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Standard inference

. (e . How popular will this movie be in IMDB?
* N-way classification P

* Regression




Standard inference

who Ls older?

* N-way classification

* Regression
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* N-way classification

* Regression

who s older?

* Ranking



car?  Plane?
N\ )\

ike
NN N N

cate
M)

IMDB?

Dog?
)\

wWho Ls old2r?

single value” predictions
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* Do all our machine learning tasks
boil down to “single value” predictions?

* They all make




Beyond “single value™ predictions?

* Do all our machine learning tasks
boil to “single value” predictions?

* Are there tasks where outputs
are somehow correlated?

(MDB? O

e Is there some structure
in this output correlations?

* How can we predict such structures?
dStructured prediction







Object detection

* Predict a box around an object

* Images

dSpatial location
db(ounding) box

e Videos

dSpatio-temporal location
dbbox@t, bbox@t+1, ...




Object segmentation

Image Class map Instance map Part map Part map (high level)



Optical flow & motion estimation

......

(a) Consecutive frames (b) Trajectories from Optical Flow (c) w-trajectories



Depth estimation

Ours stereo Ours mono

P
- -
" a
SN

Godard et al., Unsupervised Monocular Depth Estimation with Left-Right Consistency, 2016






Structured prediction

* Prediction goes beyond asking for “single values”

* Outputs are complex and output dimensions correlated

* Output dimensions have latent structure

* Can we make deep networks to return structured predictions?




Structured prediction

* Prediction goes beyond asking for “single values”
* Outputs are complex and output dimensions correlated
* Output dimensions have latent structure

* Can we make deep networks to return structured predictions?




onvnets for structured prediction




Sliding window on feature maps

* Selective Search Object Proposals [Uijlings2013]

* SPPnet [He2014]
* Fast R-CNN [Girshick2015]
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Fast R-CNN: Steps

* Process the whole image up to convb

Conv 5 feature map



Fast R-CNN: Steps

* Process the whole image up to convb
» Compute possible locations for objects

Conv 5 feature map
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* Process the whole image up to convb

» Compute possible locations for objects
dsome correct, most wrong

Conv 5 feature map



Fast R-CNN: Steps

* Process the whole image up to convb

» Compute possible locations for objects
dsome correct, most wrong

* Given single location

Conv 5 feature map



Fast R-CNN: Steps

* Process the whole image up to convb
» Compute possible locations for objects

dsome correct, most wrong

* Given single location = ROI pooling module

extracts fixed length feature

New box

Car/dog/bicycle coordinates

0000

ROI Poolip

Module

—)

Always 4x4 no

matter the size

Conv 5 feature map

of candidate
location



Fast R-CNN: Steps

* Divide feature map in TxT cells
* Cell size depends on size of the candidate location

Always 3x3 no matter the size of
I - = candidate location




Some results




Fast R-CNN

* Reuse convolutions for different candidate boxes
dCompute feature maps only once

* Region-of-Interest pooling

dDetfine stride relatively = box width divided by predefmed number of
“poolings” T S .

dFixed length vector
* End-to-end training!

* (Very) Accurate object detection
* (Very) Faster

dLess than a second per image

» External box proposals needed 52 b o0 *‘:‘




Faster R-CNN [Girshick2016]

 Fast R-CNN: external candidate locations

* Faster R-CNN: deep network box proposals . clssife
* Slide the feature map: k anchor boxes per slide ‘W’“ﬂg

| 2k scores ‘ l 4k coordinates | P —] k anchor boxes

cls layer \ ’ reg layer

| 256-d

intermediate layer

t f
N\ N

sliding window

conv feature map

Region Proposal Network

- y - /
Region Proposal Network, ‘

conv layers /

P 7 e —

Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
‘attention” of this unified network.



Going Fully Convolutional

* [LongCVPR2014]
* Image larger than network input: slide the network

- ':\ A
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s this pixel a camel?

B Yes! | No!

|



Going Fully Convolutional

* [LongCVPR2014]
* Image larger than network input: slide the network
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Going Fully Convolutional

* [LongCVPR2014]
* Image larger than network input: slide the network
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Going Fully Convolutional

* [LongCVPR2014]
* Image larger than network input: slide the network

s this pixel a camel?
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Going Fully Convolutional

* [LongCVPR2014]
* Image larger than network input: slide the network

s this pixel a camel?

[ Yes! | No!

E 1 fc1 {oP




Fully Convolutional Networks

» [LongCVPR2014]

 Connect intermediate lavers to output

32x upsampled 2x upsampled 16x upsampled 2x upsampled 8x upsampled
prediction (FCN-32s)  prediction  prediction (FCN-16s)  prediction prediction (FCN-8s)

image pooll pool2 pool3 pool4 pool5

:
,E poold N\ pool3 ‘Z .......

prediction prediction
, 4 4

Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Layers are shown as grids that
reveal relative spatial coarseness. Only pooling and prediction layers are shown; intermediate convolution layers (including our converted
fully connected layers) are omitted. Solid line (FCN-32s): Our single-stream net, described in Section 4.1, upsamples stride 32 predictions
back to pixels in a single step. Dashed line (FCN-16s): Combining predictions from both the final layer and the pool4 layer, at stride
16, lets our net predict finer details, while retaining high-level semantic information. Dotted line (FCN-8s): Additional predictions from
pool3, at stride 8, provide further precision.



Fully Convolutional Networks

* Output is too coarse
* Image Size 500x500, Alexnet Input Size: 227x227 = Output: 10x10

* How to obtain dense predictions?

* Upconvolution

* Other names: deconvolution, transposed convolution, fractionally-
strided convolutions



Deconvolutional modules

Output

Image

Convolution Upconvolution Upconvolution

No padding, no strides No padding, no strides Padding, strides

https://github.com/vdumoulin/conv_arithmetic



Coarse =2 Fine Output

Upconvolution

7x7

2X

=)

Large loss generated

Small loss generated probablllty much higher than ground truth)

O Ground truth pixel labels

\‘08

Upconvolution

14x14

‘ooo‘

\ Plxel label probabilities

224x224




Structured losses

Input Image




Deep GonvNets with CRF loss

* [Chen, Papandreou 2016]

* Segmentation map is good but not pixel-precise
* Details around boundaries are lost

* Cast tully convolutional outputs as unary potentials
 Consider pairwise potentials between output dimensions



Deep ConvNets with CRF loss

* [Chen, Papandreou 2016]

Rt Aeroplane
Coarse Score map
Deep
Convolutional "
— — -
Neural el
Network

l

Bi-linear Interpolation

Final Output Fully Connected CRF




Deep ConvNets with CRF loss

* [Chen, Papandreou 2016]

* Segmentation map is good but not pixel-precise
* Details around boundaries are lost

* Cast tully convolutional outputs as unary potentials
 Consider pairwise potentials between output dimensions
* Include Fully Connected CREF loss to refine segmentation

Total loss Unary loss Pairwise loss

E(x) =%0;(x;) + X0;;(x;, x;)

0 (x:, %)~ wy exp (—05|Pi — Pj|2 — B|I; — Ij|2) + w, exp(—y|p; — Pj|2)



Examples




Mask R-CNN

State-of-the-art in semantic segmentation

Heavily relies on Fast R-CNN

Can work with different architectures, also ResNet
Runs at 195ms per image on an Nvidia Tesla M40 GPU
Can also be used for Human Pose Estimation



Mask R-CNN: R-CNN + 2 layers

region ) N| ,§ classes
proposal regions FC :  (softmax)
S I e I I O B
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FC » boundary box :
regressor
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Mask R-CNN: ROI Align

0.1 03| 02 (03| 02|06 )| 08| 08 0.1 03| 02 (03| 02| 06| 08| 08
04 | 05 [ 0.1 04 | 0.7 | 01 04 | 03 04 | 05 | 0.1 04 | 07 | 01 04 | 03
02 | 01 03 ( 08 | 06 | 02 | 01 0.1 02 | 04 03 {0 08 L 02 1L 01 0.1
04 | 06 | 02 | 01 03 | 06 | 0.1 0.2 04 | 06 | 02 | O 03 | 06 | 0.1 0.2
0.1 08 | 03 ) 03| 05| 03] 03 ) 03 0.1 08 | 03 | O. 05| 03 | 03 | 03
02| 09 [ 04 | 05 [ 01 0.1 0.1 0.2 02| 09 | 04 | O 0.1 0.1 0.1 0.2
03 | 041 08 | 06 | 03 | 03 | 06 | 05 03 | 041 08 | 0. 03 | 03 | 06 | 05
05 | 05| 02 | 01 0.1 02 | 01 0.2 05 | 05| 02 | O 0.1 02 | 01 0.2

0.8 0.6 0.88 06

08 06 09 0.6

AP APs; APy | AP®  APB  APY

RolPool | 23.6 46.5 21.6 28.2 52.7 26.9
RolAlign | 30.9 51.8 32.1 34.0 55.3 36.4

+7.3 +53 +10.5 +5.8 +2.6 +9.5



Mask R-CNN

2

convolutional network

region proposal network

Rol

Align

,5 classes
FC ¢ (softmax)
FC
| Layers
FC N boundary box
i regressor
mask

Mask




Mask R-CNN
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Mask R-CNN
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Unet

2(32)64 3 4
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Ronneberger, Fischer, Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI 2015



YOLO
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Final detections

* ‘One-shot’ detection
* No proposals = Much faster

Class probability map

Figure 2: The Model. Our system models detection as a regres-

sion problem. It divides the image into an S X S grid and for each

. Lo . - grid cell predicts B bounding boxes, confidence for those boxes,

Redmon, Divvala, Girshick, Farhadi, You Only Look Once: Unified, and C class probabilities. These predictions are encoded as an

Real-Time Object Detection, 2015 S x S x (Bx5+ C) tensor.
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Vil

Vision Transformer (ViT) Transformer Encoder
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Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2020



Swin Transformer
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Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, 2021



Swin Transformer




SIN'T: Siamese Networks for Tracking

atchmg Functlon Trainin

Original target at x, inframe t = 0

Tao, Gavves, Smeulders, Siamese Instance Search for Tracking, 2016



SIN'T: Siamese Networks for Tracking

While tracking, the only definitely correct training example is the first frame
* All others are inferred by the algorithm

If the “inferred positives” are correct, then the model is already good enough and
no update is needed

If the “inferred positives” are incorrect, updating the model using wrong positive
examples will eventually destroy the model



Basic ldea

No model updates through time to avoid model contamination

Instead, learn invariance model f(dx)
* invariances shared between objects

* reliable, external, rich, category-independent, data

Assumption
 The appearance variances are shared amongst object and categories
* Learning can accurate enough to identify common appearance variances
Solution: Use a Siamese Network to compare patches between images
* Then “tracking” equals finding the most similar patch at each frame (no temporal modelling)



T'raining

loss

fe) 4

e

CNN

f(.)

CNN

f(.)

Marginal Contrastive Loss:

1 1
L(Xj,xk,yjk) = Ey]sz + 5(1 — yjk)maX(O,a — DZ)
yir €013 D = ||f (%) = Flx)l,

Matching function (after learning):

m(x, xx) = f(x;) - f(xx)




Training

loss
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CNN
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CNN Marginal Contrastive Loss:

1 1
f() L(xj, X, Vix) = Eyjsz + 5(1 — ¥jx)max(0,0 — D?)

T ik €01} D = ||f(x;) - f(xk)llz

Xk Matching function (after learning):

m(x;, %) = f(x;) - f(xx)
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T'raining

loss
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1 1
L(Xj,xk,yjk) = Ey]sz + E(l — yjk)maX(O,a — DZ)
yir €013 D = ||f (%) = Flx)l,

Matching function (after learning):

m(x;, %) = f(x;) - f(xx)




Spatial Transform Networks

batch = 0200 theta= 5 7 5.0




Problem

* ConvNets sometimes are robust enough to input changes

* While pooling gives some invariance, only in deeper layers the pooling
receptive field is large enough for this invariance to be noteworthy

* One way to improve robustness: Data augmentation

* Smarter way: Spatial Transformer Networks

-H— @ B - -
—> ——
Initial Identlty Transformed Interpolated
image (U meshgrid (G) meshgrid image (V)




Basic Idea

* Define a geometric transformation matrix

.®:[911 012 913]
021 0Oz 033

* Four interesting transformations

o 1 0 0
Identity, i.e. © = [ 0 1 0
* Rotation, e.g., 0 = [8; _0 / O] for 459, as cos(—) ~ 0.7

* Zooming in, e.g. © =

* Zooming in, e.g. © =

'0.5 O 0
L0 05 O

O N

] for 2X zooming in

0 0 .
> O] for 2X zooming out



Basic Idea

* Then, define a mesh grid (x;,y}) on the original image and
apply the geometric transformations
o

x;1 xlt
Tyl =7
1.
* Produce the new image using the transtormation above and an

interpolation method
+ Learn the para e m the data

e A localization :

ﬂJen a new image




Sequential data




Recurrent Networks

* Simplest model
 Input with parameters U
* Memory embedding with parameters W
* Output Witg gatr%meters |4
wEput Vi

qu: ut para meters

Memmg
parammeters W

Input parameters U




Recurrent Networks

* Simplest model
 Input with parameters U
* Memory embedding with parameters W
* Output witg gatrg}meters |4
wEput Vi

YVt+1
Output parameters V
Mﬁmo%
parameters /4
Ct+1
A
nput parameters U U
pUtp rmput
Xt




Recurrent Networks

* Simplest model
 Input with parameters U
* Memory embedding with parameters W
* Output witg gatrg}meters |4
wEput Vi

Yt+1 Yt+2

quswc para meters 174

Memmg
paAVA meters

Input parameters U U U U

Xt Xt+1 Xt+2 Xt+3



Folding the memory

Unrolled/Unfolded Network  Folded Network

Yt YVit+1 Vt+2 Yt
74
g 114
C
t Ct
(Ce-1)
U U U

Xt Xt+1 Xt+2 Xt



RNNvs NN

* What is really different?

* Steps instead of layers
* Step parameters shared whereas in a Multi-Layer Network different

“La Y er/step "1 “Lo Y er/step "2 “Lo Y 6r/5tep (ic
Y1 Y2 Y3
V
e~ e~ e~
W W1 Q WZ Q W3 Q
— 3 s S
= = =
_ ) w
U

3-gram Unrolled Recurrent Network 3-layer Newral Network



Training an RNN

* Cross-entropy loss

1
le_[ytl,’é" = £=—10gP=2Lt=—T2ltlogyt
tk t t

* Backpropagation Through Time (BPTT)

* Be careful of the recursion. The non-linearity is influencing
itself. The gradients at one time step depends on gradients on
previous time steps

* Like in NN - Chain Rule
* Only difference: Gradients survive over time steps



RNN Gradients

L=L(cr(cr—1(.(c1(xg, co; W), W), W), W)

0L, ~o 0L, dc, dc

oW — Ludc, dc, oW
T=1
dL dc;, 0L dcy 0ci_q 0Cr41 . 0Ly
—_ . . . e S TI T___ ~
dcy; dc,  0c¢y 0Ci_q 0Ci_s dCy dc;

aCt

* The RNN gradient is a recursive product of
dCt—1



Vanishing/Exploding gradients

. oL 0L dcr Odcr—q 0Ctyq oL o .
dc;  dcr dcr—y der—p | dce, oy K1= Vanishing gradient
<1 <1 <1
—~
0L AL dcy dcr—q dcq . 9L, 1 — Exploding gradient
° — ’ * s’ oW
dcy dct O0cCT—1 OCT—2 dcc,
_

>1 > 1 > 1



RNN & Chaotic Systems

* The latent memory space is composed of multiple dimensions

* A subspace of the memory state space can store information if
multiple basins €p of attraction in some dimensions exist

* Gradients must be strong near the basin boundaries
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RNN & Chaotic Systems

* In the figures x; < ¢; and x; « F(Wx,_1 + Uu; + b)

.\Q. ;Fz.f.
F3 \ l /4 3
Fy L /F1

Xt g @ Nx ® BTN
A:L‘t

Figure 4. This diagram illustrates how the change in x,
Ax;, can be large for a small Axg. The blue vs red
(left vs right) trajectories are generated by the same maps
Fy, F5, ... for two different initial states.

......

Figure 5. Illustrates how one can break apart the maps
Fy, .. F}; into a constant map F and the maps Ui, ..,U;. The
dotted vertical line represents the boundary between basins
of attraction, and the straight dashed arrow the direction
of the map F on each side of the boundary. This diagram
is an extension of Fig. 4.

Figures from: Glorot and Bengio, Understanding the difficulty of training deep feedforward neural networks, 2010



Advanced RNN: LSTM

* 0 € (0,1): control gate — something like a switch
* tanh € (—1, 1): recurrent nonlinearity

i =0o(x,U® +m_ Ww®)
f=0(x U +m_,WwhH)

0 =o0(x,U® +m,_ W)

& = tanh(x, U9 + m,_ W)
=1 Of+GOI

m, = tanh(c;) ©® o

Ct—1

O—@
tanh
ft I¢ O¢
Ct
o tanh|| O

Outp ut



Take away message

* Deep Learning is good not only for classitying things

* Structured prediction is also possible

* Multi-task structure prediction allows for unified networks

* Discovering structure in data is also possible

* Training neural networks with sequences with recurrent nets



