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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896—43,264—
4096-4096-1000.



Architectural details
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Removing layer 7

1.1% drop in performance, 16 million less parameters
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Removing layer 6, 7

5.7% drop ln performance, 50 milliow less parameters
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Removing layer 3, 4

3.0% drop in performance, L million Less parameters. Whi?
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Removing layer 3,4, 6,7

ton? Depth!

23.5% drop ln performance. Conclius
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Credit: R. Fergus slides in Deep Learning Summer School 2016



Translation invariance
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Scale invariance
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Modern Deep Nets

*VGG-Net

*ResNet
dFrom 14 to 1000 layers

*Google Inception
dNetworks as Direct Acyclic Graphs (DAG)

*ResNext
d Factorizing ResNets

*DenseNet
dResNets with multiple skip-connections

*Neural Architecture Search

*...and many more



More Depth? VGGnet

ConvNet Configuration

A A-LRN B C D E
11 weight | 11 weight | 13 weight 16 weight 16 weight | 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Table 2: Number of parameters (in millions).

Network

A,A-LRN

B

C

D

Number of parameters

133

133

134

138




VGG16

* 7.3% error rate in ImageNet
* Compared to 18.2% o:
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VGG16 characteristics

* Input size: 224 X224
 Filter sizes: 3X3

* Convolution stride: 1
* Spatial resolution preserved

* Padding: 1
* Max pooling: 2x2 with a stride of 2
* ReLU activations

 No fancy input normalizations
* No Local Response Normalizations

* Although deeper, number of weights is not exploding



Why 3x3 filters?

 The smallest possible filter to captures the “up”, “down”, “left”, “right”

* Two 3X3 filters have the receptive field of one 5X5
* Three 3x3 filters have the receptive field of ...

~
~

5x5 receptive field 3x3 receptive field

Picture credit: Arden Dertat



https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Why 3x3 filters?

 The smallest possible filter to captures the “up”, “down”, “left”, “right”

« Two 3X3 filters have the receptive field of one 5x5

 Three 3X3 filters have the receptive field of one 7x7

* 1 large filter can be replaced by a deeper stack of successive smaller filters
* Benefit?



Why 3x3 filters?

 The smallest possible filter to captures the “up”, “down”, “left”, “right”

« Two 3X3 filters have the receptive field of one 5x5
 Three 3X3 filters have the receptive field of one 7x7
* 1 large filter can be replaced by a deeper stack of successive smaller filters
* Benefit?
 Three more nonlinearities for the same “size” of pattern learning
* Also fewer parameters and regularization
(3X3XC)X3 =27 -C,7X7XCx1 =49 -C

* A large filter can be replaced by a deeper, potentially more powerful, stack of
successive smaller filters



Smaller filters 1x1

* Also 1x1 filters are possible ) ]

* Followed by a nonlinearity
* Why?

Feature map
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Smaller filters 1x1

* Also 1x1 filters are possible ; !

* Followed by a nonlinearity
* Why?

* Increasing nonlinearities
without affecting receptive
field sizes C

e Linear transformation of the
input channels

Feature map

* Also, compression -

Feature map height ﬂ
No. of input channels C

o
<

Feature map with



ResNet
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Some facts

* The first truly Deep Network, going deeper than 1,000 layers

* More importantly, the first Deep Architecture that proposed a novel concept on how
to gracefully go deeper than a few dozen layers
dNot simply getting more GPUs, more training time, etc

* Smashed Imagenet, with a 3.57% error (in ensemb]es)

* Won all object classification, detection, segmentation, etc. challenges



Hypothesis

* Hypothesis: Is it possible to have a very deep network at least as accurate as
averagely deep networks?

* Thought experiment: Let’s assume two Convnets A, B. They are almost identical, in
that B is the same as A, with extra “identity” layers. Since identity layers pass the
information unchanged, the errors of the two networks should be similar. Thus, there
is a Convnet B, which is at least as good as Convnet A w.r.t. training error




M 56-layer

. 20-layer
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56-layer

training error (%)
test error (%)
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.



Testing hypothesis

* Adding identity layers increases training error!!
* Training error, not testing error

‘Performance degradation not caused by overfitting
*Just the optimization task is harder

*Assuming optimizers are doing their job fine, it appears that not all networks are the
same as easy to optimize

train train
Llrain < ptrainyy



ResNet: Main idea

* Layer models residual F(x) = H(x) — x instead of H(x)

* It anything, the optimizer can simply set the weights to 0
 This assumes that the identity mapping is indeed the optimal one

*Adding identity layers should lead to larger networks that have at least lower training error

Y

Shortcut/skip

weight layer connections
F(x) ! relu -
weight layer identity
F(x) +x

Fieure 2. Residual learnine: a building block.



Smooth propagation

34-layer residual
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ResNet block

‘H(x) = F(x) + x

°If dimensions don’t match
* Either zero padding
* Or a projection layer to match dimensions

X

Y

weight layer
F(x) | relu <
weight layer identity

Figure 2. Residual learning: a building block.

Plain Block

L

Stacked neural
network layers

!

y=F(x)

Hard to get F(x)=x and make y=x
an identity mapping

Residual Block

JL

Stacked neural
network layers

"

y=F(x)+x

Easy to get F(x)=0 and make y=x
an identity mapping



No degradation anymore

* Without residual connections deeper networks are untrainable

60
50
8 40 840 — - - — - -
5 5
30 0- - - - - - -
plain-18 ResNet-18
—plain-34 —ResNet-34 34-layer
20 1 1 1 1 ZG 1 1 1
0 10 20 30 40 50 0 10 20 30
iter. (le4)

40 50
iter. (1e4)
Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain

networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.



ResNet vs Highway Nets

* ResNet: y = H(x) — x
* Highway Nets:y = H(x) - T, —x - (1 = T})

* ResNet € Highway Nets
ResNet = Highway Nets: T, ~Binomial with E[T,] = 0.5

‘ResNet data independent

dCurse or blessing, depending on point of view
dDefinitely simpler



ResNet breaks records

* Ridiculously low error in ImageNet

* Up to 1000 layers ResNets trained

dPrevious deepest network ~30-40 layers on simple datasets

method

top-35 err. (test)

VGG [41] (ILSVRC’14) 7.32
GoogleNet [44] (ILSVRC’ 14) 6.66
VGG [41] (v5) 6.8
PReLLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.



ResNext

Xy Xy Xy X; Xy
g 3 3 3 N
RelU BN
BN BN BN ReiLU
RelU ReiLU RelU BN
RelLU BN
BN BN ReiLU
addition BN RelLU BN
RelU RelLU @@ addition
Xl‘. 1 Xf. 1 Xr-1 X1 Xi-1
(a) original (b;(:?j];izf:er © liz]agi:r?fore (:1?61-{211]&[\{;;22/ (e) full pre-activation
case Fig. ResNet-110 | ResNet-164
original Residual Unit [1] | Fig. 4(a) 6.61 5.93
BN after addition Fig. 4(b) 8.17 6.50
ReLU before addition Fig. 4(c) 7.84 6.14
ReLU-only pre-activation | Fig. 4(d) 6.71 5.91
full pre-activation Fig. 4(e) 6.37 5.46

256-din

256-d in
‘ 256, 1x1,4 | ‘ 256,1x1,4 |rorai32| 256, 1x1,4
2

I 256, 1x1, 64 l
2 E2 paths £ 2

I 64, 3x3, 64 l ‘ 4,3x3,4 | ‘ 4,3x3,4 seee 4,3x3,4 l
L2

I 64, 1x1, 256 l ‘ 4, 1x1,256 | | 4, 1x1, 256 l | 4,1x1,256 l

256-dout

256-d out
Figure 1. Left: A block of ResNet [14]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer is shown as (# in channels, filter size, # out channels).

| setting [ top-1 err (%) I top-5 err (%)

Ix complexity references:

ResNet-101 1 x 64d 220 6.0
ResNeXt-101 32x4d 212 5.6
2x complexity models follow:

ResNet-200 [15] 1 x 64d 217 5.8
ResNet-101, wider | 1 x 100d 213 5.7
ResNeXt-101 2 x64d 20.7 5.5
ResNeXt-101 64 x 4d 204 5.3

Table 4. Comparisons on ImageNet-1K when the number of
FLOPs is increased to 2x of ResNet-101"s. The error rate is evalu-
ated on the single crop of 224 x224 pixels. The highlighted factors
are the factors that increase complexity.



Some observations

 BatchNorms absolutely necessary because of vanishing gradients

* Networks with skip connections (like ResNets) converge faster than the same network
without skip connections

* Identity shortcuts cheaper and almost equal to project shortcuts



DenseNets

 Add skip connections to multiple forward layers
Yy = h(xl! Xl—17 ++0) xl—n)

* Why?




DenseNets

 Add skip connections to multiple forward layers
Y = h(x, X;—1, o, X—n)
* Assume layer 1 captures edges, while layer 5 captures faces (and other stuff)
* Why not have a layer that combines both faces and edges (e.g. to model scarred faces)

* Standard ConvNets do not allow for this
* Layer 6 combines only layer 5 patterns, not lower

L2
s’
T




Inception

type pa::::izd Olslit:em depth #1x1 fei:cf #3x3 fei:cf #5%X5 :::: params ops
convolution TXT7/2 112x112x64 1 27K 34M
max pool 3x3/2 56 X 56 X 64 0

convolution 3x3/1 56 xX56 X192 2 64 192 112K 360M
max pool 3x3/2 28x28x192 0

inception (3a) 28 x28x256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28x28x480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14x14x480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 7XTx832 0

inception (5a) TXTx832 2 256 160 320 32 128 128 1072K 54M
inception (5b) 7X7x1024 2 384 192 384 48 128 128 1388K 71IM
avg pool TXT7/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K IM
softmax 1x1x1000 0

Table 1: GoogleNet incarnation of the Inception architecture




Basic idea

e Problem ?

Picture credit: Bharath Raj



https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202

Basic idea

* Problem ?

* Salient parts have great variation in sizes

* Hence, the receptive fields should vary in size accordingly
* Naively stacking convolutional operations is expensive

* Very deep nets are prone to overfitting

Picture credit: Bharath Raj
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Inception module

* Multiple kernel filters of different sizes (1x1,3x3,5X5)

* Naive version

*Problem?

Filter
concatenation

Filter
concatenation

ﬂ\

T 3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling DTS T T T
ﬂmons 1x1 convolutions 3x3 max pooling

Previous layer

(a) Inception module, naive version

Previous layer

(b) Inception module with dimension reductions

Picture credit: Bharath Raj
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Inception module

* Multiple kernel filters of different sizes (1x1,3x3,5X5)

* Naive version

*Problem?
*Very expensive!

e Add intermediate 1X1 convolutions

Filter

Filter concatenation
concatenation ﬂ \
T 3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling VT T T T
ﬂmons 1x1 convolutions 3x3 max pooling

Previous layer

(a) Inception module, naive version

Previous layer

Picture credit: Bharath Raj

(b) Inception module with dimension reductions
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Architecture

* 9 Inception Modules

* 22 layers deep (27 with the pooling layers)

* Global average pooling at the end of last Inception Module
* 6.67% Imagenet error, compared to 18.2% of Alexnet

i )
HH
g v

Picture credit: Bharath Raj
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Houston, we have a problem




Problem: Vanishing gradients

* The network was too deep (at the time)

* Roughly speaking, backprop is lots of matrix multiplications
0L 0L 0dat 0da"! da'
ow!  dal dal~! dal~2 T ow!

% gets extremely small

* Many of intermediate terms < 1 = the final

* Extremely small gradient > ?



Problem: Vanishing gradients

* The network was too deep (at the time)

* Roughly speaking, backprop is lots of matrix multlphcatlons
oL 0L Qda* dal! da'

owl  dal dal-1 aaL 2 " gwt

* Many of intermediate terms < 1 = the fmal gets extremely small

* Extremely small gradient > ?

* Many of intermediate terms < 1 = the fmal gets extremely small

« Extremely small gradient - Extremely slow learnmg



Architecture

* 9 Inception Modules

» 22 layers deep (27 with the pooling layers)

* Global average pooling at the end of last Inception Module
* Because of the increased depth < Vanishing gradients

* Inception solution to vanishing gradients: intermediate classifiers
* Intermediate classifiers removed after training

Picture credit: Bharath Raj
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Inceptions v2, v3, v4

e Factorize 5%5 in two 3X3 filters

* Factorize nXxn in two nXx1 and 1Xn filters (quite a lot cheaper)

 Make nets wider

* RMSprop, BatchNorms, ...

Filter Concat

1x1

nx1

1xn

Filter Concat

nx1

nx1

1xn

1xn

1x1

Filter Concat

T N

1x1

1x1

Poo

1x1

1x1 1x1

T~

Base

Base

Pool 1x1

Picture credit: Bharath Raj
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Neural Architecture Search

* It is also possible to learn the neural architecture

* Problem?



Neural Architecture Search

* It is also possible to learn the neural architecture

* Problem?

* Architectures/graphs are discrete structures = Backprop?
» Still, some very interesting workarounds have been proposed in practice

 Will it work for you? If you are Facebook or Google, yes!



Evolutionary Search for NAS

DARTS: Differentiable Architecture Search, Liu et al., 2018

Efficient Neural Architecture Search via Parameter Sharing, Pham et al., 2018

Evolving Space-Time Neural Architectures for Videos, Piergiovanni et al. 2018

Regularized Evolution for Image Classifier Architecture Search, Real et al., 2019

Algorithm 1 Evolutionary search algorithm

function SEARCH
Randomly initialize the population, P
Evaluate each individual in P
for © < number of evolutionary rounds do
S = random sample of 25 individuals
parent = the most fit individual in S
child = parent
for max([d — £],1) do
child = mutate(child)
end for
evaluate child and add to population
remove least fit individual from population
end for
end function

Change
Temporal Size

Mutation

Figure 5. Example mutations applied to a module, including (a)
layer type change, (b) filter length change, and (c) layer addition.



State-of-the-art
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Bianco et al., Benchmark Analysis of Representative Deep Neural Network Architectures, IEEE Access 2018



