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Example: Detection of
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- Still no guarantee of invariance
’ ':." P - Valua.ble.net qapacity IS spend on
14 learning invariance

- Redundancy in feature repr.

: = %
- ~ 4
/.-’
) : . V” _‘.\‘~\~



https://distill.pub/2020/circuits/equivariance

Naturally Occurring Equivariance in
Neural Networks Equivariant Features

Rotational Equivariance: One example of equivariance is rotated versions of the same

AUTHORS AFFILIATIONS PUBLISHED DOI
Chris Olah OpenAl Dec. 8, 2020 10.23915/distill.00024.004 feature. These are especially common in early vision, for example curve detectors, high-low
Nick Cammarata OpenAl frequency detectors, and line detectors.
Chelsea Voss OpenAl
Ludwig Schubert
Gabriel Goh OpenAl
Curve
Detectors
High-Low
Frequency
=Nl erElININENEENED
Edge Some rotationally equivariant
Detectors features wrap around at 180

degrees due to symmetry.

Line
Detectors

The weights for the units in the first layer of the TF-Slim [11] version of InceptionV1 [8].° Units are sorted by the first
principal component of the adjacency matrix between the first and second layers. Note how many features are similar
except for rotation, scale, and hue.

(There are even units which wrap
around at 90 degrees, such as
hatch texture detectors.)
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feature map stabilized view

Normal CNN

Figures source:
https://github.com/QUVA-Lab/e2cnn
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Geometric guarantees (equivariance)

Importance of equivariance:
- No information is lost when the input is transformed

- Guaranteed stability to (local + global) transformations

Group convolutions:

- Equivariance beyond translations
- Geometric guarantees

- Increased weight sharing

G-CNNs are not only relevant for invariant
problems but for any type of structured data!



Group equivariant deep learning

Create architectures with guarantees of invariance or equivariance
(often demanded by problems)
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Equivariance allows for Psychology of vision Efficient representation learning
increased weight sharing (recognition by components) (leverage symmetries)

Low-level features
(e.g. local surfaces)

features can appear at arbitrary .

ﬁ Vo s
i sij locations, angles, and scales

Low-Ievel features arranged at
relative angles and displacements )
form mid-level features e

Mid-level features
(e.g. vessel segments) By,

Mid-level features arranged at
relative angles and displacements
form high-level features such as
bifurcations

10
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What is a group?

A group (G, - ) is a set of elements G equipped with a group product -, a
binary operator, that satisfies the following four axioms:

Closure: Given two elements g and /1 of G, the product g - his also in G.
Associativity: For g, h,i € G the product - is associative, i.e., g-(h-1) = (g - h) - 1.
Identity element: There exists an identity element e € G suchthate-g=g¢g-e =gforany g € G.

Inverse element: For each g € G there exists an inverse element g_l € G s.t.
g rg=gg =e

13



Psychology of vision: recognition by components

Low-level features
f -/

e.g. local surfaces = [ ]
(e faces) =y /7\
‘ ”m /"‘""‘3 - ’
@ @ ________ E#.('“‘V’ e }
& ( 70 | BN
ﬁ\ﬁ, features can appear at arbitrary ™ -4 Mid-level features arranged at
s locations, angles, and scales l\' \) relative angles and displacements
‘@ form high-level features such as

Low-level res arran . .
ow-level features arranged at bifurcations

relative angles and displacements
form mid-level features

e V[
-
-
”
-

Mid-level features
(e.g. vessel segments) By,



Translation group (Rz, + )

The translation group consists of all possible translations in R? and is equipped with the group
product and group inverse:

g8 =(XxX+Xx)
g~ = (-x)
with ¢ = (X), g’ = (X’) and X, X’ € R”.

15
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Translation group (Rz, + )

The translation group consists of all possible translations in R’ and is equipped with the group
product and group inverse:

g8 = (X+Xx)
g~ = (-x)
with ¢ = (X), g’ = (X’) and X, X’ € R”.
o "o : ‘e ’
: .(3 : — / ® o o ®
I multiply each element with ¢

® oo ® (using group prod)

15



2D Special Euclidean

Roto-ranslation group SE(2) * &

The group SE(2) = R? X SO(2) consists of the coupled space R* X S! of translations vectors

in R?, and rotations in SO(2) (or equivalently orientations in S), and is equipped with the group
product and group inverse:

g8 = (X, Ry) - (X', Ry) = (Ryx'+X, R9+9')
g~ = (-Ry'x, Ry
with g = (X, Ry), g' = (X, Ry).

10



2D Special Euclidean

Roto-ranslation group SE(2) * &

The group SE(2) = R? X SO(2) consists of the coupled space R* X S! of translations vectors

in R?, and rotations in SO(2) (or equivalently orientations in S), and is equipped with the group
product and group inverse:

g8 = (X, Ry) - (X', Ry) = (RQX,‘|‘X, R9+9')
g~ = (-Ry'x, Ry
with g = (X, Ry), g' = (X, Ry).

V4
%
/ A
T %% ' ! {2 f :
p. “ y // ;
/ 4 = \ \\ o ”
b 4 h 3 4
o ‘ \\*-r’
: > ‘ - /
\ 4 multiply each element with g

Nano>” (using group prod)
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2D Special Euclidean

Roto-ranslation group SE(2) * &

Matrix representation: The group can also be represented by matrices

cosfd —sinf x R
=xX,R) < G=]|smnf cosf y|= ( 0 X)
g_ ” T T
’ 07 1

0 0 1

with the group product and inverse simply given by the matrix product and matrix inverse.

In parametric form: (x,0)- (x,0)=(Rx'+x,0+ 06 )

<>

(Rg X) (Ré X’) <R9+9, RQX'-I-X)
In matrix form: —
0! 1 o' 1 0! 1

17



Representations

A representation p : G — GL(V) is a group homomorphism from G to the
general linear group GL(V).

That is p(g2) is a linear transformation that is parameterized by group elements
¢ € G that transforms some vector v € V (e.g. an image) such that

p(g) e p(@)vl =p(g'- g) V]

18
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Representations
T

p@IV] X ¥ _ v

:

p(g)lp(g)lv]]

p(g - gIv]

A representation p : G — GL(V) is a group homomorphism from G to the
general linear group GL(V).

That is p(2) is a linear transformation that is parameterized by group elements
¢ € G that transforms some vector v € V (e.g. an image) such that

p(g) e p(@)vl =p(g'- g) V]
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Left-regular Representations

A left-regular representation & 0 is a representation that transforms functions f by
transforming their domains via the inverse group action

L [f1(x) == flg™" - x)
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Left-regular Representations

Example:

f € Ly(R?)

G =SE(2)

Z (N = fR;'(y = %))

A left-regular representation & 0 is a representation that transforms functions f by
transforming their domains via the inverse group action

L [f1(x) == flg™" - x)
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Left-regular Representations

Example:

fe LR 3/
- a 2D Image

G =SE(2)

- the roto-translation group

Z (N = fR;'(y = %))

- a roto-translation of the image

A left-regular representation & 0 is a representation that transforms functions f by
transforming their domains via the inverse group action

_1 »/\ "group action” equals
gg [f] ()C) = f(g . x) group product when

domainis G
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"= '@

- the roto-translation group
A left-regular representation & 0 is a representation that transforms functions f by
transforming their domains via the inverse group action

_1 »/\ "group action” equals
gg [f] ()C) = f(g . x) group product when

domainis G

Z (N = fR;'(y = %))

- a roto-translation of the image
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Left-regular Representations

Example:

f e Ly(R? ‘gg

Z,
\
- a 2D image -
G = SE(2)
- the roto-translation group

Z (N = fR;'(y = %))

- a roto-translation of the image

A left-regular representation & 0 is a representation that transforms functions f by
transforming their domains via the inverse group action

»/\ "group action” equals
[f] (x) — f(g -1, ) group product when

domainis G

19



Equivariance

X Y

Equivariance is a property of an operator

® : X — Y (such as a neural network layer)
by which it commutes with the group action:

A 4

Do pX(g) =pY(g) o @ P () p(8)

[ o

group representation action on X

NV
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3. Group convolutions

4. Example

5. G-convs are all you need!

6. Steerable group convolutions

7. Feature fields and escnn library

8. Equivariant tensor product layers

9. Equivariant graph NNs

Group theory: symmetries & recognition by components
(features have “poses”)
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Cross-correlations

(k *ge ))(X) = J k(X' = X)f(x)dx’

R



Cross-correlations

Representation of the translation group!

|

(k xRz f)(X) = J k(x' = x)f(X)dX" = (Z, k, w2

R2
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Cross-correlations

Representation of the translation group!

|

(k xRz f)(X) = J k(x' = x)f(X)dX" = (Z, k, w2

R2
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Equivariance

Convolutions/cross-correlations are translation equivariant

/ (k *g2 £)X) = (L0 " kL ey

o

NV

gﬂ%z—ﬂ]_z(l]%z) gIRZ—A]_z(IRZ)

/ (x) (x)

Representation of the
translation group

N4

24



Equivariance

Convolutions are generally not equivariant to roto-translations

<k K2 f)(X) = <3§)*\*RZ> ks D

Representation of the
translation group

350(2)—&2(&2)

| e%

350(2)—&2(&2)

e

Representation of the
rotation group

25



SE(2) equivariant cross-correlations

Representation of the roto-translation group!

~
~ N 2
Lifting correlations: (k % f)(X,0) = (< gE(z) el )L, (R?)
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SE(2) equivariant cross-correlations

Representation of the roto-translation group!

~
~ - 2 2, 2
Lifting correlations: (k * f)(X,0) = (£ :;E(Z) Rl w2y = (£ ,If Ho(RY) ki re

translation
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SE(2) equivariant cross-correlations
k(R (X'—x))

Representation of the roto-translation group! ~ e

~ N 2 ‘ 2_> 2
Lifting correlations: (kK * f)(X, 0) = (fZ;E(z) LRY E L@ = ( FIBED

translation

k., f)”—z(Rz)

20



Representation of the roto-translation group!

SE(2) equivariant cross-correlations

— k(R (x'—x))
~ S\E(Z)—>[L (R?) . R’>1,(R?) 15\0(2)_& (R?) A
Lifting correlations: (k x f)(x,0) = (£, ok ey =(F L Sk Pwy
translation rotation
]
RPN
: \i 'r'
- T I |
= *RZ l’# & - “ ‘\ ”‘" ' l' — lll
I ” _ » ‘l \.’h-‘ # lll
l\ | I |
.. e
Y
350(2)—>[L2(R2) I fi”
%
Rotated 2D convolution kernel

2D feature map

fOl/tf

3D (SE(2)) feature map (after RelLU)
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SE(2) equivariant cross-correlations

k(R (x'—x))

Representation of the roto-translation group! ~ e
( — N
. : " EQ)—L,(R? R*—1L,(R?) pSO(2)—L,(R?
Lifting correlations: (k * f)(X,0) = (£ g =LY & Lwe = (Zy (R , 2= Lwy
translation rotation
KA
’ ~ \|
#J‘--_~‘ :‘ “ % i :
% —
*Rz :’,-" a ‘I \\_’\ :;’ T
! = . =
. = - - F
s~-_‘,’
N
OCZ;O(Z)% |L2(R2)k fin ][‘OMZ

Rotated 2D convolution kernel 2D feature map 3D (SE(2)) feature map (after Rel_U)
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Equivariance

SE(2) group lifting convolutions are roto-translation equivariant i S :
(k* )x) = (Zy 727 70 kL gy

/”*‘\\ (D

'y X
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Y P
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Equivariance
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Equivariance

SE(2) group lifting convolutions are roto-translation equivariant i S :
(k* )x) = (Zy 727 70 kL gy

o SO(2)—1L,(SE(2)) #
320(2)—>[L2(R2) A ., :

' planar rotation ¥ What about

Y subsequent layers?
planar rotation TN l T S
/ // \\ b |
Ny 1
C T / L
Nl -” @
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SE(2) equivariant cross-correlations

Group correlations:
SEQ2)—1,(SEQ2
(k * f)(x,0) = (Z, (2= R0EE) | , L sEQ)
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SE(2) equivariant cross- correlatlor?s) |
/ X'—X

Group correlations: - <
SE2)—=LL(SE(2 R2=1(SEQ2
(k * )(x,0) = (Z," 77D kO ey = (FR—LASED) ks Disee)

translation
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SE(2) equivariant cross-correlations

— HRGIOC-X).Ry. )
Group correlations:

4 N N\
SEQ2)—L,(SE(2 R*>1L,(SE(2)) cpSO2)—L,(SE(2
(k * F)(x,0) = (fZg (2)=L(5E(2)) , f)[Lz(SE(z)) = (Z, 2 (SE( ))ge (2)=L(5E(2)) , f)[Lz(SE(z)

translation rotation

planar rotation

———
S —_
UIys olpouiad

ha
Y
.
.
S
.
PR -
'
.
~a -
| | | | | |

hat
Sy
.
.
\\\

PSOQ2) =Ly (SEQ)
0

Rotated
28



SE(2) equivariant cross-correlations

— HRGIOC-X).Ry. )
Group correlations:

( N )
SE2)—L,(SE(2 R2=1L,(SE?2)) cpSO(2)—1,(SE(2
(k * F)(x,0) = (gg (2)=L(5E(2) 1 ’ f)[Lz(SE(Z)) = (Z, 2 (SE( ))39 (2)=L(5E(2) p ’ f)[Lz(SE(z)

translation rotation

planar rotation

*
R

Hiys dipoLied

,'ll

PSO2)—Ly(SEQ);, fi” fout
6
Rotated SE(2) convolution kernel SE(2) feature map SE(2) feature map (after RelLU)
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SE(2) equivariant cross-correlations
o k(R,'(x'—x),R,_,)

Group correlations:

4 —— N
SE(2)—1L(SEQ2 R*>1,(SE(2 SO2)—=1L-(SE(2
(k * F)(x,0) = (gg (2)=L(5E(2) 1 ’ f)[Lz(SE(Z)) = (Z, 2 (SE( ))39 (2)=L(5E(2) p ’ f)[Lz(SE(z)
translation rotation

planar rotation

*
R

Hiys dipoLied

- } - '- 3 II|l

PSO2)—Ly(SEQ);, fi” fout
6
Rotated SE(2) convolution kernel SE(2) feature map SE(2) feature map (after RelLU)
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Projection layer
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Roto-translation group S#(2) = R? x S0(2)

2D flealure map

v
>
| 4
[
=

-
=
¥
=
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=
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SONANLY NS A u

Lifting layer Group conv layer Projection layer




Roto-translation group S#(2) = R? x S0(2)

2D flealure map

[/sing a sct of transformed

2D conv kernels

0=35 |4
=3 |
0=0 |mp

Lifting layer

(+ feature map (activation for oriented
structures at each position and rotation)

-

- T ———

rolalion

G-fealure maps q//"e equivarianl
w.r.t. translation and rotation
I

of the input l‘

Group conv layer




Roto-translation group S#(2) = R? x S0(2)

2D flealure map
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Roto-translation group S#(2) = R? x S0(2)

2D flealure map

(+ feature map (activation for oriented
structures at each position and rotation)

(= feature map (activation for faces
at each pasition and rotation)

2D [eature map

ol ) I > -»"’J’/ r T~ :
Foom— P 7
" ' “ [/_:___-_ - ""_/
oyt = Using a set of transformed ST — rd ,
» S W = G 2 k ] o —— ]
¥ . L« = 7-cony kernels - ~ ’
¥ I’ \‘ [} - {; ) ) f t e . d _5 ,',l —— ‘
¢ - Ising a set of transformed 2 | @
\ e A 20 conuv kernels W §
'Y 'I R N r
L -.__‘__.‘ /
- “’ ‘ o
— v 1 4 B . G .. | J /
0==% ‘ G-fealure maps wre equivarianl " J .
1 = . . E —— 4 ’ \\
- w.r.t. translation and rotation ¢ =17 A e —— : N
) . . ' 7 VY A Tk \
\ Ly - < 2 2 1
= Z of the input l e eaet | '
\\ 0 4 ’ f p \‘ - _&‘. - ‘\ |I
\\ “ ., 1
s e, Projection over sub-group H !
T 0:0 * 0:0 o — ___twg ) ) o i
. et T guarantees local invariance o
\ L (. :-l-\‘_ S : /
‘ -~ - —— - P
\ m—— p

Lifting layer Projection layer




Roto-translation group S£(2) = R? x SO(2)

2D flealure map
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Roto-translation group S#(2) = R? x S0(2)
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Architecture for rotation invariant mitotic cell detection
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Architecture for rotation invariant mitotic cell detection

“normal” (0)
VS
“mitotic” (1)
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Bekkers & Lafarge et al. MICCAI 2018

Architecture for rotation invariant mitotic cell detection

Lifting layer (1 channel example) Group conv layers  Projection layer
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Architecture for rotation invariant mitotic cell detection

Lifting layer (1 channel example) Group conv layers  Projection layer
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Architecture for rotation invariant mitotic cell detection

Mitotic figure

Mitosis detection (F{-score)
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G-CNNs guarantee

geometric stability.
They are robust to
input distortions,
regular CNNs aren'’t...

G-CNNs without data-augmentation
outperform
CNNs with data-augmentation
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G-CNNs guarantee
geometric stability.
They are robust to
input distortions,

regular CNNs aren'’t...

G-CNNs are more sample efficient!
G-CNNs (25% data) > CNNs (100% data)

G-CNNs without data-augmentation

outperform

CNNs with data-augmentation
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G-CNNs rule!

* The right inductive bias: guaranteed equivariance
(no loss of information)

* Performance gains that can’t be obtained by data-augmentation alone
(both local and global equivariance/invariance)

* |ncreased sample efficiency
(increased weight sharing, no geometric augmentation necessary)
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From rotation to scale equivariant CNNs

Bekkers ICLR 2020

Iranslation + scale equivariant G-CNNs

0.99
0.98 A
I.— ’
> f
O
o
> 0.97
O
Q
<
0.96 / ‘v 2D CNN with
/ rescaled input
@ 2D CNN
0.95 , , :
1. (1) 1.41 (2) 2. (3) 2.83 (4) 4. (9)

Scale range (nr of scales sampled)
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A brief history of G-CNNs

https://github.com/Chen-Cai-OSU/awesome-equivariant-network

Discrete G-CNNs

(square/cube symmetries) (manifolds)

Gauge-equivariant CNNs

Cohen-Welling 2016 Winkels-Cohen 2018

3D discrete roto-transl.

p4m
Hoogeboom et al. 2018 Coh tal 2019 Weiler et al. 2021
SE(2,6) O,C%';: h:dro p Coordinate Independent CNNs
Dieleman et al. 2016 Worrall-Brostow 2018 de Haan et al. 2020
p4dm 3D discrete roto-transl. Meshes
v
NNs CNNs G-CNNs
Worrall et al. 2017 Cohen et al. 2018
LeCun et al. 1990 o S?E(S) SE(3) | Bekkers 2019
o Lie groups (rotation, scale)
Esteves 2017 Kondor-Trivedi 2018
SO(3) VSVE(IS’) oo Finzi et al. 2020
Kondor 2018 e Lie groups
SE(3) Chakraborty et al. 2018
Thomas et al. 2018 Riemannian Hom. spaces |
SE(3) Weiler-Cesa 2019 Sosnovik et al. 2020
SE(2) Scale-translation
Continuous rotation G-CNNs Continuous G-CNNs
(steerable) (Lie groups)

Cesa-Lang-Weiler 2022
G = RY % H with H compact

https://quva-lab.github.io/escnn/
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Equivariance — weight-sharing and generalization

Group theory: symmetries & recognition by components

Template matching over groups

Effective representation learning and generalization
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Theorem (G-convs are all you need)

Bekkers ICLR 2020, Thm. 1*

Let & : L,(X) — L,(Y) map between signals on homogeneous spaces of G.

Let homogeneous space Y = G/H such that H = Stab(y,) for some chosen origin
Yo € Yandletg, € Gsuchthat V, ., :y = g V.

Then A is equivariant to group G if and only if:

1. It is a group convolution: [ Zf](y) = J' k(gy_lx)f(x)dx
X

2. The kernel satisfies a symmetry constraint:  V, : k(hx) = k(x)
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1. Motivation Equivariance — weight-sharing and generalization

2. Pattern matching using group theory —— Group theory: symmetries & recognition by components
3. Group convolutions Template matching over groups
4. Example Effective representation learning and generalization

5. G-convs are all you need! Any equivariant linear layer is a group convolution
6. Steerable group convolutions

7. Feature fields and escnn library
8. Equivariant tensor product layers

9. Equivariant graph NNs



Steerable basis

A vector Y(x) = | Y/(x) | € K* with (basis) functions Y, € L,(X) is steerable if

Vet Y(8X) = p(8)Y(x),

KLXL

where g x denotes the action of G on X and p(g) € is a representation of G.
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Function In steerable basis

Let

Then we can steer/shift this function by transforming the weights w

flx| W) = wiY(x)

fh™'x | W) = flx| p(h)W)

(Y(x) a steerable basis)

(

\

Y

Y(x)

)

)

S| p(h)yw)
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Example: Steerable basis on S : (circular harmonics)

Basis functions (for [ 2(Sl)); Y(a) = pila
Are steered by representations:  p,(0) = et

45



Example: Steerable basis on S : (circular harmonics)

Basis functions (for [ 2(Sl)); Y(a) = pila
Are steered by representations:  p,(0) = et
G = p(=0) Y(a)
r—J%
\ \ el Y(a) ]
\ - ﬂ .
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Example: Steerable basis on S : (circular harmonics)
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Example: Steerable basis on S : (circular harmonics)

Basis functions (for L,(S1)): Y(a) = el
o0

Form a complete orthonormal (Fourier) basis: fla|w) = 2 vAv_l Y/(a)
J=—

L=1

e
AVAVAVEN

0 T )

47



Example: Steerable basis on S : (circular harmonics)

Basis functions (for L,(S1)): Y(a) = el
0

Form a complete orthonormal (Fourier) basis: fla|w) = Z w, Y/(a)
[=—

L=1

e
AVAVAVEN

0 T )

47



Example: Steerable basis on S : (circular harmonics)

Basis functions (for L,(S1)): Y(a) = el
0

Form a complete orthonormal (Fourier) basis: fla|w) = Z w, Yi(—a)
[=—

L=1

e
AVAVAVEN

0 T )

47



Example: Steerable basis on S : (circular harmonics)

Basis functions (for L,(S1)): Y(a) = el
o0

Form a complete orthonormal (Fourier) basis: fla|w) = 2 vAv_l Y/(a)
J=—

L=1

e
AVAVAVEN

0 T )

47



Example: Steerable basis on S : (circular harmonics)

Basis functions (for L,(S1)): Y(a) = el
o0

Form a complete orthonormal (Fourier) basis: fla|w) = 2 vAv_l Y/(a)
J=—

L=1

e
AVAVAVEN

0 T )

47



Example: Steerable basis on S : (circular harmonics)

Let fla| W) = W Y(a)
Then we can steer/shift this function by transforming the weights w

fla—=0|w) = fla| p()w)

L=101

48
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L=101
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Two dimensional rotation-steerable functions

[6

» The previous functions p,(0) = e''? are (irreducible) representations of SO(2)

Transitive action

Transitive action: An action ® : G X X — X such that

» The group SO(2) can also act on R?

Vixexdgec 1 X =80 X

* Though not transitively... SO(2) does ot ..

. It does act transitively on S though \

. Use polar coordinates R> 2 x < (r,a) € RT X S! to come up with a rotation-
steerable basis for [|_2(|R2)!
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Two dimensional rotation-steerable functions

e Consider polar-separable convolution kernel:

k(x| w) = k™ (r| w) k©(a|w),

e with k© in an SO(2) steerable basis, and k~ in some radial basis:

[
S el L R
r "
poRee -
h 4
- >

kO(alw) = Z wY (@), e.g., with Y(a) = e''®

K2(r[w) = ) W,6h,(r)

* Then we may as well write it as

k(x| w) = 2 Zw W, (r) Yi(@)
= 2 2 w. @, (r) Y (a) (“absorb” weights)

— Z wl(r) Y () with radius dependent weights Ww,(r) = 2 w, @, (1)

m

* Then such kernel is clearly rotation steerable!

k(R; x| W(r) = k(x| p(0)W(r))
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Two dimensional rotation-steerable functions

e Consider polar-separable convolution kernel:

k(x| w) = k™ (r| w) k©(a|w),

e with k© in an SO(2) steerable basis, and k~ in some radial basis:

[
S el L R
™
poRee -
A 4
- >

kO(alw) = Z wY (@), e.g., with Y(a) = e''®

K2(r[w) = ) W,6h,(r)

* Then we may as well write it as

k(x| w) = 2 Zw W, (r) Yi(@)
= 2 2 w. @, (r) Y (a) (“absorb” weights)

— Z wl(r) Yl(a) with radius dependent weights vAvl(r) = m(l’)

£

* Then such kernel is clearly rotation steerable!

k(R; x| W(r) = k(x| p(0)W(r))

Or directly parametrize as w(r) = MLP(r|w) !
50
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Real (irreducible) representations

Y(R;1 X) = p(Rgl) Y(x)
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Regular group convolutions revisited

Group convolution (G = RY X H): (k % )(g) = (ggG*[Lz(X) ks Do
(e.g. G = SE2) = R? X SO(2))
X = R?

2D convolution kernel 2D input feature map SE(2) output feature map
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Regular group convolutions revisited

Group convolution (G = REXCH): (k% f)(g) = (¢ &k, Py = (@000 kg
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Regular group convolutions revisited

' — R4 " 7 — — —
Group convolution (G = R¢ X H): (k % £)(g) = ( gg L) & P = fZ;Rd’Jr) L>(RY) th LR Syway
(e.g. G = SE2) = R? X SO(2))
X = R?
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R4 R>

translation
“template matching”

)
- X R2

Rotated
2D convolution kernel 2D input feature map SE(2) output feature map (after ReLU) 53



Regular group convolutions revisited

- — md _ ~ — d 4y d . d
Group convolution (G = R® X H): (k * )(g) = (ggG 20 & f)I]_z(X) _ (3§R )= (R )gzl SO f)I]_z(IRd)
(e.g. G = SE2) = R? X SO(2))
X = R?

=J k(g 'x")f(x)dx’ =J k,(x'—x)f(x")dx’
R4 R>

translation
“template matching”

)
- X R2

Rotated
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Lifting convolution with steerable kernel

Group convolution (G = R4 X H): (k ;('f)(x, ) = J k( (x'—x) | W)f(X’)dX’
Rd



Lifting convolution with steerable kernel

Group convolution (G = R4 X H): (k ;('f)(x, ) = J k( (x'—x) | W)f(X’)dX’
Rd

k(x|w) = W




Lifting convolution with steerable kernel

Group convolution (G = R4 X H): (k ;('f)(x, ) = J k( (x'—x) | W)f(X’)dX’
Rd

k(' x| W) = (0()w)" Y(x)

"

v



Lifting convolution with steerable kernel

Group convolution (G = R? X H): (k % f)(x,/1)

=J (0 ()W) TY(x'—x)f(x")dx’
Rd

k(' x|W) = ()W) Y(x)

=

3



Lifting convolution with steerable kernel

Group convolution (G = R? X H): (k % f)(x,/1)

k(' x|W) = (0Uw)" Y(x) = ( vAv)TJ Y(x'—x)f(x")dx’
Rd

S

L’



Lifting convolution with steerable kernel

Group convolution (G = R? X H): (k % f)(x,/1)

k(' x|W) = ()W) Y(x)

-




Lifting convolution with steerable kernel

Group convolution (G = R? X H): (k * )(x,1)

k(' x| W) = ()W) Y(x)

= (1) W) (%)

' Freeman, W. T., & Adelson, E. H. (1991). The design and
e use of steerable filters. IEEE Transactions on Pattern
analysis and machine intelligence, 13(9), 891-906.




Lifting convolution with steerable kernel

Group convolution (G = RY X H): (k *x £)(x,0) = ( w)' Y (x)
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Lifting convolution with steerable kernel

Group convolution (G = R? X H): (k * F)(x,0) = (,O(RQ)\/’\V)T fY(X)
(e.g. G = SE2) = R? X SO(2))
X = R?

ole)



Lifting convolution with steerable kernel

Group convolution (G = R? X H): (k * F)(x,0) = (p(RQ)vAV)T ]?Y(X)
(e.g9. G = SE2) = R? % SO(2))
X =R?

Y f ] (x) (k * f)(x,6)
(X)

ole)



Lifting convolution with steerable kernel

Group convolution (G = R? X H): (k % f)(x,/1)

= ()W) f'(x)



Lifting convolution with steerable kernel

Group convolution (G = R? X H): (k % f)(x,/1)

= ()W) f'(x)



Lifting convolution with steerable kernel

Group convolution (G = R? X H): (k % f)(x,/1)

= tr( fY(x) W' ) a'b=tr(ba’) and p(h)" = p(h~")



Lifting convolution with steerable kernel

Group convolution (G = R? X H): (k % f)(x,/1)

= tr( f(x) ) f(x) = fY(x) W



Lifting convolution with steerable kernel

Group convolution (G = R? X H): (k * f)(x,/1)

= “Igl[ f(x) (1) Inverse H-Fourier transform!



From regular to steerable via a Fourier transform

fm(x) fo(x, h)

Regular group convolution

T
Point-wise H-Fourier transform
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From regular to steerable via a Fourier transform

fm(x) fo(x, h)

Regular group convolution
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From regular to steerable via a Fourier transform

fm(x) fo(x, h)

Regular group convolution

T

Point-wise H-Foutier transform
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From regular to steerable via a Fourier transform

fm(x) fo(x, h) B

Regular group convolution

T

Point-wise H-Foutier transform

F oy F

relative to

4 4 . -
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From regular to steerable via a Fourier transform

f(l—l) f(l)

Regular group convolutions:
Domain expanded feature maps

Regular group convolution
>

f(l) - RYx H—> R
) N

Point-wise H-Fourier transform

% oz —1

. TH| | Fh
Steerable group convolutions:
Co-domain expanded feature v
maps (feature fields)

A 70
fa A, i
f(l) X Rd—> VH 'f} Y~ \\ ") v \L
y Steerable group y
,)AA<“\\ " X‘ AA i convolution ,)‘A<‘\\‘ V‘ “‘\‘ : A
;') > v & ‘\L>Y{ ;') - M k ‘\L>Y(
“ Apyp vV 7 “ J 7



1. Motivation Equivariance — weight-sharing and generalization

2. Pattern matching using group theory —— Group theory: symmetries & recognition by components
3. Group convolutions Template matching over groups

4. Example Effective representation learning and generalization

5. G-convs are all you need! Any equivariant linear layer is a group convolution
6. Steerable group convolutions Efficient (band-limited) grid-free g-convs

7. Feature fields and escnn library
8. Equivariant tensor product layers

9. Equivariant graph NNs
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Feature field and induced representation

We call f : RY - R% a feature vector field, or simply a feature field, if its

codomain transforms via a representation p(h) of H

domain transforms via the action g_l of G = ([Rd, + )X H

Representation p defines the type of the field, and together with the group action of G = ([Rd, + ) X H defines the
Induced representation

(IndGlp1x, 1) F) () 1= p(h) fih™ (' = )

A
Oo S O
0 © l-s0 P(h)V/
O O
OOO \g \
oXeo)
O OOOO
oooooo

Scalar field (p(h) = 1) vector field

>

o1


https://github.com/QUVA-Lab/e2cnn

Feature field and induced representation

J(x, h)

Regular G feature maps: (X, /1) considered so far can be considered feature fields.

(Z )X, H) = f(h™ (X' = x),h™"'h)
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Feature field and induced representation

J(x, h)

Regular G feature maps: (X, /1) considered so far can be considered feature fields.

(Z )X, H) = f(h™ (X' = x),h™"'h)

Regular H feature fields: Let f/(X) = f(X, - ) be the field of functions f(x) : H — R on the subgroup H,

then the functions (fibers) transform via the regular representation C,S”hH I I
)2 fl
(Z )HX,B) <= (Indg[ £} 1(x, h) f7)(x) Vil 11

62



Feature field and induced representation

J(x, h)

Regular G feature maps: (X, /1) considered so far can be considered feature fields.

(L NI = fh™ (X' = %), k™ ) 1

Regular H feature fields: Let f/(X) = f(X, - ) be the field of functions f(x) : H — R on the subgroup H,
then the functions (fibers) transform via the regular representation C,S”hH I
/

(Z )X, 1) = (Indgl &}/ 1(x, h) f7)(x)
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Feature field and induced representation

J(x, h)

Regular G feature maps: (X, /1) considered so far can be considered feature fields.

(L NI = fh™ (X' = %), k™ ) 1

Regular H feature fields: Let f/(X) = f(X, - ) be the field of functions f(x) : H — R on the subgroup H,
then the functions (fibers) transform via the regular representation C,S”hH I
/

(Z )X, 1) = (Indgl &}/ 1(x, h) f7)(x)

Steerable H feature fields: Since the fibers f7(x) are functions on H we can represent them via their Fourier | J(x)
coefficients f(X) = F 4] FH1(x)]. These vectors of coefficients transform via irreps p(h) = @D, p;(h) e
r') ~ ™
/ / fa / 7 / k
(& N = (IndGl 2 1 f)x) = (IndGl p) 1%, 1) ) (x) e R ARYY
'7 P >\‘ k \A..>r e 4
Y y
\ Ay v >

62



Steerable group convolutions

Group convolution Z[f](g) =

k(g™ g"f(g)dx'dg

G

fm >
’ »

ys . A
;’ H 7o Y E fln >
| 1 ~

fOl/tt

Normal convolution Z[f](X) =

Rd

k(x"— x)f(x")dx’

but with kernel k : RY — R%*% gatisfying constraint
Vien Vxerd k(g X) = Py(h)k(X)Px(h_l)

3D Steerable CNNs: Learning Rotationally
Equivariant Features in Volumetric Data

Maurice Weiler* Mario Geiger*
University of Amsterdam EPFL
m.weiler@uva.nl mario.geigerfepfl.ch
Max Welling Wouter Boomsma Taco Cohen
University of Amsterdam, CIFAR,  University of Copenhagen Qualcomm Al Rescarch
Qualcomm Al Research wbidi . ku.dk taco.cohen@gmail . com

m.welling@uva.nl

Abstract

We present a convolutional network that is equivariant to rigid body motions.
The model uses scalar-, vector-, and tensor fields over 3D Euclidean space to
represent data, and equivariant convolutions to map between such representations.
These SE(3)-equivariant convolutions utilize kernels which are parameterized
as a lincar combination of a complete steerable kernel basis, which is derived
analytically in this paper. We prove that equivariant convolutions are the most
general equivariant linear maps between ficlds over B?. Our experimental results
confirm the effectiveness of 3D Steerable CNNs for the problem of amino acid
propensity prediction and protein structure classification, both of which have
inherent SE(3) symmetry.

1 Introduction

Increasingly, machine leaming technigues are being applied in the natural sciences. Many problems
in this domain, such as the analysis of protein structure, exhibit exact or approximate symmetries.
It has long been understood that the equations that define a model or natural law should respect
the symmetries of the system under study, and that knowledge of symmetries provides a powerful
constraint on the space of admissible models. Indeed, in theoretical physics, this idea is enshrined
as a fundamental principle, known as Einstein’s principle of general covariance. Machine learning,
which is, like physics, concerned with the induction of predictive models, is no different: our models
must respect known symmetrics in order to produce physically meaningful results.

A lot of recent work, reviewed in Sec. @ has focused on the problem of developing equivariant
networks, which respect some known symmetry. In this paper, we develop the theory of SE(3)-
cquivariant networks. This is far from trivial, because SE(3) is both non-commutative and non-
compact. Nevertheless, at run-time, all that is required to make a 3D convolution equivariant using our
method, is to parameterize the convolution kemel as a linear combination of pre-computed steerable
basis kernels. Hence, the 3D Stecrable CNN incorporates equivariance to symmetry transformations
without deviating far from current engineering best practices.

The architectures presented here fall within the framework of Steerable G-CNNs [8] 10, 40, 45].
which represent their input as ficlds over a homogencous space ([R* in this case), and use steerable

* Equal Coatribution. MG imtiated the project, denved the Kemnel space constraint, wrote the first network
implementation and ran the Shrecl7 expeniment. MW solved the kemel constraint analyucally, designed the
anti-aliased kernel sampling in discrete space and coded / ran many of the CATH expenments.

Source code 1s avalable at https: //github.con/nariogeiger/se3cnn

32nd Coaference on Neural Information Processang Systems (NeurlPS 2018), Montréal, Canada.
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Steerable group convolutions

Group convolution Z[f](g) =

G

k(g™ g"f(g)dx'dg

Normal convolution Z[f](X) =

Rd

k(x"— x)f(x")dx’

but with kernel k : RY — R%*% gatisfying constraint
Vier Vxerd k(g x) = Py(h)k(X)PX(h_l)

General E(2) - Equivariant Steerable CNNs

Maurice Weiler” Gabriele Cesa®’
University of Amsterdam, QUVA Lab University of Amsterdam
m.weilerfuva.nl cesa.gabriele@gmail. com
Abstract

The big empirical success of group equivaniant networks has led in recent years to
the sprouting of a great vanety of equivariant network architectures. A particular
focus has thereby been on rotation and reflection equivariant CNNs for planar
images. Here we give a general description of E(2)-equivariant convolutions in
the framework of Steerable CNNs. The theory of Steerable CNNs thereby yields
constraints on the convolution kernels which depend on group representations
describing the transformation laws of feature spaces. We show that these constraints
for arbitrary group representations can be reduced to constraints under irreducible
representations. A general solution of the kernel space constraint 1s given for
arbitrary representations of the Euclidean group E(2) and its subgroups. We
implement a wide range of previously proposed and entirely new equivaniant
network architectures and extensively compare their performances. E(2)-steerable
convolutions are further shown to yield remarkable gains on CIFAR-10, CIFAR-100
and STL-10 when used as drop in replacement for non-equivanant convolutions.

1 Introduction

The equivariance of neural networks under symmetry group actions has in the recent years proven
to be a fruitful prior in network design. By guarantecing a desired transformation behavior of
convolutional features under transformations of the network input, equivanant networks achieve
improved generalization capabilities and sample complexities compared to their non-equivanant
counterparts. Due to their great practical relevance, a big pool of rotation- and reflection- equivariant
models for planar images has been proposed by now. Unfortunately, an empincal survey, reproducing
and comparing all these different approaches, is still missing.

An important step in this direction is given by the theory of Steerable CNNs [1. 2,13, 4, 5] which

defines a very general notion of equivarniant convolutions on homogencous spaces. In particular,

steerable CNNs descrnibe E(2)-equivariant (i.c. rotation- and reflection-cquivariant) convolutions on
the image plane R*. The feature spaces of steerable CNNs are thereby defined as spaces of feature
fields, charactenized by a group representation which determines their transformation behavior under

transformations of the input. In order to preserve the specified transformation law of feature spaces,

the convolutional kernels are subject to a linear constraint, depending on the corresponding group

representations. While this constraint has been solved for specific groups and representations |1, (2],

no general solution strategy has been proposed so far. In this work we give a general strategy which
reduces the solution of the kernel space constraint under arbitrary representations to much simpler
constraints under single, irreducible representations.

Specifically for the Euclidean group E(2) and its subgroups, we give a general solution of this kernel
space constraint. As a result, we arc able to implement a wide range of equivariant models, covering
regular GCNNs [6,7, 18,19, 110, 11], classical Steerable CNNs |1], Harmonic Networks [12], gated
Harmonic Networks [2], Vector Field Networks [13], Scattening Transforms [14, 15, 16,17, /18] and

entirely new architectures, in one unified framework. In addition, we are able to build hybrid models,

mixing different field types (representations) of these networks both over layers and within layers.

* Equal contribution, author ordering determined by random number generator.
 This research has been conducted during an internship at QUVA lab, University of Amsterdam.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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Steerable group ~

Group convolution Z[f1(g) = | k(g7 'g)f(g)dx'dg

Normal convolution Z[f](X) =

k(x"— x)f(x")dx’

but with kernel k : RY — R%*% gatisfying constraint

Viern Vxerd k(g X) = Py(h)k(X)PX(h_l)

nnunliitinng

Published as a conference paper at ICLR 2022

A PROGRAM TO BUILD
E(n)-EQUIVARIANT STEERABLE CNNS

Gabriele Cesa Leon Lang Maurice Weiler
Qualcomm Al Rescarch® University of Amsterdam  University of Amsterdam
University of Amsterdam l.lang@uva.nl m.weiler . ml@gmail.com

gcesalfgti.qualcomm. com

ABSTRACT

Equivariance 1s becoming an increasingly popular design choice to build data
efficient neural networks by exploiting prior knowledge about the symmetries of
the problem at hand. Euclidean steerable CNNs are one of the most common classes
of equivariant networks. While the constraints these architectures need to satisfy
are understood, existing approaches are tailored to specific (classes of) groups. No
generally applicable method that is practical for implementation has been described
so far. In this work, we generalize the Wigner-Eckart theorem proposed in Lang &
Weiler (2020), which charactenzes general (G-steerable kemel spaces for compact
groups (s over their homogencous spaces, to arbitrary (G-spaces. This enables us to
directly parametenze filters in terms of a band-limited basis on the whole space
rather than on GG's orbits, but also to casily implement steerable CNNs equivariant
to a large number of groups. To demonstrate its generality, we instantiate our
method on a variety of isometry groups acting on the Euclidean space ®*. Our
framework allows us to build E(3) and SE(3)-steerable CNNs like previous works,
but also CNNs with arbitrary G < O(3)-steerable kemnels. For example, we build
3D CNNs equivanant to the symmetries of platonic solids or choose G = S0(2)
when working with 3D data having only azimuthal symmetries. We compare these
models on 3D shapes and molecular datascts, observing improved performance by
matching the model's symmetries to the ones of the data.

I INTRODUCTION

In machine learning, it is common for learning tasks to present a number of symmetries. A symmetry
in the data occurs, for example, when some property (e.g., the label) does not change if a set of
transformations 1s applied to the data itself, e.g. translations or rotations of images. Symmetrics are

algebraically described by groups. If prior knowledge about the symmetries of a task is available,
it is usually beneficial to encode them in the models used (Shawe-Taylor| 1989 Cohen & Welling,

2016a). The property of such models is referred to as equivariance and 1s obtained by introducing
some equivariance constraints in the architecture (see Eq.[2). A classical example are convolutional
neural networks (CNNs), which achieve translation equivarniance by constraining linear layers to be
convolution operators. A wider class of equivariant models are Euclidean steerable CNNs (Cohen &
Welling, 2016b: Weiler et al., 2018a; Weiler & Cesa, 2019; Jenner & Weiler, 2022), which guarantee
cquivariance to isometries R" » 7 of a Euclidean space R", i.c., to translations and a group G of
origin-preserving transformations, such as rotations and reflections. As proven in Weiler et al_ (2018a:
2021); Jenner & Weiler (2022), this requires convolutions with G-steerable (equivanant) kemels.

Our goal is developing a program to parametenize with minimal requirements arbitrary G-steerable
kernel spaces, with compact (&, which are required to implement K™ % & equivaniant CNNs. Lang &
Weiler (2020) provides a first step in this direction by generalizing the Wigner-Eckart theorem from
quantum mechanics to obtain a general technique to parametnize (G-steerable kernel spaces over orbits
of a compact 5. The theorem reduces the task of building steerable kernel bases to that of finding some
pure representation theoretic ingredients. Since the equivariance constraint only relates points g.z €
R"™ in the same orbit G.x € R", a kernel can take independent values on different orbits. Fig.[1]shows

"Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc.
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Equivariant neural networks guarantee a specified transformation behavior of their feature spaces under
transformations of their input. For instance, classical convolutional neural networks (CNNs) are by design
equivariant to translations of their input. This means that a translation of an image leads to a corresponding
translation of the network's feature maps. This package provides implementations of neural network modules
which are equivariant under all isometries E(2) of the image plane R2 and all isometries E(3) of the 3D space R3 , Gabriele Cesa Leon Lang Maurice Weiler
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In contrast to conventional CNNs, E(n)-equivariant models are guaranteed to generalize over such
transformations, and are therefore more data efficient.

ABSTRACT A
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. . . . . Equivariance 1s becoming an increasingly popular design choice to build data e
The feature spaces of E(n)-Equivariant Steerable CNNs are defined as spaces of feature fields, being efhcient neural networks by exploiting peior knowledge about the symmetrics of 1.com

. . . . . . . th bl hand. Euclidean able CNNs are f th |
characterized by their transformation law under rotations and reflections. Typical examples are scalar fields (e.g. of couivariant networks, Whils the constaints these architocturcs nood to satisfy

. . . . . . derstood, existi h ilored ific (cl .N
gray-scale images or temperature fields) or vector fields (e.g. optical flow or electromagnetic fields). e e e b pomctoal o ot ion s by o aibed

so far. In this work, we gencralize the Wigner-Eckart theorem proposed inLang &
Weiler {2020), which charactenizes general G-steerable kemel spaces for compact
groups (& over their homogencous spaces, to arbitrary GG-spaces. This enables us to

directly parametenize filters in terms of a band-limited basis on the whole space

A A
1-s O qg-v / rather than on (G's orbits, but also to easily implement steerable CNNs equivanant
' to a large number of groups. To demonstrate its generality, we instantiate our
method on a variety of isometry groups acting on the Euclidean space &', Our
q framework allows us to build E(3) and SE(3)-steerable CNNs like previous works,

but also CNNs with arbitrary G < O(3)-stecrable kernels. For example, we build
3D CNNs equivanant to the symmetries of platonic solids or choose G = S0(2)

when working with 3D data having only azimuthal symmetries. We compare these
o O 0o o models on 3D shapes and molecular datasets, observing improved performance by
o o (o) matching the model's symmetries to the ones of the data.
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“=hg I INTRODUCTION

scalar field vector field v. Bcent years proven
y . In machine learning, it is common for learning tasks to present a number of symmetries. A symmetry 1on behavior of
. . . o . . A o N in the data occurs, for example, when some property (c.g., the label) does not change if a set of ncmorks achieve
Instead of a number of channels, the user has to specify the field types and their multiplicities in order to define a Y ” transformations is applied to the data itsclf, c.g. translations or rotations of images. Symmetries are non-cquivariant
. . . . . Y v algebraically described by groups. If prior knowledge about the symmetries of a task is available, 10n- cquivariant
feature space. Given a specified input- and output feature space, our R2conv and R3conv modules instantiate M it is usually beneficial to encode them in the models used (Shawe-Taylor| 1989} Cohen & Welling, ey, reproducing

AR " 2016a). The property of such models is referred to as equivariance and 1s obtained by introducing
‘ some equivariance constraints in the architecture (see Eq.[2). A classical example are convolutional .13, /4,[5) which

neural networks (CNNs), which achieve translation equivanance by constraining linecar layers to be In particular
convolution operators. A wider class of equivariant models are Euclidean steerable CNNs (Cohen & [ ‘: ——
Welling, 2016b; Weiler et al., 2018a; Weiler & Cesa, 2019; Jenner & Weiler, [2022), which guarantee JEosvolntions o
equivariance to isometries R" % G of a Euclidcan space R", i.e, to tmnslauons and a group G of ces ",ffea"‘”
origin-preserving transformations, such as rotations and reflections. As proven in Weiler et al! (2018a: n behavior under
2021); Jenner & Weiler (2022), this requires convolutions with G-steerable (equivariant) kemels, of fcatqrc spaccs,
sponding group

Our goal is developing a program to parametenize with minimal requirements arbitrary G-stecrable scntations [1,12],
N kernel spaces, with compact (G, which are required to implement ™ % G equivariant CNNs. [Lang & strategy which

N I I 2 — / / / Weiler (2020) provides a first step in this direction by generalizing the Wigner-Eckart theorem from to much simpler
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of a compact . The theorem reduces the task of building steerable kernel bases to that of finding some

pure representation theoretic ingredients. Since the equivariance constraint only relates points g.z €
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escnn is a PyTorch extension for equivariant deep learning. escnn is the successor of the e2cnn library, which only p ‘ —

Equivariant neural networks guarantee a specified transformation behavior of their feature spaces under
transformations of their input. For instance, classical convolutional neural networks (CNNs) are by design
equivariant to translations of their input. This means that a translation of an image leads to a corresponding

translation

which are equivariant under all isometries E(2) of the image plane R? and all isometries E(3) of the 3D space R3 ,

that is, under translations, rotations and reflections (and can, potentially, be extended to all isometries E(n) of R" ). g
In contrast tn ranuantinnal MNINle Fin)-oamivariant mndale ara anarantaad tn nanaraliza nuar eiich . i
transform
Getting Started
The featur
characteri escnn is easy to use since it provides a high level user interface which abstracts most intricacies of group and
gray-scale representation theory away. The following code snippet shows how to perform an equivariant convolution from an
RGB-image to 10 regular feature fields (corresponding to a group convolution).
from escnn import gspaces # 1
from escnn import nn # 2
import torch # 3
# 4
r2_act = gspaces.rot2dOnR2(N=8) # 5
feat_type_in = nn.FieldType(r2_act, 3%[r2_act.trivial_repr]) # 6
feat_type_out = nn.FieldType(r2_act, 10%[r2_act.regular_repr]) # 7
# 8
Instead of : conv = nn.R2Conv(feat_type_in, feat_type_out, kernel_size=5) # 9
feature sp relu = nn.RelLU(feat_type_out) # 10
# 11
= torch.randn(16, 3, 32, 32) # 12
x = feat_type_in(x) # 13
# 14
y = relu(conv(x)) # 15

of the network's feature maps. This package provides implementations of neural network modules

Line 5 specifies the symmetry group action on the image plane R2 under which the network should be equivariant.

We choose the cyclic group Cg, which describes discrete rotations by multiples of 2n/8. Line 6 specifies the input

feature field types. The three color channels of an RGB image are thereby to be identified as three independent

scalar fields, which transform under the trivial representation of Cg. Similarly, the output feature space isin line 7

specified to consist of 10 feature fields which transform under the regular representation of Cg. The Cg-equivariant

convolution is then instantiated by passing the input and output type as well as the kernel size to the constructor

(line 9). Line 10 instantiates an equivariant ReLU nonlinearity which will operate on the output field and is therefore

passed the output field type.
EEEEEEEEEEEEEEEEEEEEEEEEREEEEECSEm——————
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ABSTRACT

Equivariance 1s becoming an increasingly popular design choice to build data
efficient neural networks by exploiting prior knowledge about the symmetries of
the problem at hand. Euclidean stecrable CNNs are one of the most common classes
of equivariant networks. While the constraints these architectures need to satisfy
are understood, existing approaches are tailored to specific (classes of) groups. No
generally applicable method that is practical for implementation has been described
so far. In this work, we generalize the Wigner-Eckart theorem proposed in Lang &
Weiler {2020), which charactenizes general G-steerable kemel spaces for compact
groups (& over their homogencous spaces, to arbitrary GG-spaces. This enables us to
directly parametenze filters in terms of a band-limited basis on the whole space
rather than on (&'s orbits, but also to easily implement steerable CNNs equivanant
to a large number of groups. To demonstrate its generality, we instantiate our
method on a variety of isometry groups acting on the Euclidean space B'. Our
framework allows us to build E(3) and SE(3)-steerable CNNs like previous works,
but also CNNs with arbitrary G < O(3)-steerable kemnels. For example, we build
3D CNNs equivanant to the symmetries of platonic solids or choose G = S0O(2)
when working with 3D data having only azimuthal symmetries. We compare these
models on 3D shapes and molecular datasets, observing improved performance by
matching the model's symmetries to the ones of the data.

1 INTRODUCTION
ecent years proven

In machine learning, it is common for learning tasks to present a number of symmetries. A symmetry pation behavior of
in the data occurs, for example, when some property (c.g., the label) does not change if a set of networks achieve
transformations is applied to the data itself, e.g. translations or rotations of images. Symmetries are ir non-equivanant
algebraically described by groups. If prior knowledge about the symmetries of a task is available, %on- cquivariant
it is usually beneficial to encode them in the models used (Shawe-Taylor][1989] Cohen & Welling, cy, reproducing

2016a). The property of such models is referred to as equivariance and 1s obtained by introducing
some equivariance constraints in the architecture (see Eq.[2). A classical example are convolutional .3, 14,[3) which
neural networks (CNNs), which achieve translation equivanance by constraining linecar layers to be .

convolution operators. A wider class of equivariant models are Euclidean steerable CNNs (Cohen & -~ In ‘;:ul. ticular,
Welling] 2016b; Weiler et al., 2018a} Weiler & Cesa, 2019; Jenner & Weiler, [2022), which guarantee Jposvoltions on
spaces of feature

equivariance to isometries R" » G of a Euclidean space R, i.c., to translations and a group G of
origin-preserving transformations, such as rotations and reflections. As proven in Weiler et al_ (2018
2021); Jenner & Weiler (2022), this requires convolutions with G-steerable (equivaniant) kemels.

ion behavior under
of feature spaces,

sponding group
Our goal is developing a program to parametenize with minimal requirements arbitrary G-steerable sentations [1,12],
kernel spaces, with compact (7, which are required to implement R™ » G equivariant CNNs. |Lang & strategy which
Weiler (2020) provides a first step in this direction by gencralizing the Wigner-Eckart theorem from to much simpler
quantum mechanics to obtain a general technique to parametnize G-steerable kemnel spaces over orbits
of a compact . The theorem reduces the task of building steerable kernel bases to that of finding some ion of this kernel
pure representation theoretic ingredients. Since the equivariance constraint only relates points g.z € - 'Ol * ) e
K™ in the same orbit G.x € R", a kernel can take independent values on different orbits. Fig.[1]shows rks ;I_g;‘c:t:cgi
*Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc. , 16,117, (18] and
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Equivariant MLP

f = '=W