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Deep learning —

source: reddit

reality vs. practice
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Issues with learning from little data

Not just computational! Unlabeled examples
* Overfitting * Self-/Semi-supervised learning
* Bias * Active learning
* Calibration Related datasets
* Label noise m * Transfer learning

. * Multi-tasking
@ * Meta learning
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Pre-trained models

Little data

* Robust finetuning, adaptors




Today

Learning to represent tasks [ICCV’19, ECCV’'20, CVPR’21]
* Build vector representations of tasks & learn their relations

e Goal: amortize solution search across tasks & visualization

Learning with diverse labeling styles [AAAI’19, BMVC’21, arXiv’'22]
* learn from diverse (coarse) labels

* Goal: use related datasets to improve performance



Task embedding (Task2vec)

If we have a universal vectorial representation of tasks, we can frame all sorts of interesting
computer vision application engineering problems as machine-learning problems.

Task = {images, labels, loss}

< [ =

Achille at al., ICCV’'19 @ AWS Al

What are similar tasks?

What architecture should | use?
What pre-training dataset?
What hyper parameters?

Do | need more training data?
How difficult is this task?



Application: Model recommendation

recommender

Feature Extractor Zoo

Brute Force:

Input: Task = (dataset, loss)
For each feature extractor architecture F:
1. Train classifier on F(dataset)

2. Compute validation performance

Output: best performing model

Task Embedding:

Input: Task = (dataset, loss)

1. Compute task embedding t = E(Task)
2. Predict best extractor F = M(t)

2. Train classifier on F(dataset)

3. Compute validation performance

Output: best performing model




Similarity measures on the space of tasks

Domain similarity

Unbiased look at dataset bias, Torralba and Efros, CVPR 11

Caltech101 Tiny LabelMe

MSRC Corel COIL-100

UluC PASCAL 07 ImageNet



Similarity measures on the space of tasks

Domain similarity Classification of Animals

Ra nge / |a bEl Si m I|a rlty Warm-Blooded Cold-Blooded With Jointed Legs  Without Legs
e e.g., Taxonomic distance - __- .I -I .I
D (t,,ty) = min d(z,7).
tax( as b) €S, €S, ( 7.7),

D(bird task, mammal task) < D(bird task, worm task)




Similarity measures on the space of tasks

Domain similarity

Range / label similarity
e e.g., Taxonomic distance

Diax (Lo, ty) = z'eSmijIéSb d(i,7).

2D Segm

ated)
Transfer “distance” o @i G, 19
0Ising

e Train on task a followed by b

Taskonomy: Disentangling Task Transfer Learning,
]E[ﬁa_)b] — ]E[fb] Amir Zamir, Alexander Sax, William Shen, Leonidas

th(ta —> tb) —_

Guibas, Jitendra Malik, Silvio Savarese, CVPR 18
E[fy]



Task embedding using a probe network

1. Given a task, train a classifier
with the task loss on features
from a generic “probe network”

2. Compute gradients of probe
network parameters (0) w.r.t.
task loss (e.g., log-likelihood)

3. Use statistics of the probe
parameter gradients as the
fixed dimensional task
embedding

A
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Task embedding as the Fisher Information

1. Given a task, train a classifier

with the task- Io(;ss on features ) 2 Z [Ve 10g po(y|%,) Ve logpg(ynlxn)T]
from a generic “probe network -

2. Compute gradients of probe
network parameters (0) w.r.t.
task loss (e.g., log-likelihood)

Intuition: F provides information about
the sensitivity of the task performance to

o small perturbations of parameters in the
3. Use statistics of the probe orobe network

parameter gradients as the 0 — 0 s
fixed dimensional task =0T

embedding Eo~p KLpg (y|z)pe(ylz) = 00 - F - 50 4 0(66%),
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Curvature and Fisher Information
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https://www.gaussianwaves.com/2012/10/score-and-fisher-information-estimator-sensitivity

Practical issues and properties of TASK2VEC

1. For realistic CV tasks we want to
use deep CNNs (e.g., ResNet30) and
estimate FIM for all the parameters

2. Challenge: FIM can be hard to
estimate (noisy loss landscape; high
dimensions; small training set)

3. Approximate FIM
1. Restrict it to a diagonal

2. Restrict it a single value per
filter in a CNN layer

3. Robust estimation via
perturbation

Invariance to label space
Encodes task difficulty
Encodes task domain

S

Encodes useful features for the task

F =" [Vo 108 pg(yalx:)Vo 10g po(ynlxa) ]
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Task embedding illustration

t ¢(t1) Head network

Input: Task = (dataset, loss)

1. Initialize the probe network and the head network (e.g., linear classifier)

2. Train the head network by minimizing the loss
3. Compute the (approximate) FIM of the probe network
14



Task embedding illustration

G b(t2)

Input: Task = (dataset, loss)

1. Initialize the probe network and the head network (e.g., linear classifier)

2. Train the head network by minimizing the loss
3. Compute the (approximate) FIM of the probe network

15



Task embedding illustration

ts b(t3)

- — ol

Probe network
Input: Task = (dataset, loss)

1. Initialize the probe network and the head network (e.g., UNet)

2. Train the head network by minimizing the loss
3. Compute the (approximate) FIM of the probe network
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Task embedding illustration

17



Distance measures on TAsk2vec embedding

Symmetric distance

dsym(Fm Fb) — dcos(

Fa Fb )
F, —I—Fb, F, + Fp

Asymmetric “distance”

dasym(ta — tb) — dsym (taa tb) — adsym(taa tO)

\

task embedding for the “trivial” task
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Task Zoo

Tasks [1460]

e iNaturalist [207]

e CUB 200 [25]

e iMaterialist [228]

e DeepFashion [1000]

19



Task Zoo

Tasks [1460]

¢ iNaturalist [207]

e CUB 200 [25]

e iMaterialist [228]

e DeepFashion [1000]

Number of Training Images

107 -

/|

1000

N5 X RQ AR E§ N

Super-Class Class
Plantae 2,101
Insecta 1,021
Aves 964
Reptilia 289
Mammalia 186
Fungi 121
Amphibia 115
Mollusca 93
Animalia 77
Arachnida 56
Actinopterygii 53
Chromista 9
Protozoa 4

2600 30b0
Sorted Species

4000

5000

20



Task Zoo

Category Texture Fabric Shaj Part
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Tasks [1460]

e iNaturalist [207]

e CUB 200 [25]

e iMaterialist [228]

e DeepFashion [1000]
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Task Zoo

Tasks [1460]

e iNaturalist [207]

e CUB 200 [25]

e iMaterialist [228]

e DeepFashion [1000]

e Few tasks > 10K training samples but most have 100-1000 samples
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Experiment: Task2vec vS DoMAIN2VEC

® Actinopterygii (n)
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Task Embeddings
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Wedding dresses
Prom dresses
Formal dresses

Winter boots
Shoelaces
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Experiment: TAsk2VEC recapitulates iNaturalist taxonomy

Super-Class

Plantae
Insecta
Aves
Reptilia
Mammalia

plants —

reptiles
birds
mammals

insects —

Task embedding cosine similarity

ResNet trained on
ImageNet as probe
network
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Experiment: TAsk2VEc recovers “Taskonomy”

Taskonomy: Disentangling Task Transfer Learning, Amir Zamir, Alexander Sax, William Shen, Leonidas Guibas, Jitendra Malik, Silvio Savarese, CVPR 18

:
i

Task embedding cosine similarity

Edge Texture
Rgb
Normal
Keypoints2D
Edge Occlusion
Keypoints3D
Depth Zbuffer
Depth Euclidean
Segment Semantic
- Class Scene
- Class Object

Classifier “head”
replaced by a fully-
convolutional layer.

Requires far less
compute (5 GPU hours
for the whole matrix).
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Also works for natural language tasks

1. given a target task of interest,
compute a task embedding from
BERT’s layer-wise gradients

MNLI

SST2 QNLI

DROP

2. identify the most
similar source task
embedding from a
precomputed library

o

-
-

WikiHop —»

3. fine-tune BERT on
selected source task

SQuAD
WikiHop
K

POS-PTB

chc.
|

>

Target task

/

4, fine-tune the
resulting model
on target task
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Task Embedding

Exploring and Predicting Transferability across NLP Tasks, Vu et al., EMNLP 2020



Modeling domains can be useful

Does unlabeled data improve few-shot learning?

e Yes, as long as unlabeled data domain (Dss) = task domain (Ds)

Unlabeled
data

Labeled
data

References:

Images

Ds

Unlabeled

Images

DSS
——

(Labeled | N

Rotated
Image

Jigsaw
Puzzle

EAm

— ——§ E Classification
Permutation
e | 7 or
' Rotation (6=180)

Shared Feature
Backbone

‘v

A

e Shot in the Dark: Few-shot Learning with No Base Class Labels, L2ID Workshop, CVPR’21
e When does Self-Supervision improve Few-Shot Learning? ECCV’20

e A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification, CVPR’21
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Modeling domains can be useful

Does unlabeled data improve few-shot learning?

e Yes, as long as unlabeled data domain (Dss) = task domain (Ds)

5-way 5-shot on CUB
79

78
77

+3.4

76

Labeled
Images

Dy

Pool of 75 +1.4

Unlabeled
Images

D .
b 72
no SSL SSL on Ds SSL on Ds + Dss SSL on Ds + Dss SSL on 100% Ds
) (uniform weights) (importance weights)
Domain ProtoNet
Classifier .
(baseline)

References:

e Shot in the Dark: Few-shot Learning with No Base Class Labels, L2ID Workshop, CVPR’21
e When does Self-Supervision improve Few-Shot Learning? ECCV’20
e A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification, CVPR’21



Today

Learning to represent tasks [ICCV’19, ECCV’'20, CVPR’21]
* Build vector representations of tasks & learn their relations

e Goal: amortize solution search across tasks & visualization

Learning with diverse labeling styles [AAAI’19, BMVC’21, arXiv’'22]
* learn from diverse (coarse) labels

* Goal: use related datasets to improve performance
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Learning from coarsely labeled datasets

Kingdom ( Animalia J Part Label
1
Phylum CChordata—]
Class Aves Mammalia

Coarsely labeled datasets are easier to find



A probabilistic model

( ° - ag) Part Label
l Y

@ Part
Labels

Coarse
00.0:

P(Y, Y1, Ynlz) = p(y|z) Hp(yl ly)

Assumption — coarse labels are independent given the part labels



Learning

Maximum likelihood estimation:

max L£(0) = logp(y1, Y2, - - - s Ynlz, 0).

>Zq y) |log p(yl) Hp(yzly,(?) + H(q) := F(g,0). (ELBO)

1=1
EM algorithm:
— E step: maximize F(q, ) wrt distribution over y given the parameters:

g*(y) = arg max F(q(y), 0% D).
q\y

— M step: maximize F(q,#) wrt parameters given the distribution g(y):

') = argmax F(q'* (y), 0) = argmaxzq(") ) log p(y, y1,Y2: - - - Yn|z, 0)
t
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Example: Keypoints and Mask Supervision

Parameterization

* p(y|x) « exp(—a|y-p(x)|), u(x) is distribution over parts

* P(YkolY) < exp(=A|ywp—Hkp(Y) |), Hkoly) is the keypoints given parts
* P(Ymask|Y) = B(Ymask, Mmask(Y)), Hmask(Y) is the mask given parts
E Step: maximize q(y)

Z q eXp Iy T /"1(33) |) eXp ( — |ykp — ,ukp(y> |)B(ymaska /meask(y))-

f f !

Agrees w/ parts Agrees w/ keypoints Agrees w/ mask
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Amortized Variational Inference

E Step: maximize q(y) for each x

> a)exp (— |y — p(@)|) exp (= |Ykp — tixp(¥)]) B (Ymask: Hmask (¥))-

g f ! !

Agrees w/ parts Agrees w/ keypoints Agrees w/ mask

Generally intractable!
* Hard EM: Solve for argmax via SGD (each term is differentiable!)
* Langevin dynamics [SGLD, Welling & Teh’11]

* Amortized VI: approximate via q(y|X,Ymask,Ykp) = dx(y) (our approach)

Ours — Improving few-shot part segmentation using coarse supervision, Saha et al. arXiv’'22
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Results: Bird part segmentation

Training data metric: mean I0OU over parts

28.9 45.4

» 450 w/ 10 parts (CUB+PASCAL)
* 5,500 w/ keypoints & masks (CUB)
Model Fine-tuning

* FCN w/ ResNet34 on 256x256 image Multi-tasking 36.9 41.3
« Random or ImageNet initialization PseudoSup [1] 30.8 46.0
Evaluation 352 16.8
* mean IOU over 10 parts — .

* 150 images on CUB

[1] — PseudoSup, Chen et al., CVPR'21 (semi-supervised)
[2] — PointSup, Cheng et al., CVPR’22 (point supervision)
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Results: Bird part segmentation

Human Finetuning PseudoSup

PointSup

Ours

36



Summary & Conclusion

Two ways to learn with little data
* Modeling tasks and their relations — Task2Vec [ICCV’19], ECCV’20, CVPR’21

* Learning from coarse and diverse labels — classification [BMVC’21],
segmentation [arXiv'22], detection [AAAI'19]

Challenges
* Engineering: compute, memory, energy, software infrastructure
* Statistical: bias-variance tradeoffs, noisy evaluation

* Science: how is information represented in deep networks? Are foundation
models better probes?



