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Deep Learning for Action Recognition
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Deep Learning for Action Recognition
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Fine-Grained Action Recognition
What is ha
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ppenin g?

Coarse-grained: cooking

Fine-grained: cutting bell pepper



Fine-Grained Action Recognition

Challenge: Action Recognition
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Deep Learning for Action Recognition
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Deep Learning for Action Recognition
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Issue with Supervision




Action Modifiers: Learning from Adverbs in
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Beyond ‘What' is Happening

worse peel onion better
slowly put onion peel in bin quickly
messily slice onion neatly



Adverbs
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... if you turn the bowl upside down slowly they won't come out ...

... you want to dice it finely...
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...just finely slice around an inch of ginger...
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...just finely slice around an inch of ginger...
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...just finely slice around an inch of ginger...
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Adverbs — Action Modifiers

Video &

..start by qulckly rolling our lemons...
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Adverbs — Action Modifiers

Video x |

..start by qulckly rolling our lemons...
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Adverbs — Action Modifiers
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Adverbs — Action Modifiers
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Adverbs — Action Modifiers
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Adverbs — Action Modifiers
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Adverbs — Action Modifiers
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Adverbs - Dataset
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Video: https://www.youtube.com/watch?v=rajoOx7WF-c&t=100s

... we're going to MIX these up real quick...


https://www.youtube.com/watch?v=rajo0x7WF-c&t=100s

.. get under there then real CIUiCk...
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...wash, roll up and spin it to completely dip it...



Conclusions

- The proposed method can learn how adverbs compose with different actions
- We can successfully learn adverb representations with weak supervision

- Open challenges:
- Representing more adverbs
- Spatial disambiguation from weak supervision
- Utilizing adverbs for other tasks
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Adverb Datasets
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Semi Supervised Learning of Adverbs
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Semi Supervised Learning of Adverbs
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Semi Supervised Learning of Adverbs
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Semi Supervised Learning of Adverbs
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Semi Supervised Learning of Adverbs
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Semi Supervised Learning of Adverbs
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Semi Supervised Learning of Adverbs
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Semi Supervised Learning of Adverbs
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Results — Unseen Compositions

? Method Accuracy
[
Supervised only 52.2
Ours 56.1

Training with full labels 65.1

Table 4. Unseen compositions in VATEX Adverbs. Our method
improves generalization to unseen action-adverb compositions.

mix
VJ

continually slowly



Results — New Domains

Train Test
- 1IN

Method MSR-VTT Adverbs  ActivityNet Adverbs
Source only 62.9 67.2
Pseudo-Label 63.9 66.4
Ours 65.0 66.6

fold gently Source + Target 67.5 71.6
Target only 70.5 71.8

Table 5. Transfer to unseen domains from VATEX-Adverbs. Our
method aids generalization to similar domains (MSR-VTT Ad-
verbs), but struggles with larger shifts (ActivityNet Adverbs).

‘ -
swim slowly swim slowly




Video: https://hazeldoughty.github.io/Papers/PseudoAdverbs

Adverb Pseudo-Labeling Examples



https://hazeldoughty.github.io/Papers/PseudoAdverbs/

Conclusions

- Using multi-adverb pseudo-labelling allows us to use action labelled videos
- We can successfully learn adverbs in a long-tailed distribution

- Open challenges:
- Recognizing unseen action-adverb combinations
- Infeasible combinations
- Generalization from few contexts
- Utilizing adverbs for other tasks



How SEVERE is Benchmark Sensitivity in
Video Selt-Supervised Learning?

Fida Mohammad Thoker Hazel Doughty Piyush Bagad Cees Snoek

University of Amsterdam



Current Evaluation

UCF-101

Kinetics

-

5 A
&

AIR DRUMMING APPLAUDING

~

- ¥

Playiné Piano

FLIPPING PANCAKE JOGGING MAKING TEA

Horse Race




Current Evaluation

Something-Something

Kinetics

-

-

Gy o
&

AIR DRUMMING APPLAUDING

BIKING THROUGH SNOW BOOKBINDING

FLIPPING PANCAKE JOGGING MAKING TEA



Factors We Investigate

Pre-training
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Factors We Investigate

I. Downstream domains

FineGym-99 UCF-101




Downstream Datasets

Kinetics- 400 ‘ UCF-101 FineGym
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Downstream Domain
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Downstream Domain
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Downstream Actions

Semantically different actions Semantically similar actions
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Downstream Actions

Gym99

Pre-training Across Events Within Event Within Set
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Downstream Actions
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Downstream Actions

Gym99
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VideoMoCo 28.4 79.5 60.4
GDT R3 6 0
RSPNet 87.6 33.4 82.7 63.5 85.1
CtP ,
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Downstream Actions

Gym99
Pre-training Across Events Within Event Within Set
Floor FX-SI  UB-SI

None - 45.0 840
SelLLaVi 50.2
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AVID-CMA 67.2
MoCo 83.3 65.1
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RSP INC : , 63.5
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More fine-grained



Downstream Actions

Gym99

Pre-training Across Events Within Event Within Set

All Vault  Floor FX-S1  UB-SI
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MoCo 86.2 33.2 83.3 65.1 85.0
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Overall Observations

e Different methods are better in different downstream settings

e Supervised pre-training dominates

» Contrasting parts of a video clip increases generalizability

* Too many augmentations can harm generalizability to fine-grained settings

* CtP generalizes well and doesn’t use contrastive learning
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On Semantic Similarity in Video Retrieval
CVPR 2021

Michael Wray Hazel Doughty Dima Damen
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More info: https://mwray.github.io/SSVR/
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Video Retrieval

Which of these captions correspond to the following video?

A band is performing for the crowd
A man is peeling fruit.

A girl is sitting in a chair

Add prawns to the pan and mix



Video: https://www.yvoutube.com/watch?v=A07zUbxMn60

Which video is ground truth for this caption:

"A demonstration in origami"



https://www.youtube.com/watch?v=AO7zUbxMn6o

Retrieval Assumption

Current methods make the following assumption

“There exists only one corresponding caption for a given video and vice versa”

Peel and chop the potatoes
Peel and cut up the potato

. Peel the potatoes and cut them
k Peel and cut the potatoes into chunks
| ' Peel the potatoes and cut them into halves

YouCook?2

2 Put fork and spoon in drying rack
Put spoons in drying rack
Put spoon in drying rack
Put bowl in drying rack
Put plate in drying rack

" EPIC-KITCHENS

MSR-VTT

A band is performing for the crowd

A band is performing on a brightly lit stage
A band is playing a show

A band and singers perform

3 guys singing and playing instruments on a stage




Semantic Similarity

Two main goals for semantic similarity:

Peel and chop the potatoes

Move from a one-to-one relationship
between videos and captions to many-

to-many. Add potatoes to the pan and

mix

Allow for differing levels of similarity Spread butter on the bread




Proxy Measures

Want to relate two items semantically. A band is performing for a

crowd

Two men competing in a
Assume that a caption sufficiently ping pong match
describes a video.

. | S(xi,,) = S'(vu)
Define a proxy function that relates
captions



Example Proxy Measures

We introduce three other metrics based on:
Parts of Speech

Synsets
METEOR

mix the ingredients in the pan together
stir all of the ingredients in the pan

stir the food in the pan

add the chicken to the pan and mix

fry the chicken in the pan

crush some garlic



Problems with Instance Retrieval

When evaluating with a single caption, the correct caption can be arbitrary.
Peel the potatoes and cut them

Query Video
Caption Rankings /

Peel and chop the potatoes Peel the potatoes and

cut them into halves
Peel and cut up the potato



Evaluating Semantic Retrieval

We use normalised Discounted Cumulative Gain to evaluate multiple items with

differing relevance.
Query Video

Peel the potatoes and cut them 1.0

Caption Rankings

SN

Peel and chop the potatoes ~ Peel the potatoes and

cut them into halves
Peel and cut up the potato



Evaluating with Semantic Similarity

Whilst models outperform the MLP baseline (MME) for Instance Video Retrieval, this
isn’t the case when Semantic Similarity is used.

Instance | BoWw | PoS | Synset - METEOR
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MOoEE: Antoine Miech, Ivan Laptev, and Josef Sivic. Learning a text-video embedding from incomplete and heterogeneous data. CoRR, abs/1804.02516, 2018
CE: Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zisserman. Use what you have: Video retrieval using representations from collaborative experts. In BMVC, 2019
JPoSE: Michael Wray, Diane Larlus, Gabriela Csurka, and Dima Damen. Fine-grained action retrieval through multiple partsof-speech embeddings. In ICCV, 2019



Training with Semantic Similarity

Results on YouCook2 with models trained for 10 thresholds.

Training with any proxy outperforms using instance training.
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Training with Semantic Similarity |

Results on YouCook2 with models trained for 10 thresholds.

Training with any proxy outperforms using instance training.

Iinstance

10

GMean Recall

p (0 N ~ o Vo)




Conclusions

- Thereis an issue with the current instance-based metrics in video retrieval

- We propose a new metric which allows many-to-many relevancy and non-binary
similarity

- These relevancies can be calculated via our proxies

- Considering multiple relevant captions can improve video retrieval results



