
I
nformation—scientific, industrial, or oth-
erwise—is increasingly composed of mul-
timedia items—that is, a combination of
pictorial, linguistic, and auditory data.

Smooth, efficient, computerized access to such
information is a tremendous challenge.

The automatic deduction of semantics from
multimedia data requires sophisticated techniques
for data structuring, transformation, analysis, clas-
sification, and learning. And the nature of infor-
mation creation is such that most of the data is
irrelevant to a specific question. Therefore, the
challenge is to discover and interpret tiny frac-
tions of useful information in a whirlwind of
meaningless noise. As the storage and connectivi-
ty of multimedia data increases, automatic multi-
media content analysis (MMCA) is becoming an
ever-more important area of research.

MMCA considers all aspects of the automated
extraction of knowledge from large multimedia
data sets. From these, image and video archives
contain the bulk of all data and, thus, form the
biggest challenge. Research in this area recently

made a giant step forward with the introduction
of machine-learned multimedia analysis, yield-
ing automatic categorization by visual object
types, such as human faces, bicycles, and inter-
views.1 Fundamental MMCA research questions
include the following:

❚ Can we automatically find genres and sub-
genres in images from a statistical evaluation
of large image sets?

❚ Can we automatically learn to find objects in
images and video streams from partially anno-
tated image sets?

Solutions to these questions are essential in a
myriad of applications. The Netherlands Forensic
Institute (NFI), for example, has an urgent need
for detecting objects and individuals in video
streams obtained from surveillance cameras.
Similarly, the Netherlands Institute for Sound
and Vision (Beeld & Geluid) aims to store digi-
tized television broadcasts in large repositories,
generating heavy demands on accessibility. Also,
the need to identify materials and land-cover
classes in terabytes of hyperspectral data
obtained from NASA satellites is one of many
notable examples from the scientific literature.2

Despite several obstacles with Grid computing
(for more details, see the sidebar “High-
Performance Multimedia Processing and Grid
Computing”), if we ever hope to meet the urgent
demands for handling large amounts of multi-
media data, we must turn to Grid computing as
a solution. With this in mind, we developed and
integrated a fully user-transparent programming
model (called Parallel-Horus) with a Grid-execu-
tion model based on wide-area multimedia services.

When we say wide-area multimedia services,
we mean high-performance, data-parallel multi-
media functionality that can be invoked from
sequential applications running on a desktop
machine. We evaluate our approach by applying
it to two state-of-the-art multimedia applications.

Parallel-Horus
Parallel-Horus3-6 is a cluster programming library

that lets programmers implement parallel multi-
media applications as fully sequential programs.
The Parallel-Horus library consists of commonly
used multimedia data types and associated opera-
tions, implemented in C�� and an additional mes-
sage passing system (MPI). The library’s API is
made identical to that of an existing sequential

64 1070-986X/07/$25.00 © 2007 IEEE Published by the IEEE Computer Society

High-
Performance
Distributed
Video Content
Analysis with
Parallel-Horus

Frank J. Seinstra, Jan-Mark Geusebroek,
Dennis Koelma, Cees G.M. Snoek, Marcel

Worring, and Arnold W.M. Smeulders
University of Amsterdam

Feature Article

As the world uses
more digital video
that requires greater
storage space, Grid
computing is
becoming
indispensable for
urgent problems in
multimedia content
analysis. Parallel-
Horus, a support tool
for applications in
multimedia Grid
computing, lets
users implement
multimedia
applications as
sequential programs
for efficient
execution on clusters
and Grids, based on
wide-area
multimedia services.

library: Horus. We integrated the parallel func-
tionality with Horus such that the original sequen-
tial code remains unchanged. This approach offers
a major advantage, because then the sequential
Horus library’s most important properties (such as
maintainability, extensibility, and portability) to a
large extent transfer to Parallel-Horus as well.

Similar to other frameworks, Horus is based on
the abstractions of Image Algebra,7 a mathemati-

cal notation for specifying image and video pro-
cessing algorithms. Image Algebra defines a small
set of algorithmic patterns that cover the bulk of
commonly applied image and video processing
functionality. Horus implements any operation
that maps onto the functionality as provided by
such a pattern by instantiating it with the proper
parameters, including the function to be applied
to the individual data elements.

65

Digital video often produces data at extremely high data
rates, causing multimedia archives to steadily run into petabytes
of storage space. For example, the Netherlands Institute for
Sound and Vision (Beeld & Geluid), has 750,000 hours of high-
resolution TV data waiting to be archived (see http://www.
radionetherlands.nl/features/media/061207beg).

Distributed surveillance cameras generate even larger quan-
tities of data. Following the terrorist attacks in the London
Underground, for example, the British police had to investigate
video footage obtained from over 80,000 closed-circuit TV
(CCTV) cameras.1 And NASA sends to Earth more than 850
Gbytes of hyperspectral image data every day for analysis and
processing.2 Clearly, multimedia content analysis (MMCA)
problems are generally colossal, often in the petascale range.

Recent results from image analysis show that access to the
content of large data sets is a difficult problem.3 One way to
deal with this is to apply approximate algorithms, albeit at the
expense of accuracy and the loss of useful access results.

A better solution is to exploit the distribution of data and
computation over computing networks. Also, in many emerg-
ing MMCA problems, generation, processing, storage, index-
ing, querying, retrieval, and visualization of multimedia data are
integrated aspects, all taking place at the same time and, poten-
tially, at multiple administrative domains. The only way for us to
satisfy this increasing need for computing and storage resources
is to adopt techniques from Grid computing.

In recent years, Grid computing4 has become an active area
of research. Researchers have put tremendous efforts into
installing heterogeneous wide-area systems, as well as devel-
oping Grid middleware and programming environments and
Grid-enabled applications. Essentially, all of these efforts are per-
formed in pursuit of the single, foremost goal of the Grid: to
provide inexpensive and easy-to-use “wall socket” computing
over a distributed set of resources.

Despite this progress, Grid systems still lack the functional-
ity needed for extensive use by nonexperts. The difficulty of
employing Grids has been acknowledged in the field, howev-
er, giving rise to component frameworks that come closer to
realizing seamless integration across multiple computing plat-
forms. Especially with the advent of unified interfaces tailored
to the needs of Grid application programmers, such as Ibis5

and the Grid Application Toolkit (GAT),6 Grids are slowly
becoming as accessible as high-performance cluster comput-
ers are today.

One fundamental problem remains, however. Although
many multimedia applications are ideal for parallel execution,2,7

most multimedia researchers don’t apply high-performance
computing at all—not even on cluster computers, which are
much easier to use than large-scale Grid systems. This is pri-
marily because no programming tools exist that can effectively
help nonexperts in writing high-performance multimedia appli-
cations.7 Hence, the key to effective support for high-perfor-
mance multimedia computing lies in the availability of a familiar
(that is, user transparent) programming model that hides the
difficulties of parallel implementation from its users. To further
stimulate the use of widely distributed Grid resources in the
multimedia community, this programming model must be sup-
ported by an easy-to-use Grid execution model as well.

References
1. N. Dean, “Bombers Staged Dry Run Before London Attacks,”

The Independent, online edition, 20 Sept. 2005; http://news.

independent.co.uk/uk/crime/article313884.ece.

2. A. Plaza et al., “Commodity Cluster-Based Parallel Processing of

Hyperspectral Imagery,” J. Parallel Distributed Computing, vol.

66, no. 3, 2006, pp. 345-358.

3. C.G.M. Snoek et al., “The Semantic Pathfinder: Using an

Authoring Metaphor for Generic Multimedia Indexing,” IEEE

Trans. Pattern Analysis and Machine Inteligence, vol. 28, no. 10,

2006, pp. 1678-1689.

4. D. Butler, “Tomorrow’s Computing Today,” Nature, vol. 422,

2003, pp. 799-800.

5. R. van Nieuwpoort et al., “Ibis: A Flexible and Efficient Java-Based

Grid Programming Environment,” Concurrency and Computation:

Practice and Experience, vol. 17, nos. 7-8, 2005, pp. 1079-1107.

6. G. Allen et al., “The Grid Application Toolkit: Towards Generic

and Easy Application Programming Interfaces for the Grid,”

Proc. IEEE, vol. 93, no. 3, 2005, pp. 534-550.

7. F.J. Seinstra et al., “User Transparency: A Fully Sequential

Programming Model for Efficient Data Parallel Image Processing,”

Concurrency and Computation: Practice and Experience, vol. 16, no.

6, 2004, pp. 611-644.

High-Performance Multimedia Processing and Grid Computing

O
cto

b
er–D

ecem
b

er 2007

66

IE
EE

 M
ul

ti
M

ed
ia

Horus includes patterns for every commonly
used operation, such as unary and binary pixel
operation, global reduction, neighborhood oper-
ation, generalized convolution, and geometric
transformations. Recently, additional patterns
have been introduced, including iterative and
recursive neighborhood operations. Current
extensions include patterns for operations on
large data sets and patterns on increasingly
important data structures, such as feature vectors
obtained from earlier calculations on image and
video data.

For reasons of efficiency, all Parallel-Horus
operations are capable of adapting to the perfor-
mance characteristics of a parallel machine at
hand, such as being flexible in the partitioning of
data structures.4,5 Moreover, we realized that it’s
insufficient to consider parallelizing library oper-
ations in isolation. Therefore, we extended the
Parallel-Horus library with a runtime approach for
communication minimization, which automati-
cally parallelizes a fully sequential program by
inserting communication primitives and addi-
tional memory management operations whenev-
er necessary.

This approach, called lazy parallelization,6 is
based on a finite-state-machine (fsm) specifica-
tion to exploit and integrate the inherent data
parallelism present in the algorithmic patterns.
One of two fsm ingredients is a set of states, each
corresponding to a valid internal representation
of a distributed data structure at runtime. The
other is a set of state transition functions, each of
which defines how to transform a valid data
structure state into another representation.

As each algorithmic pattern has a set of
allowed input states for each data structure used
as input to the operation and a set of potential
output states for each data structure produced as
output by the operation, the system minimizes
communication efforts by resolving data struc-

ture state inconsistencies via state transition
functions. With many possible runtime execu-
tion scenarios, the simplest is then as follows: An
input data structure is first scattered throughout
the system, after which the sequence of required
calculations is performed at each node using
local (partial) data, performing additional inter-
node communication only when necessary.
Then, if the system needs to write a distributed
data structure out to file, it gathers this informa-
tion into a single compute node that performs
the I/O. We’ll incorporate future additions to
Parallel-Horus internally in the same manner,
making extensions to the fsm definition when-
ever needed.

Applying our techniques in other (existing)
multimedia processing libraries likewise would
require the identification of algorithmic patterns,
data structure states, and state transitions.4,6

Independently, others (such as Skipper8 or Easy-
Pipe9) share this conclusion—that it’s essential to
base a full library implementation on code frag-
ments that we can combine at will. Parallel-
Horus differs from such related work in that it’s
the only system in which all parallelization and
optimization is fully hidden from the user.

Results for realistic multimedia applications
have shown the feasibility of the Parallel-Horus
approach, resulting consistently in optimal data
parallel performance with respect to the abstrac-
tion level of message passing programs.3 Notably,
Parallel-Horus was applied in the 2004, 2005, and
2006 National Institute of Standards and Tech-
nology’s yearly Conference on Video Retrieval
(NIST Trecvid) benchmark evaluations for con-
tent-based video retrieval,1 playing a crucial role
in achieving our top-ranking results in a field of
strong international competitors (see also the
“Evaluation” section).

Prototypical code (in C and MPI) of an earlier
proof-of-concept implementation of Parallel-
Horus, as well as of several example image pro-
cessing applications, is available at http://www.
science.uva.nl/~fjseins/ParHorusCode/.

Services-based multimedia Grid
computing

To arrive at a system that integrates a user-
transparent programming model with an effi-
cient and easy-to-use Grid execution model,
we combined the Parallel-Horus programming
model with the now popular services-based
approach to wide-area computing.10 A services-
based approach coincides well with the most

Results have shown the

feasibility of the Parallel-Hurus

approach, resulting

consistently in optimal data

parallel performance.

common types of multimedia applications, in
which distributing tasks, as well as parallelizing
them, is relevant (examples include video pro-
cessing, processing of large multimedia archives,
and parameter sweeps over multimedia data).

Specifically, we designed a client–server-based
framework extended with a resource broker imple-
mentation for resource registration and resource
availability notification (see Figure 1). We provide
three logical components (the client, server, and
resource broker) via three APIs that allow for ser-
vices provisioning, services calling, and services
registration. With these APIs, converting Parallel-
Horus code to a client and corresponding server
implementation is straightforward.

On the server side, the user needs to indicate
that the I/O is to take place through send and
receive ports, which is as simple as indicating
file-based I/Os. This is identical at the client
side, with the additional requirement that a
response routine must be implemented that’s
called every time the system receives result data
from a service.

We designed the system to hide resource detec-
tion and notification from the user completely.
This helps us create dynamic systems of distrib-
uted multimedia services in a matter of minutes,
in which clients and servers can participate at will,
without any parallelization and distribution effort
from the user. We discuss state-of-the-art applica-
tions that we implemented as dynamic system
examples in the following sections.

A services-based approach isn’t new in the
field of multimedia.12,13 The most important dif-
ference between our work and related work, how-
ever, is that Parallel-Horus is a unique attempt to
provide a transparent programming solution for

distributed sets of cluster computers. In other
words, our research contrasts most significantly
with that of others in that it deals with

❚ the Grid’s programmability,

❚ transparent, yet coordinated, use of distrib-
uted resources, and

❚ providing efficient parallel and distributed
performance at all levels of granularity.

To our knowledge, no other system combines all
of these aims.

Evaluation
After setting up the Parallel-Horus system, we

decided to assess its framework to see how effec-
tive it was at providing significant performance
gains. To this end, we evaluated the wide-area exe-
cution of two realistic multimedia applications.

The first application is the software we used
for our participation in Trecvid.1 The second
application is an object-recognition task per-
formed by a Sony Aibo robot dog. In both appli-
cations, the processing on each cluster is fully
data parallel. All wide-area data transfer (for now,
although we’re considering other possibilities for
transferring data) is between the client and a sin-
gle compute node (that is, the root of the multi-
media service) at each cluster only.

We tested the applications on multiple cluster
systems located at research institutes all over the
world. We performed the bulk of these measure-
ments using the Distributed ASCI Supercomputer
2 (DAS-2), a 200-node system located at five uni-
versities in The Netherlands. We performed all

67

O
cto

b
er–D

ecem
b

er 2007

Coordinating client Set of server clusters

Resource broker

Service registrationService availability
notification

Transparent job submission/
transparent service invocation

• Sequential programming
• Distributed computation
• Automatic optimization

On each cluster:
• Sequential programming
• Parallel computation
• Automatic optimization

…

Figure 1. Collaboration

between a client, a set

of multimedia compute

servers, and a resource

broker. Each cluster

executes a server

program, which the

system implements in a

fully sequential

manner. Parallel-Horus

parallelizes and

optimizes the server

programs

automatically at

runtime. Services may

be made available by

third parties, or may be

started transparently

from the client (by

using the Grid

Application Toolkit, or

GAT,11 for example).

Services register

themselves at the

resource broker. In

turn, the client obtains

registration

information and server

capability information

from the resource

broker. The client

applies asynchronous

services invocation for

distributed execution.

additional measurements using four different
cluster systems in Europe and one in Australia.
Table 1 provides the specific characteristics of
each cluster. More recently, we ran these appli-
cations at an even larger scale, concurrently using
more than 20 cluster systems located on three
different continents (see http://www.science.uva.
nl/~fjseins/aibo.html).

Example 1: Trecvid content-based video
retrieval

The Trecvid1 conference series aims to encour-
age research in video retrieval by providing a large
test collection, uniform scoring procedures, and a
forum for organizations to compare their results.

The Trecvid high-level feature extraction task
is as follows: Given the Trecvid video data set, a
common shot boundary reference for this data
set, and a list of feature definitions, participants

must return for each feature a list of at most
2,000 shots from the data set, ranked according
to the highest possibility of detecting the pres-
ence of that feature. The provided video data set
consists of around 200 hours of news episodes—
mostly from ABC and CNN—an example of
which we show in Figure 2a. In addition, each
competitor receives a set of feature definitions,
which over the years has included Bill Clinton,
beach, mountain, basket scored, explosion or fire,
and people walking.

We based our approach to the high-level feature
extraction problem on the Semantic Pathfinder, a
novel method for generic semantic concept detec-
tion in multimodal video repositories.1 The
Semantic Pathfinder extracts semantic concepts
from three consecutive analysis steps:

❚ content analysis,

❚ style analysis, and

❚ context analysis.

The content analysis step works on the video
data itself, whereas the style and context analy-
sis steps work on higher-level semantic represen-
tations. Here we focus on the video data analysis

68

IE
EE

 M
ul

ti
M

ed
ia

Table 1. Overview of each cluster system that tested the efficiency and performance gains of the Parallel-Horus framework.

Institute City Country Name Computing Nodes Interconnect RAM
(in Gbytes)

Vrije Universiteit Amsterdam Netherlands DAS-2 72 � 2 1-GHz Myrinet-2000 2

Pentium-III

Leiden University Leiden Netherlands DAS-2 32 � 2 1-GHz Myrinet-2000 1

Pentium-III

University of Amsterdam Amsterdam Netherlands DAS-2 32 � 2 1-GHz Myrinet-2000 1

Pentium-III

Delft University of Delft Netherlands DAS-2 32 � 2 1-GHz Myrinet-2000 1

Technology Pentium-III

University of Utrecht Utrecht Netherlands DAS-2 32 � 2 1-GHz Myrinet-2000 1

Pentium-III

SARA Amsterdam Netherlands Lisa 272 � 2 3.4-GHz 800 Mbps 2

Pentium-IV InfiniBand

Salzburg University Salzburg Austria Gaisberg 36 � 2 AMD Athlon 6 � 6 Dolphin 2

MP2800� SGI torus

Conservatore Nazionale Genoa Italy – 16 � 1 2.66-GHz Gigabit Ethernet 0.5

di Ricerche Pentium-IV

Cyfronet AGH Krakow Poland Zeus 8 � 2 2.4-GHz Gigabit Ethernet 1

Pentium-IV

Monash University Melbourne Australia Mahar 50 � 1 3.0-GHz Gigabit Ethernet 1

Pentium-IV

Figure 2. (a) Example

from the Trecvid data

set and (b) its labeled

segmentation.

(a) (b)

69

O
cto

b
er–D

ecem
b

er 2007

Figure 3. Pseudocode

for the support vector

machine-based visual

analysis.

in the content analysis step, as this is by far the
most time-consuming part of the system.

We analyzed the video data per frame (see
Figure 3). For each 15th video frame, we extract-
ed visual features using Gaussian color invariant
measurements.14 Then we decorrelated red-green-
blue (RGB) color values via transformation to an
opponent color system. Subsequently, we used
Gaussian smoothing to suppress acquisition and
compression noise.

By varying the size of the Gaussian filters, we
obtained a color representation that was consis-
tent with variations in target object size. The sys-
tem then suppressed global and local intensity
variations by normalizing each color value by its
intensity, resulting in two chromaticity values
per color pixel.

Furthermore, we obtained rotationally
invariant features by taking Gaussian derivative
filters and combining the responses into two
chromatic gradient magnitude measures. These
seven features, calculated over three scales,
yielded a combined 21-dimensional feature vec-
tor per pixel. Figure 3 shows this sequence of
operations, represented by a single call to
buildInvariantFeatureVector.

The invariant feature vector serves as input
for a multiclass support vector machine (SVM)
that associates each pixel to one of the prede-
fined regional visual concepts. In Figure 3 this
is performed by doSVMlabeling. The SVM
labeling results in a weak semantic segmenta-
tion of a video frame in terms of regional visual
concepts. This result is written out to file in a
condensed format (that is, a histogram) for sub-
sequent processing.

Segmenting video frames into regional visual
concepts is computationally intensive. This is
especially true if you aim to analyze as many
frames as possible. In our approach, visually ana-
lyzing a single video frame requires around 16
seconds on the fastest sequential machine at our
disposal. Consequently, when processing two

frames per second at a frame rate of 30, the
required processing time for the entire Trecvid
data set would be around 250 days.

Measurements. The sequential code for the
Parallel-Horus service that implements this appli-
cation immediately constitutes a program that
executes efficiently on a cluster system. In fact,
as we previously noted, the automatic data par-
allel execution is optimal with respect to the
abstraction level of message-passing programs.7

The server application takes uncompressed
video frames as input and produces uncom-
pressed labeled frames as output (see Figure 2).
Sending uncompressed video data between the
server and client introduces a large amount of
unnecessary communication overhead. For this
first example application, we still chose to do so,
as a relatively high two-way communication load
gives us better insight in the system’s character-
istics. Moreover, if we can show our approach to
be effective under these circumstances, we make
a strong case for our system’s potential.

Table 2a (next page) shows the measurements
we obtained using each of the five DAS-2 clusters,
one at a time. Our results show the time spent on
processing a single frame, measured both on the
server’s side and with the client’s application.

As you can see, the wide-area communication
overhead is around 50–60 milliseconds (ms) at all
times. Because we sent uncompressed frame data
totaling more than 0.5 Mbytes per service call,
this wide-area overhead is certainly acceptable.
Also, the wide area overhead is marginal in com-
parison to the overall execution time per frame,
irrespective of the actual number of nodes used.
As a result, we conclude that our framework is
highly effective when using the DAS-2 clusters.

Table 2b gives similar results for the other clus-
ters. It shows that the wide-area overhead
depends on the location of each cluster. The over-
head is acceptable for the Stichting Academish
Rekencentrum Amsterdam (SARA) cluster, as well

inputVideo = openFile(videoFileName);
semanticConcepts = readFile(conceptsFileName);
svMachine = initSupportVectorMachine(semanticConcepts);
WHILE (NOT endOfVideo(inputVideo)) DO

inputFrame = getNextFrame(inputVideo, skipFrames = 15);
invFeatureVector = buildInvariantFeatureVector(inputFrame);
labeledFrame = doSVMlabeling(invFeatureVector, svMachine);
rankHistogram = getHistogram(labeledFrame);
writeFile(rankHistogram);

OD

as the clusters in Salzburg and Genoa—ranging
from 130–760 ms.

However, the impact of wide-area communica-
tion is fairly large for the clusters in Krakow and
Melbourne—even when you consider that we con-
tinuously sent uncompressed data at all times.
Even though clusters with such large wide-area
overhead might not be the most obvious choice
for application in large-scale multimedia problems,
we can still effectively use these clusters to lower
the overall execution times of full applications.

Figure 4a shows the performance speed-up
obtained when using the DAS-2 cluster at the
Vrije Universiteit in Amsterdam. If you compare
Figure 4a to Figure 4b, you can see the speed-up
characteristics obtained when using four DAS-2
clusters at the same time.

We obtained the base of Figure 4b’s graph by

taking the average single-node execution time.
The speed-up graph of Figure 4b (ranging over 96
CPUs) has an identical shape to the first part of
Figure 4a (ranging over 24 CPUs). This indicates
that there’s no additional overhead at the client
side when applying more than one multimedia
server. In other words, the obtained speed-up
with respect to the number of applied multime-
dia servers is fully linear.

We should note here that a similar speed-up
comparison is difficult to make when using non-
DAS-2 clusters, as each of these has different per-
formance and speed-up characteristics. Therefore,
we refrain from making such a comparison.

Example 2: Object recognition by a robot dog
Our second application demonstrates object

recognition performed by a Sony Aibo robot dog

70

IE
EE

 M
ul

ti
M

ed
ia

Table 2. Client- and server-side parallel runtime results for the Trecvid application using input frames of size 352 � 240 (3-byte)

pixels, given in seconds per video frame.*

Number Vrije Universiteit Leiden University University of Delft University University of
of CPUs Amsterdam of Technology Utrecht

Server Client Server Client Server Client Server Client Server Client
1 32.11 32.16 34.43 34.50 33.17 33.22 31.67 31.72 33.95 34.01

2 13.37 13.43 15.14 15.20 14.10 14.15 13.25 13.31 13.25 13.31

4 7.32 7.38 7.62 7.68 7.59 7.55 7.54 7.59 7.41 7.47

8 3.68 3.74 3.51 3.57 3.53 3.58 4.02 4.08 3.59 3.65

16 2.45 2.50 2.50 2.56 2.58 2.64 2.53 2.59 2.52 2.59

24 1.99 2.05 2.00 2.07 2.08 2.13 2.08 2.14 1.97 2.04

32 1.60 1.66 — — — — — — — —

40 1.32 1.38 — — — — — — — —

48 1.17 1.23 — — — — — — — —

56 1.08 1.14 — — — — — — — —

64 0.97 1.03 — — — — — — — —

(a)

Number SARA Salzburg University Conservatore Nazionale Cyfronet AGH Monash
of CPUs di Ricerche University

Server Client Server Client Server Client Server Client Server Client
1 9.41 9.54 10.30 11.06 10.93 11.29 13.31 14.48 40.25 47.01

2 4.70 4.84 5.15 5.89 6.10 6.45 7.75 8.92 19.69 26.46

4 2.56 2.70 2.83 3.56 3.37 3.70 4.93 6.11 10.74 17.54

8 1.29 1.42 1.42 2.15 1.83 2.17 2.78 3.96 5.41 12.20

16 0.74 0.87 0.75 1.46 1.17 1.51 — — 3.36 10.24

24 0.51 0.65 0.53 1.27 — — — — 3.06 9.84

32 0.41 0.55 0.41 1.14 — — — — 3.34 10.13

40 — — 0.36 1.11 — — — — — —

48 — — 0.32 1.05 — — — — — —

56 — — 0.29 1.03 — — — — — —

64 — — 0.26 1.02 — — — — — —

(b)

* Client located at the University of Amsterdam; resource broker located at Cyfronet AGH, Krakow, Poland.

(see Figure 5). Although the application is a toy
application in itself, the applied techniques are
identical to more relevant surveillance camera
problems that we’re working on as well.

In this application, the initial goal for this dog
is to obtain local histograms of invariant features
for each aspect of an object. Specifically, we
obtained photometric invariance by considering
two nonlinear transformations.14

The first color invariant, W, isolates intensity
variation from chromatic variation—for exam-
ple, edges because of shading, cast shadow, and
albedo changes of the object surface. The second
invariant feature, C, measures all chromatic vari-
ation in the image, disregarding intensity varia-
tion—for instance, all variation where the color
of the pixels changes. These invariants measure
point properties of the scene and are referred to
as point-based invariants.

Point-based invariants can be unstable and
noise sensitive.15 Therefore, we constructed local
histograms of responses for the color invariants.
We obtained localization by estimating the his-
togram under a kernel. We used kernel-based
descriptors because they’re highly discriminative,
and they’ve been successfully applied in tracking
applications. Additionally, we used an opponent
color space with additional photometric invari-
ant transformations, such that color values are
decorrelated.

From natural image statistics research, we
know that we can model histograms of derivative
filters using simple distributions.16 In our case, we
succeeded in modeling the local histogram of
invariants of derivative filters using an integrat-
ed Weibull-type distribution. The resulting
Weibull density parameters ß and � indicated the
(local) edge contrast and the (local) roughness or
texture, respectively.14

We applied a simple algorithm for object recog-

nition, based on the described invariant features.
The Weibull parameters characterize an object at
a fixed set of locations in the image. For each his-
togram, we estimated the Weibull parameters.

In the “learning” phase, we presented a set of
1,000 objects to the Aibo dog under a single visu-
al setting. For each of these objects, it stored the
learned set of Weibull parameters in a database.
In the “recognition” phase, we showed the same
objects again, under 50 different appearances,
with varying lighting direction, lighting color,
and viewing position.

In this manner, our dog learned each of the
1,000 objects from one example, while being
capable of recognizing more than 300 of these
under multiple natural imaging conditions. In a

71

(a)

0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

Number of CPUs

Linear
Server
Client

0

16

32

48

64

80

96

0 16 32 48 64 80 96
Number of CPUs

Sp
ee

d-
up

(b)

Sp
ee

d-
up

Linear
Client

Figure 4. (a) Client-

and server-side speed-

up for the Vrije

Universiteit results

shown in Table 2.

(b) Client-side speed-up

when employing four

DAS-2 clusters (Vrije

Universiteit, Leiden,

University of

Amsterdam, and Delft)

simultaneously.

(a)

(b)

(c)

(d)

Melbourne

Amsterdam Krakow

Leiden
Salzburg

Utrecht

Delft

Genoa

Figure 5. (a) An object is held in front of the dog’s camera. (b) The system

processes video frames on available clusters. (c) Based on the scene

descriptions calculated from the video frames, the system searches a database

of learned objects, and (d) upon recognition, the dog reacts accordingly. A

video presentation (for which we received the “most visionary research” award

at the Association for the Advancement of Artificial Intelligence 2007

conference) is available at http://www.science.uva.nl/~fjseins/aibo.html.

controlled laboratory setting this approach
proved to outperform related work significantly17

(see also Figure 6).

Measurements. As Table 3 shows, on average
the sequential algorithm runs at around 1 frame
per 4 seconds. Because we average the results
obtained from 8 consecutive frames, object
recognition takes approximately 30 seconds,
which is far from real time.

Table 3a shows data parallel execution results
obtained for each of the five different DAS-2 clus-
ters. As you can see, the wide-area communica-
tion overhead is around 10 ms at all times, which
is clearly an acceptable overhead. In comparison
to the previous example application, the wide-
area communication is much lower, as we’re now
sending frame data in a JPEG compressed form—
that is, around 10–20 Kbytes per server call.

Based on these results, we conclude again that
our framework is highly effective when using
DAS-2 clusters. The results in Table 3b also show
much more acceptable wide-area overheads,
even in the case of Krakow and Melbourne.
Interestingly, however, the application isn’t
always very effective in obtaining high perfor-
mance on all of the clusters. This is probably
because of the nonoptimal configurations of the
interconnection network, as well as high network
traffic caused by other users.

If you look at Figure 7, you’ll see that it’s sim-
ilar to Figure 4. Again we see an identical shape in
Figure 7b, when compared to the graph of Figure
7a (ranging over the first 24 CPUs). As a result,
additional DAS-2 clusters deliver linear speed-ups
at the client application side. Finally, a test where

we applied all of the evaluation clusters resulted
in a maximum rate of more than 10 frames per
second, which clearly indicates that real-time
multimedia Grid computing is within reach.

Conclusions and future work
Parallel-Horus allows researchers in multimedia

content analysis to implement high-performance
applications as sequential C�� programs, using a
carefully designed set of building block opera-
tions. In this article, we described results
obtained by matching the Parallel-Horus pro-
gramming model with an execution model based
on wide-area multimedia services. The resulting
framework, which integrates the efficient task-
parallel invocation of multimedia services with
the automatic data-parallel execution of these
services, requires no parallelization or distribu-
tion effort from its users.

Additionally, our example applications have
shown that with our wide-area extensions to
Parallel-Horus, we can greatly improve speed-up
characteristics obtained on single-cluster systems.
The distributed set up of our framework adds
extra network overhead, but this tends to be mar-
ginal in comparison to the total execution times.

Considering these features, we feel that we’ve
succeeded in building a framework that integrates
a user-transparent programming model with an
efficient and easy-to-use Grid execution model. We
should note, however, that the process of con-
vincing the user to apply Parallel-Horus isn’t only
driven by reason or quality. Users are generally
reluctant to change to something new. The best we
can do is to listen carefully to the demands of users
and to adhere to these demands as well as possible.

With this in mind, we feel that Parallel-Horus
is quite capable of having a stimulating effect on
the study of the many computationally demand-
ing problems in multimedia content analysis.
The presented example applications are merely
two of these.

We would also like to note that the work we
describe is part of a larger endeavor to bring the
benefits of high-performance distributed com-
puting to the multimedia community. While we
showed that the deployment of Parallel-Horus on
wide-area systems is straightforward, many fun-
damental research problems must be solved
before the system can make effective use of avail-
able Grid resources.

One of our goals to this end is to improve the
performance of wide-area Parallel-Horus pro-
grams further by making them variability-toler-

72

IE
EE

 M
ul

ti
M

ed
ia

Figure 6. The Aibo

object recognition client

GUI, with five available

Parallel-Horus services

shown. The dog

“learns” when you type

an object name in the

appropriate text box.

Subsequently,

recognition is

immediate (by all

participating services),

as we show in the

runtime info box. See

also http://www.

science.uva.nl/~fjseins/

aibo.html.

73

Table 3. Client- and server-side parallel runtime results (in seconds) for the Aibo application using input frames of size 412 � 318

(3-byte) pixels.*

University of Delft University University of
Number Vrije Universiteit Leiden University Amsterdam of Technology Utrecht
of CPUs Server Client Server Client Server Client Server Client Server Client

1 7.62 7.63 7.98 7.99 7.75 7.76 7.80 7.81 7.92 7.93

2 4.11 4.12 4.25 4.28 4.29 4.30 4.15 4.17 4.33 4.34

4 2.29 2.31 2.31 2.33 2.28 2.29 2.27 2.28 2.38 2.39

8 1.29 1.30 1.28 1.29 1.30 1.32 1.30 1.31 1.31 1.32

16 0.73 0.74 0.73 0.75 0.73 0.74 0.74 0.75 0.73 0.74

24 0.69 0.70 0.69 0.70 0.69 0.70 0.70 0.71 0.69 0.70

32 0.53 0.54 — — — — — — — —

40 0.60 0.61 — — — — — — — —

48 0.57 0.58 — — — — — — — —

56 0.55 0.56 — — — — — — — —

64 0.47 0.48 — — — — — — — —

(a)

Conservatore Nazionale Monash
Number SARA Salzburg University di Ricerche Cyfronet AGH University
of CPUs Server Client Server Client Server Client Server Client Server Client

1 1.71 1.73 2.45 2.52 2.36 2.41 4.37 4.53 9.25 9.91

2 1.01 1.03 1.29 1.36 1.31 1.36 2.75 2.91 5.37 6.02

4 0.62 0.64 0.71 0.78 0.91 0.96 2.13 2.29 3.85 4.50

8 0.46 0.48 0.41 0.47 0.76 0.81 2.11 2.27 3.36 4.02

16 0.41 0.43 0.29 0.36 0.73 0.78 — — 3.31 3.97

24 0.40 0.42 0.31 0.37 — — — — 4.03 4.70

32 0.37 0.39 0.24 0.31 — — — — 6.18 6.84

40 — — 0.32 0.39 — — — — — —

48 — — 0.32 0.38 — — — — — —

56 — — 0.32 0.38 — — — — — —

64 — — 0.27 0.33 — — — — — —

(b)

* Client located at the University of Amsterdam; resource broker located at Cyfronet AGH, Krakow, Poland.

(a)

0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

Number of CPUs

Linear
Server
Client

0

16

32

48

64

80

96

0 16 32 48 64 80 96
Number of CPUs

Sp
ee

d-
up

(b)

Sp
ee

d-
up

Linear
Client

Figure 7. (a) Client- and server-side speed-up for the Vrije Universiteit results shown in Table 3. (b) Client-side speed-up when

employing the clusters at Vrije Universiteit, Leiden, University of Amsterdam, and Delft simultaneously.

74

IE
EE

 M
ul

tiM
ed

ia

ant through controlled adaptive resource use.
This raises the need for stochastic runtime per-
formance control methodologies that react to the
dynamic circumstances in large Grid systems.

Another goal is to develop an efficient, fully
sequential, programming model for describing
client programs, based on the definition of algo-
rithmic patterns of distributed execution. In gen-
eral, each such pattern defines which set of
computations should be performed on which
input data, the dependencies that exist among the
computations and the data, and whether results
must be returned to the client or elsewhere.

Our recent research has uncovered distribution
patterns in several multimedia applications, pri-
marily with respect to the ordering of results data
(including globally ordered, ordered under time
constraints, and unordered—with and without
allowing a partial loss of results). We hope to explore
these patterns further in the near future. MM

References
1. C.G.M. Snoek et al., “The Semantic Pathfinder:

Using an Authoring Metaphor for Generic

Multimedia Indexing,” IEEE Trans. Pattern Analysis

and Machine Inteligence., vol. 28, no. 10, 2006, pp.

1678-1689.

2. A. Plaza et al., “Commodity Cluster-Based Parallel

Processing of Hyperspectral Imagery,” J. Parallel

Distributed Computing, vol. 66, no. 3, 2006, pp.

345-358.

3. F.J. Seinstra et al., “User Transparency: A Fully

Sequential Programming Model for Efficient Data

Parallel Image Processing,” Concurrency and

Computation: Practice and Experience, vol. 16, no. 6,

2004, pp. 611-644.

4. F.J. Seinstra et al., “A Software Architecture for User

Transparent Parallel Image Processing,” Parallel

Computing, vol. 28, no. 12, 2002, pp. 1685-1708.

5. F.J. Seinstra et al., “P-3PC: A Point-to-Point

Communication Model for Automatic and Optimal

Decomposition of Regular Domain Problems,” IEEE

Trans. Parallel and Distributed Systems, vol. 13, no.

7, 2002, pp. 758-768.

6. F.J. Seinstra et al., “Finite State Machine-Based

Optimization of Data Parallel Regular Domain

Problems Applied in Low-Level Image Processing,”

IEEE Trans. Parallel and Distributed Systems, vol. 15,

no. 10, 2004, pp. 865-877.

7. G.X. Ritter et al., Handbook of Computer Vision

Algorithms in Image Algebra, CRC Press, 1996.

8. J. Serot et al., “Skeletons for Parallel Image

Processing: An Overview of the Skipper Project,”

Parallel Computing, vol. 28, nos. 7-8, 2002, pp.

967-993.

9. C. Nicolescu et al., “A Data and Task Parallel Image

Processing Environment,” Parallel Computing, vol.

28, nos. 7-8, 2002, pp. 945-965.

10. G. Alonso, Web Services—Concepts, Architectures

and Applications, Springer-Verlag, 2004.

11. G. Allen et al., “The Grid Application Toolkit:

Towards Generic and Easy Application

Programming Interfaces for the Grid,” Proc. IEEE,

vol. 93, no. 3, 2005, pp. 534-550.

12. S. Basu et al., “MmGrid: Distributed Resource

Management Infrastructure for Multimedia

Applications,” Proc. 17th Int’l Parallel and

Distributed Processing Symp., IEEE CS Press, 2003,

CD-ROM.

13. A. Zaia et al., “A Scalable Grid-Based Multimedia

Server,” Proc. 13th Int’l Workshops Enabling

Technologies: Infrastructure for Collaborative

Enterprises, IEEE CS Press, 2004, pp. 337-342.

14. J.M. Geusebroek et al., “A Six-Stimulus Theory for

Stochastic Texture,” Int’l J. Computer Vision, vol. 62,

nos. 1-2, 2005, pp. 7-16.

15. J. van de Weijer et al., “Color Edge and Corner

Detection by Photometric Quasi-invariants,” IEEE

Trans. Pattern Analysis and Machine Intelligence, vol.

27, no. 4, 2005, pp. 625-630.

16. A. Srivastava et al., “On Advances in Statistical

Modeling of Natural Images,” J. Mathematical

Imaging and Vision, vol. 18, no. 1, 2003, pp. 17-33.

17. J.M. Geusebroek, “Compact Object Descriptors

from Local Colour Invariant Histograms,” Proc.

British Machine Vision Conf., British Machine Vision

Assoc., vol. 3, 2006, pp. 1029-1038.

Frank J. Seinstra is a senior

researcher in the Intelligent Sys-

tems Lab at the University of

Amsterdam and in the Department

of Computer Science at the Vrije

Universiteit. His research focuses

on high-performance multimedia

One of our goals is to improve

the performance of wide-area

Parallel-Horus programs

further by making them

variability tolerant.

computing, and he’s currently leading a multidisciplinary

project on adaptive resource utilization in multimedia

Grid computing. Seinstra received his PhD in computer

science from the University of Amsterdam.

Jan-Mark Geusebroek is an assis-

tant professor in the Intelligent

Systems Lab at the University of

Amsterdam. His research interest

is in cognitive vision, especially

front-end color and texture vision

and mechanisms of focal atten-

tion. Geusebroek received his PhD in computer science

from the University of Amsterdam and was awarded a

prestigious young talent grant from the Netherlands

Organization for Scientific Research.

Dennis Koelma is a senior scien-

tific systems designer in the

Intelligent Systems Lab at the

University of Amsterdam. Cur-

rently, he works on Impala/Horus,

which is a software architecture

for multimedia content access

and analysis. His research interests include multimedia

computing, (parallel) software architectures, graphical

user interfaces, and visual information systems. Koelma

received his PhD in computer science from the

University of Amsterdam.

Cees G.M. Snoek is a senior

researcher in the Intelligent Sys-

tems Lab at the University of

Amsterdam. He’s also the lead

designer of the MediaMill video

search engine, which was award-

ed the best technical demonstra-

tion at ACM Multimedia 2005. His research focuses on

techniques for concept-based video retrieval. Snoek

received his PhD in computer science from the

University of Amsterdam.

Marcel Worring is an associate

professor in the Intelligent Sys-

tems Lab at the University of

Amsterdam. His research interests

are in multimedia search and sys-

tems, and he leads several multi-

disciplinary projects covering

knowledge engineering, pattern recognition, image and

video analysis, and information space reduction, con-

ducted in close cooperation with industry. Worring

received his PhD in computer science from the

University of Amsterdam.

Arnold W.M. Smeulders is a pro-

fessor in multimedia information

analysis in the Intelligent Systems

Lab at the University of Amster-

dam. He’s also the scientific direc-

tor of The Netherlands’ national

MultimediaN public–private part-

nership. He’s a member of the steering board of the

European Technology Platform Networked and

Electronic Media (NEM) and the IEEE International

Conference on Multimedia and Expo (ICME). He’s also

a fellow of the International Association for Pattern

Recognition (IAPR) and acts as the associate editor of

the International Journal of Computer Vision and IEEE

Transactions on Multimedia.

Readers may contact Frank J. Seinstra at fjseins@

cs.vu.nl or fjseins@science.uva.nl.

For further information on this or any other computing

topic, please visit our Digital Library at http://www.

computer.org/csdl.

75

Now
available!

FREE Visionary Web Videos
about the Future of Multimedia.

Listen to premiere multimedia experts!
Post your own views and demos!

Visit www.computer.org/multimedia

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 72.00000
 72.00000
 72.00000
 72.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

