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Project: Democratization of EEG (Lars Kai)

Motivation: Neurotechnology can connect everyday behavior
with brain dynamics and provide diagnostic support e.g. for
epilepsy. WHO has identified a world wide epilepsy diagnosis
gap.

Data: Wearable EEG, focus on low cost EEG data
acquisition. EEG is entering the "ImageNet"-phase with
marked increased access to data.

Challenges: Extreme signal-to-noise conditions. Real-time
quality and control/interactivity.

Funding: EEG project eGAP funded by EU/Eurostars,
BrainCapture, DTU. Funding history: NIH, Lundbeck, NNF,
IFDK

SD Moonshot: Global access to neurotechnology.
Moonshot: Foundational EEG models with explainability

Collaborators in P1: Cogsys, Witzner, (Feragen)
Collaborators outside P1: Neurologists, Cognitive Scientists,
Hearing Aid business sector and start-ups.
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7 step plan - example for Visipedia

1. Inception

2. Early Explorations

3. Painstorming

4. Deep Dive

5. Branching Out

6. Going Global

7. Moonshot

Al researchers observe that birding is a popular hobby around the globe, and birders pride themselves on
being able to distinguish between bird species with very similar appearances. Social Science and Humanities
colleagues who study public participation highlight the potential of motivated teams to take collective action ...

Al researchers build a scrappy dataset of labeled bird images from internet based resources and obtain
baseline results with state-of-the-art Machine Learning techniques. It is clear that the problem is very difficult.

Al researchers travel to the Lab of Ornithology to learn about the community’s needs. Birders don’t need a
machine to tell them the difference between a pigeon and a sparrow. They need the machine to tell them the
difference between a blue grosbeak and an indigo bunting. If they help train the machine, they want the ...

Al researchers team with ornithologists to create large, world class dataset of labeled bird images, and invent
new algorithms for discriminating among tightly related visual classes, thereby laying the foundations of a new
subfield: Fine Grained Visual Categorization. Ornithologists release Merlin bird photo ID app for iPhone ...

Al researchers and experts from domains including plant disease, entomology, nutrition science, and apparel
design launch a new workshop featuring visual classification competitions on challenging datasets. Al
researchers join with the California Academy of Sciences to add photo ID functionality to the iNaturalist ...

Al researchers visit the Global Biodiversity Information Facility (GBIF) to explore how to provide the tech stack
behind the above apps to every area of biodiversity research in a socially responsible manner, with proper
attribution and citation mechanisms. Together with Google’s TensorFlow Hub team, they establish a new ...

We aspire to create a system that can recognize every living organism on earth based on photos, sound, and
video.


https://merlin.allaboutbirds.org/photo-id/
https://www.inaturalist.org/

Outline

Introducing granularity
Subordinate categories
Parts & Attributes
Long-tailed distributions
Popular datasets
Beyond categorization
Open problems




Fine-grained image recognition vs. Generic image recognition
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(Coarse-grained) Fine-grained image recognition

[Xiu-Shen Wei]



The Categorization Spectrum

Basic Subordinate Biometrics
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Granularity: human vs. machine perspective

Dataset granularity depends on:
o the ground truth labeling
o the distance function

Important to consider role of
human expertise

Some datasets are “fine grained
in name only”

Machine perspective: embedding
vectors in high-dim. space
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Quantifying Granularity

CUB-200-Bitter
Granularity: 0.645
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Flycatcher Warbler Warbler Warbler Warbler Warbler Vireo Vireo Virea

CUB-200-Sweet
Granularity: 0.991
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Albatross Blackbird Bunting Catbird Flicker Crow Pelican Bunting Goldfinch
CIFAR-10 .
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[Cui et al,arXiv 2019 https://arxiv.org/abs/1912.10154]



Attribute-Based Classification

otter

« Train classifiers on attributes black:  yes
instead of objects Siripss: o

« Attributes are shared by different =" """ ¢ =
object classes e '

brown:

« Attributes provide the ingredients  :iE*
necessary to recognize each
object class

Lampert et al. 2009
Farhadi et al. 2009



Shared Parts and Attributes
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Recognition with Humans in the Loop

Visual 20 Questions

(A) Easy for Humans (B) Hard for Humans (C) Easy for Humans
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Chair? Airplane? ... Finch? Bunting?... Yellow Belly? Blue Belly? ...

Visual Recognition with Humans in the Loop
Steve Branson, Catherine Wabh, Florian Schroff, Boris Babenko, Peter Welinder, Pietro Perona, Serge Belongie ECCV 2010




Visual 20 Questions

The birdis a Is the belly Is the beak cone-shaped? yes
Black-footed white? yes Is the upper-tail brown? yes
Albatross Are the eyes Is the breast solid colored? no
white? yes ¥ |s the breast striped? yes
The bird is a Is the throat white? yes
Parakeet Auklet The bird is a Henslow’s
Sparrow
. Question 1: Question 2:
-~ ’ ComptarVision ’ Is the belly black? ’ Is the bill hooked?
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Visual Recognition with Humans in the Loop
Steve Branson, Catherine Wah, Florian Schroff, Boris Babenko, Peter Welinder, Pietro Perona, Serge Belongie ECCV 2010
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CUB-200 Dataset

probably itely P Y

Visual Recognition with Humans in the Loop
Steve Branson, Catherine Wah, Florian Schroff, Boris Babenko, Peter Welinder, Pietro Perona, Serge Belongie ECCV 2010



antedeepluvian

an-te-deep-lu-vi-an
an(t)édép 'loovean/

adjective
1. before the flood of deep learning papers

2. "Histograms of vector quantized filter responses
are antedeepluvian features.”



Pose Normalized Deep ConvNets
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Categorization vs. Retrieval

e Retrieval metrics, top k, psychometric factors
e Recognition via retrieval, and vice versa

. Image database
- (Galaxy)

Returned results: from top-1 to top-4



Long-tailed fine-grained datasets

iNaturalist.org
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https://www.kagsle.com/c/inaturalist-challenge-at-fevc-2017



https://www.kaggle.com/c/inaturalist-challenge-at-fgvc-2017

Scaling to large numbers of domains
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Fine-grained benchmark datasets

CUB200-201 1 . 11,788 images, 200 fine-grained classes

o

[Catherine Wah et al.,, CNS-TR-2011-001,2011]



CUB-200 Dataset Accuracy
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Various real-world applications

Identify plant species from herbarium specimens.

<> l"m‘:‘ -y ‘ ’ E;.‘..u“;.y. :W = I

https://www.kagsle.com/c/herbarium-2020-fevc//



https://www.kaggle.com/c/herbarium-2020-fgvc7/

Fine-grained benchmark datasets

Chlhuahua W Japanese Spaniel
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Afghan Hound

Stanford Dogs

20,580 images
120 fine-grained classes

[Aditya Khosla et al., CVPR Workshop 201 1]



Fine-grained benchmark datasets

Oxford Flowers . 8,189 images, 102 fine-grained classes

[Maria-Elena Nilsback and Andrew Zisserman, CVGIP 2008]



Fine-grained benchmark datasets

Stanford Cars . 16,185 images, 196 fine-grained classes
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[Jonathan Krause et al., ICCV Workshop 2013]
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Standard Tasks
What species?

Beyond fine grained image ID

e Natural World Tasks (NeWT) e Tiog s
Van Horn et al. CVPR 2021 Behavior? Health?
Age? Context?
Media Collection Visual Question

Appearance - Species

Appearance - Attribute




Open Problems in Fine Grained Image Analysi

1. Dataset size

Formal characterization of the problem
What, exactly, does “fine grained” mean?

Data/label-efficient approaches
Targeted engagement with human expertise

(@)

Large source )/
dataset

Small source /7~ Downstream
dataset  ~ tasks

(@)

S

2. Domain

Domain B

Domain C

Domain D

Domain E

Self-supervision in the fine grained setting
Dataset augmentation for contrastive learning

Beyond static images
Multimodal/video+audio

Synthetic and augmented data
Devil in the details

3. Quality
O

Corrupted ¥
source dataset =

(@)

(@)

4. Task granularity

downstream

Source dataset tasks

000

Fine-grained
downstream

[E. Cole et al. CVPR 2022]



