Learning from little data

Subhransu Maji

University of Massachusetts

May 10, 2022

Deep learning — reality vs. practice

source: reddit

Issues with learning from little data

Not just computational!

- Overfitting
- Bias
- Calibration
- Label noise

•

Unlabeled examples

- Self-/Semi-supervised learning
- Active learning

Related datasets

- Transfer learning
- Multi-tasking
- Meta learning

Pre-trained models

Robust finetuning, adaptors

Today

Learning to represent tasks [ICCV'19, ECCV'20, CVPR'21]

- Build vector representations of tasks & learn their relations
- Goal: amortize solution search across tasks & visualization

Learning with diverse labeling styles [AAAI'19, BMVC'21, arXiv'22]

- learn from diverse (coarse) labels
- Goal: use related datasets to improve performance

Task embedding (Task2vec)

If we have a universal vectorial representation of tasks, we can frame all sorts of interesting computer vision application engineering problems as machine-learning problems.

What are similar tasks?
What architecture should I use?
What pre-training dataset?
What hyper parameters?
Do I need more training data?
How difficult is this task?

•

•

•

Application: Model recommendation

Brute Force:

Input: Task = (dataset, loss)

For each feature extractor architecture **F**:

- 1. Train classifier on F(dataset)
- 2. Compute validation performance

Output: best performing model

Task Embedding:

Input: Task = (dataset, loss)

- 1. Compute task embedding **t** = **E**(Task)
- 2. Predict best extractor **F** = **M(t)**
- 2. Train classifier on F(dataset)
- 3. Compute validation performance

Output: best performing model

Similarity measures on the space of tasks

Domain similarity

Unbiased look at dataset bias, Torralba and Efros, CVPR 11

Similarity measures on the space of tasks

Domain similarity

Range / label similarity

• e.g., Taxonomic distance

$$D_{\text{tax}}(t_a, t_b) = \min_{i \in S_a, j \in S_b} d(i, j),$$

D(bird task, mammal task) < D(bird task, worm task)

Similarity measures on the space of tasks

Domain similarity

Range / label similarity

• e.g., Taxonomic distance

$$D_{\text{tax}}(t_a, t_b) = \min_{i \in S_a, j \in S_b} d(i, j),$$

Transfer "distance"

Train on task a followed by b

$$D_{\text{ft}}(t_a \to t_b) = \frac{\mathbb{E}[\ell_{a \to b}] - \mathbb{E}[\ell_b]}{\mathbb{E}[\ell_b]}$$

Taskonomy: Disentangling Task Transfer Learning, Amir Zamir, Alexander Sax, William Shen, Leonidas Guibas, Jitendra Malik, Silvio Savarese, CVPR 18

Task embedding using a probe network

- 1. Given a **task**, train a classifier with the **task loss** on features from a generic "probe network"
- 2. Compute gradients of **probe network** parameters (θ) w.r.t. task loss (e.g., log-likelihood)
- 3. Use statistics of the probe parameter **gradients** as the fixed dimensional **task embedding**

Task embedding as the Fisher Information

- 1. Given a **task**, train a classifier with the **task loss** on features from a generic "probe network"
- 2. Compute gradients of **probe network** parameters (θ) w.r.t. task loss (e.g., log-likelihood)
- 3. Use statistics of the probe parameter **gradients** as the fixed dimensional **task embedding**

$$\tilde{F} = \sum_{n} \left[\nabla_{\theta} \log p_{\theta}(y_n | x_n) \nabla_{\theta} \log p_{\theta}(y_n | x_n)^{\top} \right]$$

Intuition: F provides information about the **sensitivity** of the task performance to small perturbations of **parameters** in the probe network

$$\theta' = \theta + \delta\theta$$

$$\mathbb{E}_{x \sim \hat{p}} KL p_{\theta'}(y|x) p_{\theta}(y|x) = \delta\theta \cdot F \cdot \delta\theta + o(\delta\theta^2),$$

Curvature and Fisher Information

Gradient =
$$\frac{\partial}{\partial \theta} [\ln L(\theta)]$$

Point

Curvature =
$$-\frac{\partial^2}{\partial \theta^2} [\ln L(\theta)]$$

Practical issues and properties of TASK2VEC

- 1. For realistic CV tasks we want to use deep CNNs (e.g., **ResNet30**) and estimate FIM for all the parameters
- 2. Challenge: FIM can be hard to estimate (noisy loss landscape; high dimensions; small training set)
- 3. Approximate FIM
 - 1. Restrict it to a diagonal
 - 2. Restrict it a single value per filter in a CNN layer
 - 3. Robust estimation via perturbation

- 1. Invariance to label space
- 2. Encodes task difficulty
- 3. Encodes task domain
- 4. Encodes useful features for the task

$$\tilde{F} = \sum_{n} \left[\nabla_{\theta} \log p_{\theta}(y_n | x_n) \nabla_{\theta} \log p_{\theta}(y_n | x_n)^{\top} \right]$$

- Input: Task = (dataset, loss)
- 1. Initialize the probe network and the head network (e.g., linear classifier)
- 2. Train the **head network** by minimizing the loss
- 3. Compute the (approximate) FIM of the probe network

- Input: Task = (dataset, loss)
- 1. Initialize the probe network and the head network (e.g., linear classifier)
- 2. Train the **head network** by minimizing the loss
- 3. Compute the (approximate) FIM of the probe network

- Input: Task = (dataset, loss)
- 1. Initialize the probe network and the head network (e.g., UNet)
- 2. Train the **head network** by minimizing the loss
- 3. Compute the (approximate) FIM of the probe network

Distance measures on Task2vec embedding

Symmetric distance

$$d_{\text{sym}}(F_a, F_b) = d_{\cos}\left(\frac{F_a}{F_a + F_b}, \frac{F_b}{F_a + F_b}\right)$$

Asymmetric "distance"

$$d_{\text{asym}}(t_a \to t_b) = d_{\text{sym}}(t_a, t_b) - \alpha d_{\text{sym}}(t_a, t_0)$$

task embedding for the "trivial" task

Tasks [1460]

- iNaturalist [207]
- CUB 200 [25]
- iMaterialist [228]
- DeepFashion [1000]

Tasks [1460]

- iNaturalist [207]
- CUB 200 [25]
- iMaterialist [228]
- DeepFashion [1000]

	Super-Class	Class
T.	Plantae	2,101
*	Insecta	1,021
*	Aves	964
3	Reptilia	289
W	Mammalia	186
*	Fungi	121
to the second	Amphibia	115
2	Mollusca	93
	Animalia	77
*	Arachnida	56
10	Actinopterygii	53
F	Chromista	9
#	Protozoa	4

Tasks [1460]

- iNaturalist [207]
- CUB 200 [25]
- iMaterialist [228]
- DeepFashion [1000]

Tasks [1460]

- iNaturalist [207]
- CUB 200 [25]
- iMaterialist [228]
- DeepFashion [1000]

• Few tasks > 10K training samples but most have 100-1000 samples

Experiment: Task2vec vs Domain2vec

Task Embeddings

Domain Embeddings

Experiment: Task2vec recapitulates iNaturalist taxonomy

ResNet trained on ImageNet as probe network

Experiment: Task2vec recovers "Taskonomy"

Taskonomy: Disentangling Task Transfer Learning, Amir Zamir, Alexander Sax, William Shen, Leonidas Guibas, Jitendra Malik, Silvio Savarese, CVPR 18

Task embedding cosine similarity

Classifier "head" replaced by a fully-convolutional layer.

Requires far less compute (5 GPU hours for the whole matrix).

Also works for natural language tasks

Task Embedding

Exploring and Predicting Transferability across NLP Tasks, Vu et al., EMNLP 2020

Modeling domains can be useful

Does unlabeled data improve few-shot learning?

• Yes, as long as unlabeled data domain (D_{ss}) ≈ task domain (D_s)

References:

- Shot in the Dark: Few-shot Learning with No Base Class Labels, L2ID Workshop, CVPR'21
- When does Self-Supervision improve Few-Shot Learning? ECCV'20
- A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification, CVPR'21

Modeling domains can be useful

Does unlabeled data improve few-shot learning?

Yes, as long as unlabeled data domain (D_{ss}) ≈ task domain (D_s)

References:

- Shot in the Dark: Few-shot Learning with No Base Class Labels, L2ID Workshop, CVPR'21
- When does Self-Supervision improve Few-Shot Learning? ECCV'20
- A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification, CVPR'21

Today

Learning to represent tasks [ICCV'19, ECCV'20, CVPR'21]

- Build vector representations of tasks & learn their relations
- Goal: amortize solution search across tasks & visualization

Learning with diverse labeling styles [AAAI'19, BMVC'21, arXiv'22]

- learn from diverse (coarse) labels
- Goal: use related datasets to improve performance

Learning from coarsely labeled datasets

Coarsely labeled datasets are easier to find

A probabilistic model

Assumption — coarse labels are independent given the part labels

Learning

Maximum likelihood estimation:

$$\max_{\theta} \mathcal{L}(\theta) = \log p(y_1, y_2, \dots, y_n | x, \theta).$$

$$\geq \sum_{y} q(y) \left[\log p(y | x) \prod_{i=1}^{n} p(y_i | y, \theta) \right] + H(q) := \mathcal{F}(q, \theta). \quad \text{(ELBO)}$$

EM algorithm:

- **E step:** maximize $\mathcal{F}(q,\theta)$ wrt distribution over y given the parameters:

$$q^{(k)}(y) = \operatorname*{arg\,max}_{q(y)} \mathcal{F}(q(y), \theta^{(k-1)}).$$

- M step: maximize $\mathcal{F}(q,\theta)$ wrt parameters given the distribution q(y):

$$\theta^{(k)} = \arg\max_{\theta} \mathcal{F}(q^{(k)}(y), \theta) = \arg\max_{\theta} \sum_{y} q^{(k)}(y) \log p(y, y_1, y_2, \dots y_n | x, \theta)$$

Example: Keypoints and Mask Supervision

Parameterization

- $p(y|x) \propto exp(-\alpha|y-\mu(x)|)$, $\mu(x)$ is distribution over parts
- $p(y_{kp}|y) \propto exp(-\lambda|y_{kp}-\mu_{kp}(y)|)$, $\mu_{kp}(y)$ is the keypoints given parts
- $p(y_{mask}|y) \propto B(y_{mask}, \mu_{mask}(y)), \mu_{mask}(y)$ is the mask given parts

E Step: maximize q(y)

33

Amortized Variational Inference

E Step: maximize q(y) for each x

$$\sum_{y} q(y) \exp\left(-\left|y-\mu(x)\right|\right) \exp\left(-\left|y_{kp}-\mu_{\mathrm{kp}}(y)\right|\right) B\left(y_{\mathrm{mask}}, \mu_{\mathrm{mask}}(y)\right).$$
Agrees w/ parts

Agrees w/ keypoints

Agrees w/ mask

Generally intractable!

- Hard EM: Solve for argmax via SGD (each term is differentiable!)
- Langevin dynamics [SGLD, Welling & Teh'11]
- Amortized VI: approximate via $q(y|x,y_{mask},y_{kp}) \propto q_x(y)$ (our approach)

Ours — Improving few-shot part segmentation using coarse supervision, Saha et al. arXiv'22

Results: Bird part segmentation

Training data

- 450 w/ 10 parts (CUB+PASCAL)
- 5,500 w/ keypoints & masks (CUB)

Model

- FCN w/ ResNet34 on 256x256 image
- Random or ImageNet initialization

Evaluation

- mean IOU over 10 parts
- 150 images on CUB

metric: mean IOU over parts

	Random	ImageNet
Fine-tuning	28.9	45.4
Multi-tasking	36.9	41.3
PseudoSup [1]	30.8	46.0
PointSup [2]	35.2	46.8
Ours (EM)	37.9	49.0

- [1] PseudoSup, Chen et al., CVPR'21 (semi-supervised)
- [2] PointSup, Cheng et al., CVPR'22 (point supervision)

Results: Bird part segmentation

Summary & Conclusion

Two ways to learn with little data

- Modeling tasks and their relations Task2Vec [ICCV'19], ECCV'20, CVPR'21
- Learning from coarse and diverse labels classification [BMVC'21], segmentation [arXiv'22], detection [AAAI'19]

Challenges

- Engineering: compute, memory, energy, software infrastructure
- Statistical: bias-variance tradeoffs, noisy evaluation
- **Science:** how is information represented in deep networks? Are foundation models better probes?