CC3M        | 2.8M   | 52.1        | 47.1        | 64.1 | 50.9        | 39.0      | 43.1      | <b>49.4</b> |
| DataComp [14] | CPool-S     | 3.84M  | 3.0         | 2.7         | 4.4  | 1.5         | 1.3       | 3.7       | 2.8         |
| CLIP [12]     | CC12M       | 12M    | 41.6        | 35.4        | 52.6 | 10.7        | 28.8      | 24.0      | 32.2        |
| SLIP [38]     | CC12M       | 12M    | 41.7        | 35.9        | 55.2 | 13.8        | 30.7      | 29.3      | 34.4        |
| LaCLIP [12]   | CC12M       | 12M    | 49.0        | 43.3        | 63.8 | 14.7        | 39.4      | 28.1      | 39.7        |
| LiT           | CC12M       | 8.5M   | 56.2        | 49.9        | 70.3 | 52.8        | 43.9      | 47.8      | 53.5        |
| ShareLock     | CC12M       | 8.5M   | <b>59.1</b> | 53.2        | 68.8 | <b>53.4</b> | 44.5      | 46.7      | 54.3        |
| DataComp [14] | CPool-M     | 38.4M  | 23.0        | 18.9        | 28.0 | 4.3         | 15.1      | 17.7      | 17.8        |
| DataComp [14] | CPool-L     | 384M   | 55.3        | 47.9        | 65.0 | 20.2        | 43.2      | 46.5      | 46.3        |
| CLIP [46]     | Proprietary | 400M   | 68.4        | 61.8        | 77.6 | 50.1        | 48.2      | 55.4      | 60.2        |

Strong SotA for datasets 100k-12M



#### Thanks to the frozen LLM, we excel in multi-lingual evaluations

| Model         | Dataset     | [Size] | EN   | CN   | JP  | IT   |
|---------------|-------------|--------|------|------|-----|------|
| LiT           | COCO        | 83k    | 23.3 | 0.2  | 0.2 | 4.5  |
| ShareLock     | COCO        | 83k    | 32.2 | 11.3 | 1.9 | 15.6 |
| CLIP [12]     | CC12M       | 12M    | 41.6 | 0.1  | 0.1 | 7.9  |
| LiT           | CC12M       | 8.5M   | 56.2 | 0.2  | 0.2 | 11.6 |
| ShareLock     | CC12M       | 8.5M   | 59.1 | 25.1 | 1.9 | 35.8 |
| DataComp [14] | CPool-M     | 38.4M  | 23.0 | 0.2  | 0.3 | 4.7  |
| DataComp [14] | CPool-L     | 384M   | 55.3 | 0.7  | 1.5 | 15.2 |
| CLIP [46]     | Proprietary | 400M   | 68.4 | 1.4  | 4.1 | 21.7 |





Fundamental AI Lab

UTN



#### ShareLock is an ultra-lightweight vision-language model that



#### ShareLock is an ultra-lightweight vision-language model that

achieves competitive multimodal performance by leveraging frozen features from state-of-the-art unimodal models.



**ShareLock** is an ultra-lightweight vision-language model that

achieves competitive multimodal performance by leveraging frozen features from state-of-the-art unimodal models.

Trained on just 563k image-caption pairs, it achieves **51% zero-shot accuracy on ImageNet** and outperforms existing methods



**ShareLock** is an ultra-lightweight vision-language model that

achieves competitive multimodal performance by leveraging frozen features from state-of-the-art unimodal models.

Trained on just 563k image-caption pairs, it achieves **51% zero-shot accuracy on ImageNet** and outperforms existing methods

in low-data regimes, with a total training time of <15 GPU hours.



PIN: Positional Insert unlocks object localisation abilities in VLMs. Michael Dorkenwald, Nimrod Barazani, Cees G. M. Snoek, and Yuki M Asano. CVPR, 2024



#### Vision-Language Models are great at many things, but not localisation.

Prompt 1: Provide a bounding box around the cat Prompt 2: Localise the cat in the image




## Our solution: *unlock* localisation abilities in frozen VLMs





# Our approach



frozen VLM, e.g. Flamingo

Positional Insert (PIN) module

Synthetic, unlabeled data



## The data





# Example generated data





# Default Flamingo





# Our method 1: feed the frozen vision encoder synthetic data





## Our method 2: provide VLM spatial learning capacity





### Our method 3: train using pasted obj locations via next-word prediction





### Results





### We beat common PEFT methods

| Method |                  | F               | VOC<3 Objec     | ts              | C         | COCO<3 Object   | ts                | ]         | LVIS<3 Objects  |                   |  |  |
|--------|------------------|-----------------|-----------------|-----------------|-----------|-----------------|-------------------|-----------|-----------------|-------------------|--|--|
|        | Method           | mIoU            | $mIoU_M$        | $mIoU_L$        | mIoU      | $mIoU_M$        | $mIoU_L$          | mIoU      | $mIoU_M$        | $mIoU_L$          |  |  |
|        | Baselines        |                 |                 |                 |           |                 |                   |           |                 |                   |  |  |
|        | raw              | 0               | 0               | 0               | 0         | 0               | 0                 | 0         | 0               | 0                 |  |  |
|        | random           | 0.22±0.04       | 0.10±0.02       | $0.33 \pm 0.06$ | 0.12±0.04 | 0.07±0.02       | 0.22±0.08         | 0.07±0.03 | 0.06±0.02       | 0.18±0.09         |  |  |
| 9      | 2 context        | $0.19 \pm 0.11$ | $0.08 \pm 0.05$ | $0.30{\pm}0.18$ | 0.10±0.08 | 0.06±0.04       | $0.18 \pm 0.16$   | 0.04±0.06 | $0.03{\pm}0.04$ | $0.10 {\pm} 0.15$ |  |  |
| 8      | 5 context        | $0.19 \pm 0.09$ | $0.07 \pm 0.04$ | $0.31 \pm 0.15$ | 0.10±0.08 | $0.06 \pm 0.04$ | 0.20±0.16         | 0.06±0.05 | $0.04 \pm 0.03$ | $0.17 \pm 0.13$   |  |  |
| ning   | 10 context       | 0.20±0.11       | $0.06 \pm 0.03$ | $0.32 \pm 0.18$ | 0.09±0.07 | $0.05 \pm 0.04$ | <b>0.17</b> ±0.14 | 0.05±0.05 | $0.03 \pm 0.03$ | $0.15 \pm 0.14$   |  |  |
| Flar   | PEFT             |                 |                 |                 |           |                 |                   |           |                 |                   |  |  |
| cen.   | CcOp on LLM      | 0.28            | 0.11            | 0.43            | 0.22      | 0.10            | 0.39              | 0.13      | 0.07            | 0.40              |  |  |
| õ      | VPT on F         | 0.34            | 0.16            | 0.51            | 0.26      | 0.15            | 0.47              | 0.19      | 0.14            | 0.48              |  |  |
|        | VPT on $\phi_V$  | 0.42            | 0.21            | 0.61            | 0.33      | 0.22            | 0.57              | 0.23      | 0.19            | 0.56              |  |  |
|        | LoRA on $\phi_V$ | 0.44            | 0.26            | 0.62            | 0.33      | 0.23            | 0.58              | 0.23      | 0.19            | 0.55              |  |  |
|        | 🛱 PIN (ours)     | 0.45            | 0.27            | 0.62            | 0.35      | 0.26            | 0.59              | 0.26      | 0.24            | 0.61              |  |  |
| 2      | PEFT             |                 |                 |                 |           |                 |                   |           |                 |                   |  |  |
| 2      | VPT on F         | 0.33            | 0.12            | 0.51            | 0.27      | 0.12            | 0.50              | 0.18      | 0.11            | 0.47              |  |  |
| 4      | VPT on $\phi_V$  | 0.32            | 0.12            | 0.50            | 0.26      | 0.11            | 0.48              | 0.17      | 0.10            | 0.46              |  |  |
| BLI    | 🛱 PIN (ours)     | 0.44            | 0.24            | 0.63            | 0.34      | 0.22            | 0.60              | 0.26      | 0.23            | 0.60              |  |  |





"Left black shirt"



"Old lady in between the players"



"A guy in red on left"







"Right player"



"Top left apron strings"



"Pizza squares left"



"Pizza right front piece in middle"

Predictions



"A man black"

Ground Truth



UTN

#### Today we'll talk about two research topics. Topic 2:



Improving vision neural networks



NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency.

Valentinos Pariza, Mohammadreza Salehi, Gertjan Burghouts, Francesco Locatello, Yuki M. Asano. arxiv 2024







#### How semantic are patch representations?

#### Qualitative results in DINOv2



(Drawings / Animals)

But often...



Which patch from the whole dataset is the closest?







with SoTA DINOv2-R model



#### Idea of Patch Nearest Neighbor Consistency: intuitive to us

Given a **query patch of a right shoulder**, top neighbors should be in the following order:

(1) All Right Shoulder Patches, (2) All Left Shoulder Patches, (...) (3) Everything Else



Query Patch



















NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency, Pariza, Salehi, Burghouts, Locatello, Asano, arxiv 2024







#### Evaluation 1: Visual in-context segmentation via dense NN retrieval





f2

f4





Compare and find neighbors with query patch.

Backbone

**Query Patch** 





#### Evaluation 1: Visual in-context segmentation via dense NN retrieval





# In-context scene understanding benchmark



# matches performances of DINOv2-R with ~15x less data

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024

### (without any training)



Fundamental AI Lab

UTN







|           |                 |       | Pas  | cal VO         | C                      | COCO-Things           |         |         |         |               |                                |                        |  |
|-----------|-----------------|-------|------|----------------|------------------------|-----------------------|---------|---------|---------|---------------|--------------------------------|------------------------|--|
|           | At Init +PANECO |       |      |                | 0                      |                       | At Init |         | +PaNeCo |               |                                |                        |  |
| Pretrain  | K=GT            | K=500 | Lin. | K=GT           | K=500                  | Lin.                  | K=21    | K = 500 | Lin.    | K=21          | K=500                          | Lin.                   |  |
| iBOT [92] | 4.4             | 31.1  | 66.1 | $15.4^{+11.0}$ | $51.2^{\uparrow 20.1}$ | $68.6^{\uparrow 2.5}$ | 7.6     | 28.0    | 58.9    | $20.4^{12.8}$ | $52.8^{\textbf{\uparrow24.8}}$ | $67.7^{\texttt{†8.8}}$ |  |

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024



|                  |         |       | Pas  | cal VO                 | C                      | COCO-Things            |         |         |      |                        |                        |                       |
|------------------|---------|-------|------|------------------------|------------------------|------------------------|---------|---------|------|------------------------|------------------------|-----------------------|
|                  | At Init |       |      | +PANECO                |                        |                        | At Init |         |      | ł                      | Э                      |                       |
| Pretrain         | K=GT    | K=500 | Lin. | K=GT                   | K = 500                | Lin.                   | K=21    | K = 500 | Lin. | K=21                   | K=500                  | Lin.                  |
| iBOT [92]        | 4.4     | 31.1  | 66.1 | $15.4^{\dagger 11.0}$  | $51.2^{\uparrow 20.1}$ | $68.6^{\uparrow 2.5}$  | 7.6     | 28.0    | 58.9 | $20.4^{\dagger 12.8}$  | $52.8^{\uparrow 24.8}$ | $67.7^{+8.8}$         |
| <b>DINO</b> [15] | 4.3     | 17.3  | 50.2 | $14.5^{\uparrow 10.2}$ | $47.9^{\uparrow 30.6}$ | $61.3^{\uparrow 11.1}$ | 5.4     | 19.2    | 43.9 | $16.9^{\uparrow 11.5}$ | $50.0^{\uparrow 30.8}$ | 62.4 <sup>†18.5</sup> |
|                  |         |       |      |                        |                        |                        |         |         |      |                        |                        |                       |
|                  |         |       |      |                        |                        |                        |         |         |      |                        |                        |                       |



| Pascal VOC       |         |         |      |                        |                        |                        |         | COCO-Things |      |                        |                        |                        |  |  |  |
|------------------|---------|---------|------|------------------------|------------------------|------------------------|---------|-------------|------|------------------------|------------------------|------------------------|--|--|--|
|                  | At Init |         |      | +PANECO                |                        |                        | At Init |             |      | +PaNeCo                |                        | 0                      |  |  |  |
| Pretrain         | K=GT    | K = 500 | Lin. | K=GT                   | K = 500                | Lin.                   | K=21    | K = 500     | Lin. | K=21                   | K=500                  | Lin.                   |  |  |  |
| iBOT [92]        | 4.4     | 31.1    | 66.1 | $15.4^{+11.0}$         | $51.2^{\uparrow 20.1}$ | $68.6^{\uparrow 2.5}$  | 7.6     | 28.0        | 58.9 | $20.4^{\dagger 12.8}$  | $52.8^{\uparrow 24.8}$ | $67.7^{\texttt{†8.8}}$ |  |  |  |
| <b>DINO</b> [15] | 4.3     | 17.3    | 50.2 | $14.5^{\uparrow 10.2}$ | 47.9 <sup>*30.6</sup>  | $61.3^{\uparrow 11.1}$ | 5.4     | 19.2        | 43.9 | $16.9^{\uparrow 11.5}$ | $50.0^{\uparrow 30.8}$ | $62.4^{\uparrow 18.5}$ |  |  |  |
| TimeT [66]       | 12.2    | 46.2    | 66.3 | $17.9^{\uparrow 5.7}$  | $52.1^{+5.9}$          | $68.5^{\uparrow 2.2}$  | 18.4    | 44.6        | 58.2 | $20.6^{\uparrow 2.2}$  | 54.3 <sup>†9.7</sup>   | $64.8^{+6.6}$          |  |  |  |

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024



|                  |        | Pascal VOC |      |                        |                        |                       |      |         | COCO-Things |                        |                        |               |  |  |  |
|------------------|--------|------------|------|------------------------|------------------------|-----------------------|------|---------|-------------|------------------------|------------------------|---------------|--|--|--|
|                  | Æ      | At Init    |      | +PANECO                |                        |                       |      | At Init |             | +PaNeCo                |                        |               |  |  |  |
| Pretrain         | K = GT | K = 500    | Lin. | K=GT                   | K = 500                | Lin.                  | K=21 | K = 500 | Lin.        | K=21                   | K=500                  | Lin.          |  |  |  |
| iBOT [92]        | 4.4    | 31.1       | 66.1 | $15.4^{+11.0}$         | $51.2^{\uparrow 20.1}$ | $68.6^{\uparrow 2.5}$ | 7.6  | 28.0    | 58.9        | $20.4^{\dagger 12.8}$  | $52.8^{\uparrow 24.8}$ | $67.7^{+8.8}$ |  |  |  |
| <b>DINO</b> [15] | 4.3    | 17.3       | 50.2 | $14.5^{\uparrow 10.2}$ | 47.9 <sup>*30.6</sup>  | 61.3 <sup>†11.1</sup> | 5.4  | 19.2    | 43.9        | $16.9^{\uparrow 11.5}$ | $50.0^{\uparrow 30.8}$ | $62.4^{18.5}$ |  |  |  |
| TimeT [66]       | 12.2   | 46.2       | 66.3 | $17.9^{\uparrow 5.7}$  | $52.1^{+5.9}$          | $68.5^{\uparrow 2.2}$ | 18.4 | 44.6    | 58.2        | $20.6^{2.2}$           | 54.3 <sup>†9.7</sup>   | $64.8^{+6.6}$ |  |  |  |
| Leopart [93]     | 15.4   | 51.2       | 66.5 | $21.0^{\uparrow 5.6}$  | $55.3^{+4.1}$          | $68.3^{\uparrow 1.8}$ | 14.8 | 53.2    | 63.0        | $18.8^{\uparrow 4.0}$  | 53.9 <sup>†0.7</sup>   | $65.4^{+2.4}$ |  |  |  |



|                  |      |         | Pas  | cal VO                 | C                      | COCO-Things            |      |         |      |                               |                        |                       |  |
|------------------|------|---------|------|------------------------|------------------------|------------------------|------|---------|------|-------------------------------|------------------------|-----------------------|--|
|                  | Æ    | At Init |      | +PANECO                |                        |                        |      | At Init |      | +PANECO                       |                        |                       |  |
| Pretrain         | K=GT | K = 500 | Lin. | K=GT                   | K=500                  | Lin.                   | K=21 | K = 500 | Lin. | K=21                          | K=500                  | Lin.                  |  |
| iBOT [92]        | 4.4  | 31.1    | 66.1 | $15.4^{+11.0}$         | $51.2^{\uparrow 20.1}$ | $68.6^{\uparrow 2.5}$  | 7.6  | 28.0    | 58.9 | $20.4^{\textbf{\dagger12.8}}$ | $52.8^{\uparrow 24.8}$ | $67.7^{\dagger 8.8}$  |  |
| <b>DINO</b> [15] | 4.3  | 17.3    | 50.2 | $14.5^{\uparrow 10.2}$ | $47.9^{\uparrow 30.6}$ | $61.3^{\uparrow 11.1}$ | 5.4  | 19.2    | 43.9 | $16.9^{\uparrow 11.5}$        | $50.0^{\uparrow 30.8}$ | 62.4 <sup>†18.5</sup> |  |
| TimeT [66]       | 12.2 | 46.2    | 66.3 | $17.9^{\uparrow 5.7}$  | $52.1^{+5.9}$          | $68.5^{\uparrow 2.2}$  | 18.4 | 44.6    | 58.2 | $20.6^{\uparrow 2.2}$         | $54.3^{19.7}$          | $64.8^{+6.6}$         |  |
| Leopart [93]     | 15.4 | 51.2    | 66.5 | $21.0^{15.6}$          | $55.3^{+4.1}$          | $68.3^{\uparrow 1.8}$  | 14.8 | 53.2    | 63.0 | $18.8^{\uparrow 4.0}$         | 53.9 <sup>†0.7</sup>   | $65.4^{+2.4}$         |  |
| CrIBo [49]       | 18.3 | 54.5    | 71.6 | $21.7^{\uparrow 3.4}$  | $59.6^{15.1}$          | $72.1^{10.5}$          | 14.5 | 48.3    | 64.3 | $21.1^{+6.6}$                 | 54.0 <sup>†5.7</sup>   | $68.0^{13.7}$         |  |

frozen clustering and linear segmentation results on Pascal VOC and COCO-Things.

 $\rightarrow$  NeCo considerably boosts ( $\uparrow$ ) the performance of **different backbones** 

NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. Pariza, Salehi, Burghouts, Locatello, Asano. arxiv 2024



#### Key takeaways

- Dense Patch-ordering is loss well suited for post-pretraining
- We can **improve upon (very strong) DINO/ DINOv2R** models
- Strongest improvements in in-context semantic segmentation and even full-finetuning
- also: code/models now available!



No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations Walter Simoncini, Spyros Gidaris, Andrei Bursuc, Yuki M. Asano NeurIPS 2024





The **loss** indicates how the network output should **change** to solve a task





Idea



Gradients carry information about the network, task and data





Simoncini et al. No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations, NeurIPS 2024



Traditionally, vision models are trained with **supervision** 

Labels are needed to compute gradients 😢







Self Supervised Learning to the rescue!

Several Proxylosses




### Method

- Given a pre-trained vision transformer we
- Forward an image (or multiple views of it).
- Compute a self-supervised loss & backpropagate.
- Extract the **gradients** wrt the **weights** of a layer and downsample them.





### Method

- Given a pre-trained vision transformer we
- Forward an image (or multiple views of it).
- Compute a self-supervised loss & backpropagate.
- Extract the **gradients** wrt the **weights** of a layer and downsample them.
- Project gradients and obtain a FUNGI (Feature from UNsupervised GradIents).





### Self-Supervised Objectives

Three objectives: DINO, SimCLR and KL.

We concatenate (multiple) gradients and the model embeddings.

More **powerful**, as they contain information from multiple objectives.

More **robust**, as the other features can counteract a bad local gradient approximation





### Code Implementation

#### •••

```
# Wrap the model using the FUNGI feature extractor
wrapper = FUNGIWrapper(
    model=model,
    # (1) Select a layer
    target_layer="blocks.11.attn.proj",
    device=device,
    # (2) Choose the SSL objectives
    extractor_configs=[
        KLConfig(),
        DINOConfig()
    ]
)
# (3) Extract FUNGI
fungi = wrapper(PIL.Image.open("image.jpg"))
```



https://github.com/WalterSimoncini/fungivision



#### Gradient features can enhance the retrieval performance

When **combined** with other gradient features or the embeddings, they improve further Gradients encode **different** and **complementary** information to each other





### Experiments

We evaluate **FUNGI** across 20 backbones, 22 datasets and 3 modalities (vision, language and audio), for a total of **~1000 experiments**.

#### We evaluate **FUNGI** in

- Retrieval & k-nearest neighbor (k-nn) classification
- Linear classification
- k-means clustering



# **Retrieval-Based Tasks**



### k-nn classification (vision)

#### Large improvements in k-nn, even for DINO v1/2 and CLIP





### k-nn classification (vision)

#### Up to **5.3%** better for CLIP and **4.8%** for DINOv2 few-shot



Few Shot



## k-nn classification (language)

#### Up to 12.5% better using BERT Base





### k-nn classification (language)

AI Lab

#### Up to **16%** better in few shot classification using BERT Base



### k-nn classification (audio)

#### Up to **4.2%** better using a SSAST backbone





# Visual In-Context Segmentation



In-Context Semantic Segmentation (Hummingbird) on Pascal VOC



#### Up to 17% improvement over DINOv1



In-Context Semantic Segmentation on Pascal VOC

#### Close to SoTA, without any training!





### In-Context Semantic Segmentation [8] on Pascal VOC









### **Intent classification** on banking-77 with GPT 40 mini Examples selected with **FUNGI** improve accuracy by **+2.5%**!

You have to annotate banking-related queries with an appropriate intent. You must choose a single class in the following comma-separated list:

{list of classes}

You must only output the class, nothing more. Examples follow:

{20 (text, label) training pairs}

The test sample is: {text}

|               | Banking-77       |
|---------------|------------------|
| Embeddings    | 88.7             |
| + KL + SimCLR | <b>91.2</b> †2.5 |



### Other Evaluations



### Vision Linear Classification

Our features improve the performance of logistic regression for most backbones



**Figure 10: FUNGI works across backbones for linear probing.** Accuracy in logistic regression-based image classification of embeddings versus FUNGI features on various ViT backbones, both for full dataset and few shot setups, averaged over 11 datasets. For the FUNGI features, we chose the best performing combination across datasets. "AR" indicates AugReg backbones (Steiner et al., 2022).





Self-supervised **gradients can be used as features**, and can perform better than the embeddings

**Combining** gradients (and embeddings) produces **strong features** for **retrieval**, **linear classification** and **clustering FUNGI** works **across modalities** 







#### Learning to Count without Annotations Lukas Knobel, Tengda Han, Yuki M. Asan CVPR 2024









#### **Referential Counting**





#### **Referential Counting**

#### ...typically need counting supervision













## But pretrained & frozen models are (very) good.



#### Good #1: unsupervised salient object segmentation





#### Good #2: strong & robust feature extraction





### Result: we can learn object counting *without any* supervised data.





### Result: we can learn object counting *without any* supervised data.





Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video.

Shashanka Venkataramanan, Mamshad Nayeem Rizve, João Carreira, Yannis Avrithis\*, Yuki M. Asano\* ICLR (oral & outstanding paper) 2024

https://www.barilla.com/it-it/ricette/tutte/farfalle-con-fave-e-pesto-ricotta-e-noci

## **TimeTuning:**

DINO as init & use temporal info of videos.

How powerful is time

without image-pretraining?

Study the extreme: try to learn from a single video, from scratch.



# us figuring out which video to use





✓ Long ✓ High-res, smooth ✓ Semantically rich ✓ Scalable (we ♥ SSL) Walking Tours



WTours proposed for learning video compression in ACCV 2022: Wiles et al. Compressed Vision for Efficient Video Understanding.













#### The dataset consists of 10x 4K videos of different cities' Walking Tours.







WT Venice: https://www.youtube.com/watch?v=fGX0Te6pFvk. CC-BY Poptravel.



#### High-level idea:

track multiple objects across time
 enforce invariance of features across time

## Dora: Discover and Track



Much like Dora, we walk around and learn from what we see.





### Spreading attention with Sinkhorn-Knopp







Venkataramanan, Rizve, Carreira, Asano\*, Avrithis\*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ICLR 2024

More examples: multi-object tracking in a ViT *emerges* 











Venkataramanan, Rizve, Carreira, Asano\*, Avrithis\*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ICLR 2024
## Dora better than DINO WT+ Dora: great match





But how does it compare against ImageNet pretraining?

DINO (IN-1k) Dora (1 WT) Dora (10 WT)



Dora (1WT) ~ on par with DINO (IN-1k) Dora (10WT) > DINO (IN-1k) everywhere



## Key takeaways

- Training strong encoders **from scratch** with 1 video is possible
- Models match DINO (trained on ImageNet) in terms of performance
- The training loss is **spatially dense** and leverages **time**
- Multi-object tracking emerges
- Walking videos are great for training vision models