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Abstract—Image category recognition is important to access visual information on the level of objects and scene types. So far,

intensity-based descriptors have been widely used for feature extraction at salient points. To increase illumination invariance and

discriminative power, color descriptors have been proposed. Because many different descriptors exist, a structured overview is

required of color invariant descriptors in the context of image category recognition. Therefore, this paper studies the invariance

properties and the distinctiveness of color descriptors (software to compute the color descriptors from this paper is available from

http://www.colordescriptors.com) in a structured way. The analytical invariance properties of color descriptors are explored, using a

taxonomy based on invariance properties with respect to photometric transformations, and tested experimentally using a data set with

known illumination conditions. In addition, the distinctiveness of color descriptors is assessed experimentally using two benchmarks,

one from the image domain and one from the video domain. From the theoretical and experimental results, it can be derived that

invariance to light intensity changes and light color changes affects category recognition. The results further reveal that, for light

intensity shifts, the usefulness of invariance is category-specific. Overall, when choosing a single descriptor and no prior knowledge

about the data set and object and scene categories is available, the OpponentSIFT is recommended. Furthermore, a combined set of

color descriptors outperforms intensity-based SIFT and improves category recognition by 8 percent on the PASCAL VOC 2007 and by

7 percent on the Mediamill Challenge.

Index Terms—Image/video retrieval, evaluation/methodology, color, invariants, pattern recognition.

Ç

1 INTRODUCTION

IMAGE category recognition is important to access visual
information on the level of objects (buildings, cars, etc.)

and scene types (outdoor, vegetation, etc.). In general,
systems for category recognition on images [1], [2], [3], [4],
[5] and video [6], [7], [8] use machine learning based on
image descriptions to distinguish object and scene cate-
gories. However, there can be large variations in viewing
and lighting conditions for real-world scenes, complicating
the description of images and, consequently, the image
category recognition task. This is illustrated in Fig. 1. A
change in viewpoint will yield shape variations such as the
orientation and scale of the object. Salient point detection
methods and corresponding region descriptors can robustly
detect regions which are translation, rotation, and scale-
invariant, addressing these viewpoint changes [9], [10], [11].
In addition, changes in the illumination of a scene can
greatly affect the performance of object and scene type
recognition if the descriptors used are not robust to these
changes. To increase photometric invariance and discrimi-
native power, color descriptors have been proposed which
are robust against certain photometric changes [12], [13],
[14], [15], [16]. As there are many different methods to

obtain color descriptors, however, it is unclear what
similarities these methods have and how they are different.
To arrange color invariant descriptors in the context of
image category recognition, a taxonomy is required based
on principles of photometric changes.

Therefore, this paper studies the invariance properties
and the distinctiveness of color descriptors in a structured
way. First, a taxonomy of invariant properties is presented.
The taxonomy is derived by considering the diagonal model
of illumination change [17], [18], [19]. Using this model, a
systematic approach is adopted to provide a set of
invariance properties which achieve different amounts of
invariance, such as invariance to light intensity changes, light
intensity shifts, light color changes, and light color changes
and shifts. Color descriptors are tested experimentally with
respect to this set of invariance properties through an object
recognition data set with known illumination changes [20].
Then, the distinctiveness of color descriptors is analyzed
experimentally using two benchmarks from the image
domain [21] and the video domain [22]. The benchmarks
are very different in nature: The image benchmark consists
of photographs and the video benchmark consists of
keyframes from broadcast news videos. However, they
share a common characteristic: Both contain illumination
conditions as encountered in the real world. Based on
extensive experiments on this large set of real-world image
data, the usefulness of the different invariant properties is
derived. As a result, new color descriptors can be designed
according to the obtained invariance criteria. Finally,
recommendations are given on which color descriptors to
use under which circumstances and data sets.

This paper is organized as follows: In Section 2, the
reflectance model is presented. Further, its relation to the
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diagonal model of illumination change is discussed. In
Section 3, a taxonomy of color descriptors and their
invariance properties is given. The experimental setup is
presented in Section 4. In Section 5, a discussion of the results
is given. Finally, in Section 6, conclusions are drawn.

2 REFLECTANCE MODEL

An image f can be modeled under the assumption of

Lambertian reflectance as follows:

fðxÞ ¼
Z
!

eð�Þ�kð�Þsðx; �Þd�; ð1Þ

where eð�Þ is the color of the light source, sðx; �Þ is the

surface reflectance, and �kð�Þ is the camera sensitivity

function (k 2 fR;G;Bg). Further, ! and x are the visible

spectrum and the spatial coordinates, respectively.
Shafer [23] proposes adding a diffuse term to the model of

(1). In fact, the term includes a wider range of possible causes
than only diffuse light, such as interreflections, infrared
sensitivity of the camera sensor, and scattering in the
medium or lens. The diffuse light is considered to have a
lower intensity and to originate from all directions in equal
amounts:

fðxÞ ¼
Z
!

eð�Þ�kð�Þsðx; �Þd�þ
Z
!

Að�Þ�kð�Þd�; ð2Þ

where Að�Þ is the term that models the diffuse light.
By computing the derivative of image f , it can be easily

derived that the effect of að�Þ is canceled out since it is

independent of the surface reflectance term. Then, the

reflection model of the spatial derivative of f at location x

on scale � is given by:

fx;�ðxÞ ¼
Z
!

eð�Þ�kð�Þsx;�ðx; �Þd�: ð3Þ

Hence, derivatives will yield invariance to diffuse light.

The reflection model of (1) corresponds to the diagonal

model of illumination change under the assumption of

narrow band filters. This is detailed in the next section.

2.1 Diagonal Model

Changes in the illumination can be modeled by a diagonal

mapping or von Kries Model [18] as follows:

f c ¼ Du;cfu; ð4Þ

where fu is the image taken under an unknown light source,

f c is the same image transformed, so it appears as if it was

taken under the reference light (called canonical illumi-

nant), and Du;c is a diagonal matrix which maps colors that

are taken under an unknown light source u to their

corresponding colors under the canonical illuminant c:

Rc

Gc

Bc

0
@

1
A ¼ a 0 0

0 b 0
0 0 c

0
@

1
A Ru

Gu

Bu

0
@

1
A: ð5Þ

To include the “diffuse” light term, Finlayson et al. [24]

extended the diagonal model with an offset ðo1; o2; o3ÞT ,

resulting in the diagonal-offset model:

Rc

Gc

Bc

0
@

1
A ¼ a 0 0

0 b 0
0 0 c

0
@

1
A Ru

Gu

Bu

0
@

1
Aþ o1

o2

o3

0
@

1
A: ð6Þ

The diagonal model with offset term corresponds to (2)

assuming narrow-band filters measured at wavelengths �R,

�G, and �B at position x with surface reflectance sðx; �CÞ as

follows:

ecð�RÞ
ecð�GÞ
ecð�BÞ

0
@

1
A ¼ a 0 0

0 b 0
0 0 c

0
@

1
A euð�RÞ

euð�GÞ
euð�BÞ

0
@

1
Aþ Að�RÞ

Að�GÞ
Að�BÞ

0
@

1
A: ð7Þ

As the surface reflectance sðx; �CÞ is equal for both the

canonical and the unknown illuminant, (7) is a simplifica-

tion of

ecð�RÞsðx; �RÞ ¼ aeuð�RÞsðx; �RÞ þAð�RÞ;
ecð�GÞsðx; �GÞ ¼ beuð�GÞsðx; �GÞ þAð�GÞ;
ecð�BÞsðx; �BÞ ¼ ceuð�BÞsðx; �BÞ þAð�BÞ:

For broad-band cameras, spectral sharpening can be

applied to obtain narrow-band filters [17]. Note that similar

to (3), when image derivatives are taken (first or higher

order image statistics), the offset in the diagonal-offset

model will cancel out.

2.2 Photometric Analysis

Based on the diagonal model and the diagonal-offset model,

five types of common changes in the image values fðxÞ are

categorized in this section.
First, for (5), when the image values change by a constant

factor in all channels (i.e., a ¼ b ¼ c), this is equal to a light

intensity change:
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Fig. 1. Illustration of variations in viewing and illumination conditions for real-world scenes containing potted plants. The potted plants vary in imaging

scale and are imaged under outdoor lighting, indoor lighting, and a combination of the two, respectively. Images are from an image benchmark [21].



Rc

Gc

Bc

0
@

1
A ¼ a 0 0

0 a 0
0 0 a

0
@

1
A Ru

Gu

Bu

0
@

1
A: ð8Þ

In addition to differences in the intensity of the light

source, light intensity changes also include (no-colored)

shadows and shading. Hence, when a descriptor is

invariant to light intensity changes, it is scale-invariant with

respect to (light) intensity.
Second, an equal shift in image intensity values in all

channels, i.e., light intensity shift, where ðo1 ¼ o2 ¼ o3Þ and

ða ¼ b ¼ c ¼ 1Þ will yield:

Rc

Gc

Bc

0
@

1
A ¼ Ru

Gu

Bu

0
@

1
Aþ o1

o1

o1

0
@

1
A: ð9Þ

Light intensity shifts are due to diffuse lighting, including

scattering of a white light source, object highlights (specular

component of the surface) under a white light source,

interreflections, and infrared sensitivity of the camera

sensor. When a descriptor is invariant to a light intensity

shift, it is shift-invariant with respect to light intensity.
Third, the above classes of changes can be combined to

model both intensity changes and shifts:

Rc

Gc

Bc

0
@

1
A ¼ a 0 0

0 a 0
0 0 a

0
@

1
A Ru

Gu

Bu

0
@

1
Aþ o1

o1

o1

0
@

1
A; ð10Þ

i.e., an image descriptor robust to these changes is scale-

invariant and shift-invariant with respect to light intensity.
Fourth, in the full diagonal model (i.e., allowing

a 6¼ b 6¼ c), the image channels scale independently (5). This

allows for light color changes in the image. Hence, this class

of changes can model a change in the illuminant color and

light scattering, among others.
Finally, the full diagonal-offset model (6) models arbi-

trary offsets (o1 6¼ o2 6¼ o3), besides the light color changes

(a 6¼ b 6¼ c) offered by the full diagonal model. This type of

change is called light color change and shift.
In conclusion, five types of common changes have been

identified based on the diagonal-offset model of illumina-

tion change, i.e., variations to light intensity changes, light

intensity shifts, light intensity changes and shifts, light color

changes, and light color changes and shifts.

3 COLOR DESCRIPTORS AND INVARIANT

PROPERTIES

In this section, color descriptors are presented and their

invariance properties are summarized. First, color descrip-

tors based on histograms are discussed. Then, color

moments and color moment invariants are presented.

Finally, color descriptors based on SIFT are discussed.

These three types of descriptors were chosen due to their

distinct nature and wide-spread use. Color histograms do

not contain local spatial information and are inherently

pixel-based. Color moments do contain local photometrical

and spatial information derived from pixel values. SIFT

descriptors contain local spatial information and are

derivative-based.
See Table 1 for an overview of the descriptors and their

invariance properties. We define invariance of a descriptor

to condition A as follows: Under a condition A, the

descriptor is independent of changes in condition A. The

independence is derived analytically under the assumption

that no color clipping occurs. Color clipping occurs when

the color of a pixel falls outside the valid range and is

subsequently clipped to the minimum or maximum of the

range. For example, for a very large scaling of the intensity

in (8), color clipping occurs if the scaled values exceed 255,

the maximum value typically used for image storage.

1584 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 9, SEPTEMBER 2010

TABLE 1
Invariance of Descriptors (Section 3) Against Types of Changes in the Diagonal-Offset Model and Its Specializations (Section 2.2)

Invariance is indicated with “+”, lack of invariance is indicated with “-”. The invariance of a descriptor to condition A is defined as follows: Under a
condition A, the descriptor is independent of changes in condition A. The independence is derived analytically under the assumption that no color
clipping occurs.



3.1 Histograms

RGB histogram. The RGB histogram is a combination of
three 1D histograms based on the R, G, and B channels of
the RGB color space. This histogram possesses no
invariance properties.

Opponent histogram. The opponent histogram is a
combination of three 1D histograms based on the channels
of the opponent color space:

O1

O2

O3

0
@

1
A ¼

R�Gffiffi
2
p

RþG�2Bffiffi
6
p

RþGþBffiffi
3
p

0
B@

1
CA: ð11Þ

The intensity information is represented by channel O3 and
the color information by O1 and O2. Due to the subtraction
in O1 and O2, the offsets will cancel out if they are equal for
all channels (e.g., a white light source). This is verified by
substituting the unknown illuminant from (9) with offset o1:

O1

O2

� �
¼

Rc�Gcffiffi
2
p

RcþGc�2Bcffiffi
6
p

 !

¼
ðRuþo1Þ�ðGuþo1Þffiffi

2
p

ðRuþo1ÞþðGuþo1Þ�2ðBuþo1Þffiffi
6
p

0
@

1
A

¼
Ru�Guffiffi

2
p

RuþGu�2Buffiffi
6
p

 !
:

ð12Þ

Therefore, these O1 and O2 are shift-invariant with respect
to light intensity. The intensity channel O3 has no
invariance properties.

Hue histogram. In the HSV color space, it is known that
the hue becomes unstable near the gray axis. To this end, van
de Weijer et al. [14] apply an error propagation analysis to the
hue transformation. The analysis shows that the certainty of
the hue is inversely proportional to the saturation. Therefore,
the hue histogram is made more robust by weighing each
sample of the hue by its saturation. The H color model is
scale-invariant and shift-invariant with respect to light
intensity [14].

rghistogram. In the normalized RGB color model, the
chromaticity components r and g describe the color
information in the image (b is redundant as rþ gþ b ¼ 1):

r
g
b

0
@

1
A ¼

R
RþGþB

G
RþGþB

B
RþGþB

0
B@

1
CA: ð13Þ

Because of the normalization, r and g are scale-invariant,
and thereby invariant to light intensity changes, shadows,
and shading [25] from (8):

r

g

� �
¼

Rc

RcþGcþBc

Gc

RcþGcþBc

 !
¼

aRu

aRuþaGuþaBu

aGu

aRuþaGuþaBu

 !

¼
aRu

aðRuþGuþBuÞ
aGu

aðRuþGuþBuÞ

 !
¼

Ru

RuþGuþBu

Gu

RuþGuþBu

 !
:

ð14Þ

Transformed color distribution. An RGB histogram is
not invariant to changes in lighting conditions. However, by

normalizing the pixel value distributions, scale-invariance
and shift-invariance is achieved with respect to light
intensity. Because each channel is normalized indepen-
dently, the descriptor is also normalized against changes in
light color and arbitrary offsets:

R0

G0

B0

0
@

1
A ¼

R��R
�R

G��G
�G

B��B
�B

0
B@

1
CA; ð15Þ

with �C the mean and �C the standard deviation of the
distribution in channel C computed over the area under
consideration (e.g., a patch or image). This yields, for every
channel, a distribution where � ¼ 0 and � ¼ 1.

3.2 Color Moments and Moment Invariants

A color image corresponds to a function I defining RGB
triplets for image positions ðx; yÞ: I : ðx; yÞ 7! ðRðx; yÞ;
Gðx; yÞ; Bðx; yÞÞ. By regarding RGB triplets as data points
coming from a distribution, it is possible to define
moments. Mindru et al. [26] have defined generalized color
moments Mabc

pq :

Mabc
pq ¼

Z Z
xpyq½IRðx; yÞ�a½IGðx; yÞ�b½IBðx; yÞ�cdxdy: ð16Þ

Mabc
pq is referred to as a generalized color moment of order

pþ q and degree aþ bþ c. Note that moments of order 0 do
not contain any spatial information, while moments of
degree 0 do not contain any photometric information. Thus,
moment descriptions of order 0 are rotationally invariant,
while higher orders are not. A large number of moments
can be created with small values for the order and degree.
However, for larger values the moments are less stable.
Typically, generalized color moments up to the first order
and the second degree are used.

By using the proper combination of moments, it is
possible to normalize against photometric changes. These
combinations are called color moment invariants. Invariants
involving only a single color channel (e.g., out of a, b, and c
two are 0) are called 1-band invariants. Similarly, there are
2-band invariants involving only two out of three color
bands. 3-band invariants involve all color channels, but
these can always be created by using 2-band invariants for
different combinations of channels.

Color moments. The color moment descriptor uses all
generalized color moments up to the second degree and the
first order. This leads to nine possible combinations for the
degree: M000

pq ;M
100
pq ;M

010
pq ;M

001
pq ;M

200
pq ;M

110
pq ;M

020
pq ;M

011
pq ;M

002
pq ,

andM101
pq .1 Combined with three possible combinations for

the order, Mabc
00 ;M

abc
10 , and Mabc

01 , the color moment descrip-
tor has 27 dimensions. These color moments only have
shift-invariance. This is achieved by subtracting the average
in all input channels before computing the moments.

Color moment invariants. Color moment invariants can
be constructed from generalized color moments. All 3-band
invariants are computed from Mindru et al. [26]. To be
comparable, the ~C02 invariants are considered. This gives a
total of 24 color moment invariants, which are invariant to
all the properties listed in Table 1.
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1. Because it is constant, the moment M000
pq is excluded.



3.3 Color SIFT Descriptors

SIFT. The SIFT descriptor proposed by Lowe [9] describes
the local shape of a region using edge orientation
histograms. The gradient of an image is shift-invariant:
taking the derivative cancels out offsets (Section 2.2). Under
light intensity changes, i.e., a scaling of the intensity
channel, the gradient direction and the relative gradient
magnitude remain the same. Because the SIFT descriptor is
normalized, the gradient magnitude changes have no effect
on the final descriptor. The SIFT descriptor is not invariant
to light color changes because the intensity channel is a
combination of the R, G, and B channels. To compute SIFT
descriptors, the version described by Lowe [9] is used.

HSV-SIFT. Bosch et al. [16] compute SIFT descriptors
over all three channels of the HSV color model. This gives
3� 128 dimensions per descriptor, 128 per channel. As stated
earlier, the H color model is scale-invariant and shift-
invariant with respect to light intensity. However, due to
the combination of the HSV channels, the complete
descriptor has no invariance properties. Further, the in-
stability of the hue for low saturation is not addressed here.

HueSIFT. Van de Weijer et al. [14] introduce a concatena-
tion of the hue histogram (see Section 3.1) with the SIFT
descriptor. When compared to HSV-SIFT, the usage of the
weighed hue histogram addresses the instability of the hue
near the gray axis. Because the bins of the hue histogram are
independent, the periodicity of the hue channel for HueSIFT
is addressed. Similar to the hue histogram, the HueSIFT
descriptor is scale-invariant and shift-invariant.

OpponentSIFT. OpponentSIFT describes all of the
channels in the opponent color space (11) using SIFT
descriptors. The information in the O3 channel is equal to
the intensity information, while the other channels describe
the color information in the image. These other channels
do contain some intensity information, but, due to the
normalization of the SIFT descriptor, they are invariant to
changes in light intensity.

C-SIFT. In the opponent color space, the O1 and
O2 channels still contain some intensity information. To
add invariance to intensity changes, [13] proposes the
C-invariant, which eliminates the remaining intensity
information from these channels. The use of color invariants
as input for SIFT was first suggested by Abdel-Hakim and
Farag [12]. The C-SIFT descriptor [15] uses the C-invariant,
which can be intuitively seen as the normalized opponent
color space O1

O3
and O2

O3
. Because of the division by intensity,

the scaling in the diagonal model will cancel out, making
C-SIFT scale-invariant with respect to light intensity. Due to
the definition of the color space, the offset does not cancel
out when taking the derivative: It is not shift-invariant.

rgSIFT. For the rgSIFT descriptor, descriptors are
added for the r and g chromaticity components of the
normalized RGB color model from (13), which is already
scale-invariant.

Transformed color SIFT. For the transformed color SIFT,
the same normalization is applied to the RGB channels as
for the transformed color histogram (15). For every normal-
ized channel, the SIFT descriptor is computed. The
descriptor is scale-invariant, shift-invariant, and invariant
to light color changes and shift.

RGB-SIFT. For the RGB-SIFT descriptor, SIFT descrip-
tors are computed for every RGB channel independently.

An interesting property of this descriptor is that its
descriptor values are equal to the transformed color SIFT
descriptor. This is explained by looking at the transformed
color space (15): This transformation is already implicitly
performed when SIFT is applied to each RGB channel
independently. Because the SIFT descriptor operates on
derivatives only, the subtraction of the means in the
transformed color model is redudant as this offset is
already canceled out by taking derivatives. Similarly, the
division by the standard deviation is already implicitly
performed by the normalization of the vector length of SIFT
descriptors. Therefore, as the RGB-SIFT and transformed
color SIFT descriptors are equal, we will use the RGB-SIFT
name throughout this paper.

3.4 Conclusion

In this section, three different groups of color descriptors
were discussed: histograms in different color spaces, color
moments, and moment invariants and color extensions of
SIFT. For each color descriptor, the invariance with respect
to illumination changes in the diagonal-offset model were
analyzed. The results are summarized in Table 1.

4 EXPERIMENTAL SETUP

In this section, the experimental setup to evaluate the
different color descriptors is outlined. The invariance
properties of the color descriptors, which were derived
analytically in the previous section, are verified experimen-
tally as well using a data set with known illumination
conditions. The distinctiveness of the color descriptors is
assessed experimentally through their discriminative power
on the data set with known imaging conditions, an image
benchmark, and a video benchmark.

First, implementation details of the descriptors in an
object and scene recognition setting are discussed. Then,
the data sets used for evaluation are described. After
discussing these benchmarks and their data sets, evaluation
criteria are given.

4.1 Feature Extraction Pipelines

To empirically test the different color descriptors, the
descriptors are computed at scale-invariant points [5], [9].
See Fig. 2 for an overview of the processing pipeline. In the
pipeline shown, scale-invariant points are obtained with the
Harris-Laplace point detector on the intensity channel.
Other region detectors [10], such as the dense sampling
detector, Maximally Stable Extremal Regions [27], and
Maximally Stable Color Regions [28], can be plugged in.
For the experiments, the Harris-Laplace point detector is
used because it has shown good performance for category
recognition [5]. This detector uses the Harris corner detector
to find potential scale-invariant points. It then selects a
subset of these points for which the Laplacian-of-Gaussians
reaches a maximum over scale. The color descriptors from
Section 3 are computed over the area around the points. The
size of this area depends on the maximum scale of the
Laplacian-of-Gaussians [10].

To obtain fixed-length feature vectors per image, the bag-
of-words model is used [29]. The bag-of-words model is
also known as “textons” [30], “object parts” [31], and
“codebooks” [32], [33]. The bag-of-words model performs
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vector quantization of the color descriptors in an image
against a visual codebook. A descriptor is assigned to the
codebook element which is closest in euclidian space. To
be independent of the total number of descriptors in an
image, the feature vector is normalized to sum to 1.

The visual codebook is constructed by applying k-means
clustering to 200,000 randomly sampled descriptors from
the set of images available for training. In this paper, visual
codebooks with 4,000 elements are used.

Color descriptor software implementing this processing
pipeline is available from our website.2 It performs point
sampling, color descriptor computation, and vector quanti-
zation. After these steps, an image is represented by a fixed-
length feature vector.

4.2 Classification

For data sets where only a single training example is available
per object or scene category, a nearest neighbor classifier is
used with �2 distances between feature vectors F and F 0:

dist�2ð~F; ~F 0Þ ¼ 1

2

Xn
i¼1

ð~Fi � ~F 0i Þ
2

~Fi þ ~F 0i
; ð17Þ

with n the size of the feature vectors. For notational
convenience, 0

0 is assumed to be equal to 0 iff ~Fi ¼ ~F 0i ¼ 0.
For data sets with multiple training examples, the

support vector machines classifier is used. The decision
function of a support vector machines classifier for a test
sample with feature vector ~F 0 has the form:

gð~F 0Þ ¼
X

~F2trainset

�~Fy~Fkð~F; ~F 0Þ � �; ð18Þ

where y~F is the class label of ~F (�1 or þ1), �~F is the
learned weight of train sample ~F , � is a learned threshold,
and kð~F; ~F 0Þ is the value of a kernel function based on the
�2 distance, which has shown good results in object
recognition [5]:

kð~F; ~F 0Þ ¼ e� 1
Ddist�2 ð~F;~F 0Þ; ð19Þ

where D is a scalar which normalizes the distances. We set
D to the average �2 distance between all elements of the
train set.

The LibSVM implementation [34] is used to train the
classifier. As parameters for the training phase, the weight
of the positive class is set to #posþ#neg

#pos and the weight of the
negative class is set to #posþ#neg

#neg , with #pos the number of
positive instances in the train set and #neg the number of

negative instances. The cost parameter is optimized using

3-fold cross-validation with a parameter range of 2�4

through 24.
To use multiple features, instead of relying on a single

feature, the kernel function is extended in a weighted

fashion for m features:

k
��
~Fð1Þ; . . . ; ~FðmÞ

�
;
�
~F 0ð1Þ; . . . ; ~F 0ðmÞ

��
¼ e

� 1Pm

j¼1
wj

ð
Pm

j¼1

wj
Dj
distð~FðjÞ; ~F 0 ðjÞÞÞ

;

ð20Þ

with wj the weight of the jth feature, Dj the normalization

factor for the jth feature, and ~FðjÞ the jth feature vector.
An example of the use of multiple features is the spatial

pyramid [3]; it is illustrated in Fig. 3. When using the spatial

pyramid, additional features are extracted for specific parts

of the image. For example, in a 2� 2 subdivision of the

image, feature vectors are extracted for each image quarter

with a weight of 1
4 for each quarter. Similarly, a 1� 3

subdivision consisting of three horizontal bars, which

introduces three new features (each with a weight of 1
3 ).

In this setting, the feature vector for the entire image has a

weight of 1.

4.3 Experiment 1: Illumination Changes

The Amsterdam Library of Object Images (ALOI) data set

[20] contains more than 48,000 images of 1,000 objects,

under various illumination conditions. Light intensity

scaling (8) and light intensity shifts (9) are not present in

the data set; therefore, we have artificially added these two

condition changes to the data set. The effect of simultaneous

light intensity changes and shifts (10) is a combination of

the previous two properties. Since these two properties are

already evaluated individually, we refrain from evaluating

this combined property. The light color change images from

ALOI directly correspond to our light color changes (5). The

light color is varied by changing the illumination color

temperature, resulting in objects illuminated under a

reddish to white light. For completeness, the other condi-

tions present in the ALOI data set are also included: objects

lighted by a different number of white lights at increasingly

oblique angles (between one and three white lights around

the object, introducing selfshadowing for up to half of the

object), object rotation images, and images with different

levels of JPEG compression.
Because only a single training example is available per

object category, the nearest neighbour classifier is used for

the ALOI data set.
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2. http://www.colordescriptors.com.

Fig. 2. The stages of the primary feature extraction pipeline used in this paper. First, the Harris-Laplace salient point detector is applied to the image.

Then, for every point, a color descriptor is computed over the area around the point. All of the color descriptors of an image are subsequently vector

quantized against a codebook of prototypical color descriptors. This results in a fixed-length feature vector representing the image.



4.4 Experiment 2: Image Benchmark

The PASCAL Visual Object Classes Challenge [21] provides
a yearly benchmark for comparison of object classification
systems. The PASCAL VOC Challenge 2007 data set
contains nearly 10,000 images of 20 different object
categories, e.g., bird, bottle, car, dining table, motorbike,
and people. The data set is divided into a predefined train
set (5,011 images) and test set (4,952 images).

4.5 Experiment 3: Video Benchmark

The Mediamill Challenge by Snoek et al. [22] provides an
annotated video data set, based on the training set of the
NIST TRECVID 2005 benchmark [7]. Over this data set,
repeatable experiments have been defined. The experiments
decompose automatic category recognition into a number of
components, for which they provide a standard implemen-
tation. This provides an environment to analyze which
components affect the performance most.

The data set of 86 hours is divided into a Challenge
training set (70 percent of the data or 30,993 shots) and a
Challenge test set (30 percent of the data or 12,914 shots).
For every shot, the Challenge provides a single representa-
tive keyframe image. So, the complete data set consists of
43,907 images, one for every video shot. The data set
consists of television news from November 2004 broadcast
on six different TV channels in three different languages:
English, Chinese, and Arabic. On this data set, the 39
LSCOM-Lite categories [35] are employed. These include
object categories like aircraft, animal, car, and faces, and
scene categories such as desert, mountain, sky, urban, and
vegetation.

4.6 Evaluation Criteria

Experiments on the ALOI data set perform object recogni-
tion using one example: Given a query image of an object
under unknown illumination conditions, the top-ranked

result should be equal to the original image of the object for
successful recognition. The percentage of objects where the
top-ranked result is indeed the correct object is used as the
performance on the ALOI data set.

For our benchmark results, the average precision is taken
as the performance metric for determining the accuracy of
ranked category recognition results. The average precision
is a single-valued measure that is proportional to the area
under a precision-recall curve. This value is the average of
the precision over all images/keyframes judged to be
relevant. Hence, it combines both precision and recall into
a single performance value. For the PASCAL VOC
Challenge 2007, the official standard is the 11-point
interpolated average precision, and for TRECVID, the
official standard is the noninterpolated average precision.
The interpolated average precision is an approximation of
the noninterpolated average precision. As the difference
between the two is generally very small, we will follow the
official standard for each data set and refer to them as
average precision scores. When performing experiments
over multiple object and scene categories, the average
precisions of the individual categories are aggregated. This
aggregation, mean average precision, is calculated by taking
the mean of the average precisions. As average precision
depends on the number of correct object and scene
categories present in the test set, the mean average precision
depends on the data set used.

To obtain an indication of significance, the bootstrap
method [36], [37] is used to estimate confidence intervals for
mean average precision. In bootstrap, multiple test sets TB
are created by selecting images at random from the original
test set T , with replacement, until jT j ¼ jTBj. This has the
effect that some images are replicated in TB, whereas other
images may be absent. This process is repeated 1,000 times
to generate 1,000 test sets, each obtained by sampling from
the original test set T . The statistical accuracy of the mean
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Fig. 3. Examples of additional feature extraction pipelines used in this paper, besides the primary pipeline shown in Fig. 2. The pipelines shown are
examples of using a different point sampling strategy or a spatial pyramid [3]. The spatial pyramid constructs feature vectors for specific parts of the
image. For every pipeline, first, a point sampling method is applied to the image. Then, for every point, a color descriptor is computed over the area
around the point. All of the color descriptors of an image are subsequently vector quantized against a codebook of prototypical color descriptors. This
results in a fixed-length feature vector representing the image.



average precision score can then be evaluated by looking at
the standard deviation of the mean average precision scores
over the different bootstrap test sets.

5 RESULTS

5.1 Experiment 1: Illumination Changes

From the results in Fig. 4, the theoretical invariance
properties of color descriptors are validated. By observing
the results with respect to light intensity changes, the color
descriptors without invariance to this property, such as the
RGB histogram, the opponent color histogram, and color
moments, do not perform well. There is a clear distinction
in performance between these descriptors and the invar-
iant descriptors, such as the hue histogram, color moment
invariants, and SIFT. Overall, within this group of

invariant descriptors, the SIFT and color SIFT descriptors
perform much better than histogram-based descriptors;
they have higher discriminative power. HueSIFT, which is
a combination of the hue histogram and the SIFT
descriptor, falls between these descriptor classes in terms
of performance. The HSV-SIFT descriptor, which is not
invariant to light intensity changes, is the lowest-scoring
SIFT descriptor after HueSIFT. For very large scaling
factors, the performance of all descriptors drops. This is
due to color clipping: Scaled image values outside the
range ½0; 255� are clipped to 255. In Fig. 4, a gray
background indicates under which conditions, on average,
more than half of all object pixels have been clipped.

For light intensity shifts, it is shown that the color
descriptors which lack invariance, the RGB histogram, the
opponent color histogram, and the rghistogram, indeed
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Fig. 4. Evaluation of the invariance properties of color descriptors under different illumination conditions, averaged over 1,000 objects from the ALOI
data set [20]. Performance is measured using the percentage of correctly identified objects. For clarity of presentation, the results have been split
into two parts. To allow for easier comparison, SIFT is shown in both the graphs on the left and the graphs on the right. The rows correspond to the
invariant properties from Section 2, as listed in the graph titles and the equations shown. For light intensity shifts, the axis unit corresponds to image
values in the range ½0; 255�. For the light color changes, the light color is varied by changing the illumination color temperature, resulting in objects
illuminated under a white to reddish light. Conditions where, on average, more than 50 percent of the object area is affected by color clipping (due to
image values falling outside the range ½0; 255�) are marked with a gray background.



have reduced performance. Additionally, color moments
and color moment invariants are affected when the shift
amount increases, these descriptors can only handle small
light intensity shifts. The three color SIFT descriptors which
lack shift-invariance, HSV-SIFT, C-SIFT, and rgSIFT, show
reduced performance for large shifts when compared to
other SIFT variants, confirming their lack of invariance.

For light color changes, it is observed that histograms do
not perform well. This is consistent with their lack of
invariance. The exceptions are the transformed color
histogram and the color moment invariants, which do
possess invariance to light color changes and indeed
perform much better. For the SIFT-based descriptors, only
HSV-SIFT and HueSIFT degrade in performance as the light

color changes. This is due to their lack of invariance. Of
interest is that some of the descriptors which are not
invariant to light color changes, e.g., OpponentSIFT, C-SIFT,
and rgSIFT, are (in practice) largely robust to the light color
changes present in the ALOI data set.

Besides the evaluation of the invariant properties, there
are also different conditions which can be evaluated using
ALOI. For the lighting arrangement changes, shown in Fig. 5,
between one and three white lights around the object are
turned on. This leads to shadows, shading and white
highlights, e.g., to both light intensity scaling and shifts
(10), but also to partial visibility due to lack of light on certain
parts of the object. In this setting, both the invariant
properties and the discriminative power of color descriptors
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Fig. 5. For completeness, this figure contains the results for color descriptors under different lighting arrangements at increasingly oblique angles
(between one and three of the lights around the object are on, introducing self-shadowing for up to half of the object), different viewpoint angles, and
different degrees of JPEG compression, averaged over 1,000 objects from the ALOI data set [20]. Performance is measured using the percentage of
correctly identified objects. For clarity of presentation, the results have been split into two parts. To allow for easier comparison, SIFT is shown in
both the graphs on the left and the graphs on the right.



play an important role. The intensity scale-invariant C-SIFT
and rgSIFT perform well, ahead of the OpponentSIFT
descriptor, which is also shift-invariant. For the RGB-SIFT
descriptor, which is invariant to light color changes in
addition to begin scale-invariant and shift-invariant, the
increased invariance comes at the price of reduced dis-
criminative power: It is behind C-SIFT, rg-SIFT, and
OpponentSIFT under this condition. For this condition, light
intensity shifts and light color changes do not occur and
therefore OpponentSIFT and RGB-SIFT are too invariant. A
similar pattern is observed from the results in Fig. 5 for
viewpoint changes due to object rotation. The scale-invariant
C-SIFT and rgSIFT perform best, and the light intensity shift
invariance offered by OpponentSIFT and RGB-SIFT is not
needed nor is the light color invariance of RGB-SIFT.

From the results shown in Fig. 5 for JPEG compression
quality, it can be seen that the hue histogram, the rghistogram,
the transformed color histogram, and the color moment
invariants are not robust to even moderate amounts of
compression: Compression artifacts cause large deviations in
these descriptors.

In conclusion, changes in lighting conditions affect color
descriptors. However, for object recognition, not just the
invariance of a color descriptor to lighting conditions is
important, but also the distinctiveness of the descriptor. An
invariant descriptor is only useful for visual categorization
when it has sufficient discriminative power as well. Finally,
certain color descriptors are sensitive to compression
artifacts, reducing their usefulness. Although the best
choice of color descriptor depends on the condition, the
descriptors with the best overall performance are C-SIFT,
rgSIFT, OpponentSIFT, and RGB-SIFT.

5.2 Experiment 2: Image Benchmark

From the results shown in Fig. 6, it is observed that, for
object category recognition, the SIFT variants perform
significantly better than color moments, moment invariants,
and color histograms. The moments and histograms are not
very distinctive when compared to SIFT-based descriptors:
They contain too little relevant information to be competi-
tive with SIFT.

For SIFT and the four best color SIFT descriptors from
Fig. 6 (OpponentSIFT, C-SIFT, rgSIFT, and RGB-SIFT), the
results per object category are shown in Fig. 7. For bird,
boat, horse, motorbike, person, potted plant, and sheep, it
can be observed that the descriptors which perform best
have scale-invariance for light intensity (C-SIFT and
rgSIFT). Of these two scale-invariant descriptors, C-SIFT
has the highest overall performance. The performance of
the OpponentSIFT descriptor, which is also shift-invariant
compared to C-SIFT, indicates that only scale-invariance,
i.e., invariance to light intensity changes, is important for
these object categories. RGB-SIFT includes additional
invariance against light intensity shifts and light color
changes and shifts when compared to C-SIFT. However,
this additional invariance makes the descriptor less dis-
criminative for these object categories because a reduction
in performance is observed. This is illustrated by the
examples shown in Fig. 1 for potted plant, which are ranked
significantly higher for C-SIFT and rgSIFT compared to
OpponentSIFT and RGB-SIFT.

In conclusion, C-SIFT is significantly better than all other
descriptors except rgSIFT (see Fig. 6) on the image bench-
mark. The corresponding invariant property of both of
these descriptors is given by (8). However, the difference
between the rgSIFT descriptor and OpponentSIFT, which
corresponds to (10), is not significant. Therefore, the best
choice for this data set is C-SIFT.

5.3 Experiment 3: Video Benchmark

From the visual categorization results shown in Fig. 8, the
same overall pattern as for the image benchmark is
observed: SIFT and color SIFT variants perform signifi-
cantly better than the other descriptors. The shift-invariant
OpponentSIFT has left C-SIFT behind and is now the only
descriptor which is significantly better than all other
descriptors. An analysis on the individual object and scene
categories shows that the OpponentSIFT descriptor per-
forms best for building, meeting, mountain, office, outdoor,
sky, studio, walking/running, and weather news. All of
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Fig. 6. Evaluation of color descriptors on an image benchmark, the
PASCAL VOC Challenge 2007 [21], averaged over the 20 object
categories. Error bars indicate the standard deviation in mean average
precision, obtained using bootstrap. The dashed lines indicate the lower
bound of the C-SIFT confidence interval.

Fig. 7. Evaluation of color descriptors on an image benchmark, the

PASCAL VOC Challenge 2007, split out per object category. SIFT and

the best four color SIFT variants from Fig. 6 are shown.



these concepts occur under a wide range of light intensities

and different amounts of diffuse lighting. Therefore, its

invariance to light intensity changes and shifts makes

OpponentSIFT a good feature for these categories, and

explains why it is better than C-SIFT and rgSIFT for the

video benchmark. RGB-SIFT, with additional invariance to

light color changes and shifts, does not differ significantly

from C-SIFT and rgSIFT. For some categories, there is a

small performance gain, for others there is a small loss. This

contrasts with the results on the image benchmark, where a

performance reduction was observed.
In conclusion, OpponentSIFT is significantly better than

all other descriptors on the video benchmark (see Fig. 8).

The corresponding invariant property is given by (10).

5.4 Comparison with State-of-the-Art

So far, the performance of single descriptors has been
analyzed. It is worthwhile to investigate combinations of
several descriptors since they are not completely redundant.
State-of-the-art results on the PASCAL VOC Challenge 2007
also employ combinations of several methods. Table 2 gives
an overview of combinations on this data set. For example,
the best entry in the PASCAL VOC Challenge 2007, by
Marszałek et al. [38], has achieved a mean average precision
of 0.594 using SIFT and HueSIFT descriptors, the spatial
pyramid [3], additional point sampling strategies besides
Harris-Laplace, such as Laplacian point sampling and dense
sampling, and a feature selection scheme. When the feature
selection scheme is excluded and simple flat fusion is used,
Marszalek reports a mean average precision of 0.575.

To illustrate the potential of the color descriptors from
Table 1, a simple fusion experiment has been performed
with SIFT and the best four color SIFT variants (Section 4.2
details how the combination is constructed). To be compar-
able, a setting similar to Marszalek is used: Both Harris-
Laplace point sampling and dense sampling are employed
and the same spatial pyramid is used (see Fig. 2 for an
overview of the feature extraction pipelines used). In this
setting, the best single color descriptor achieve a mean
average precision 0.566. The combination gives a mean
average precision of 0.605. This convincing gain of 7 percent
suggests that the color descriptors are not entirely redun-
dant. Compared to the intensity-based SIFT descriptor, the
gain is 8 percent. Further gains should be possible, if the
descriptors with the right amount of invariance are fused,
preferably using an automatic selection strategy.

As shown in Table 3, similar gains are observed on the
Mediamill Challenge: Mean average precision increases by
7 percent when combinations of color descriptors are used,
instead of intensity-based SIFT only. Relative to the best
single color descriptor, an increase of 3 percent is observed.
Furthermore, when the descriptors of this paper are
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Fig. 8. Evaluation of color descriptors on a video benchmark, the
Mediamill Challenge [22], averaged over 39 object and scene
categories. Error bars indicate the standard deviation in mean average
precision, obtained using bootstrap. The dashed line indicates the lower
bound of the OpponentSIFT confidence interval.

TABLE 3
Combinations of Descriptors on the Video Benchmark

Combinations are compared to the baseline set by the Mediamill Challenge [22] for the 39 LSCOM-Lite categories [35]. Adding color descriptors
improves over intensity-based SIFT alone by 7 percent.

TABLE 2
Combination of Descriptors on the Image Benchmark

Combinations are compared to Marszalek et al. [38], who obtain state-of-the-art results on this data set. Adding color descriptors improves over
intensity-based SIFT alone by 8 percent.



compared to the baseline provided by the Mediamill
Challenge, there is a relative improvement of 104 percent.

For reference, combinations of color descriptors from this
paper were submitted to the PASCAL VOC 2008 bench-
mark [40] and the TRECVID 2008 evaluation campaign [7].
In both cases, top performance was achieved. The color
descriptors as presented in this paper were the foundation
of these submissions. For additional details, see Table 4 [41],
[42] and Table 5 [43].

5.5 Discussion

Using the ALOI data set, the theoretical invariance proper-
ties of color descriptors were verified experimentally.
However, possessing invariance properties alone is not
sufficient to address category recognition: The descriptor
should also be distinctive and robust to compression
artifacts. Several histogram-based descriptors and color
moment invariants were found to be sensitive to even
moderate amounts of compression, thereby reducing their
usefulness. On the other hand, the results show that the SIFT
descriptor and most color extensions of the SIFT descriptor
are robust to compression artifacts. Also, these SIFT-based
descriptors outperform histogram-based and moment-
based descriptors on both image and video category
recognition. Therefore, the rest of this discussion will focus
on the properties of these descriptors in particular.

The results on two category recognition benchmarks show
that SIFT-based descriptors which perform well are all
invariant to light intensity changes. For light intensity shifts,
the usefulness of invariance depends on the object or scene
category. For those categories in real-world data sets where
large variations in lighting conditions occur frequently,
invariance to light intensity shifts is useful. Examples for
the image benchmark are shown in Fig. 9: Normally, sofas are
found indoor. However, the data set contains samples where
the sofa is photographed outside on the street. As the ranking
positions show, the OpponentSIFT descriptor, which is
invariant to both light intensity changes and shifts, places
these samples higher in the ranking. However, the converse
also occurs, as the example of the potted plants shows. The
descriptors which are only scale-invariant place the samples
higher in the ranking and the shift-invariant OpponentSIFT
and RGB-SIFT descriptors lag behind. For the video bench-
mark, Fig. 10 shows similar examples of both phenomena for
buildings and vegetation.

From the results, it can be noticed that invariance to light
color changes and shifts is domain-specific. For the image
data set, a significant reduction in performance was
observed, whereas for the video data set, there was no
performance difference. However, there are specific sam-
ples where invariance to light color changes provides a
benefit. An example is shown in Fig. 9 for buses: The bus
illuminated by a setting sun benefits from light color
invariance, as does the bus illuminated by red light tubes.
Invariance to light intensity changes and shifts is not
sufficient for the latter sample. However, the overall
performance is not improved by light color invariance,
presumably because light color changes are quite rare in
both benchmarks due to the white balancing performed
during data recording.

Overall, when choosing a single descriptor and no prior
knowledge about the data set and object and scene
categories is available, the best choice is OpponentSIFT.
The corresponding invariance property is scale- and shift-
invariance, given by (10). Second best is C-SIFT, for which
the corresponding invariance property is scale-invariance,
given by (8). Table 6 summarizes the recommendations for
the data sets from this paper and data sets where no prior
knowledge is available.

To obtain state-of-the-art performance on real-world data
sets with large variations in lighting conditions, multiple
color descriptors should be chosen, each one with a
different amount of invariance. As shown earlier, even a
simple combination of color descriptors improves over the
individual descriptors, suggesting that they are not com-
pletely redundant. This is illustrated by the keyframes
shown in Fig. 10: Depending on the visual category, the
OpponentSIFT and C-SIFT descriptors both show their
strong points. Results on the two categorization benchmarks
have shown that the choice of a single descriptor for all
categories is suboptimal (see Fig. 7). While the addition of
color improves category recognition by 8-10 percent over
intensity-based SIFT only, further gains should be possible
if the descriptor with the appropriate amount of invariance
is selected per category, using either a feature selection
strategy or domain knowledge.

6 CONCLUSION

In this paper, the invariance properties of color descriptors
are studied using a taxonomy of invariance with respect to
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TABLE 4
Results of the PASCAL VOC Challenge 2008 Classification Task [40]: Best Overall Performance

TABLE 5
Results of the NIST TRECVID 2008 Video Benchmark [7]: Best Overall Performance



photometric transformations, see Table 1 for an overview.
These invariance properties were validated using a data set
with known photometric changes. In addition, the distinc-
tiveness of color descriptors is assessed experimentally
using two benchmarks from the image domain and the
video domain. On these benchmarks, the addition of color
descriptors over SIFT improves category recognition by
8 percent and 7 percent, respectively.

From the theoretical and experimental results, it can be
derived that invariance to light intensity changes and light
color changes affects object and scene category recognition.
The results further reveal that, for light intensity shifts, the
usefulness of invariance is category-specific. Therefore, a
color descriptor with an appropriate level of invariance
should be selected for automated recognition of individual
object and scene categories. Overall, when choosing a single
descriptor and no prior knowledge about the data set and

object and scene categories is available, the OpponentSIFT

is recommended. Finally, a proper combination of color

descriptors improves over the individual descriptors.

1594 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 9, SEPTEMBER 2010

Fig. 9. From the PASCAL VOC Challenge 2007 [21], several positive examples for the object categories sofa, bus, and potted plant are shown,

together with their position in the ranked list of category recognition results for four different color descriptors. If, for one or more color descriptors, the

ranked position is notably better than for the other color descriptors, it has been bold-faced. The ranking has 4,952 elements.

Fig. 10. From the Mediamill Challenge [22], several positive examples for the categories building and vegetation are shown, together with their

position in the ranked list of category recognition results for four different color descriptors. If, for one or more color descriptors, the ranked position is

notably better than for the other color descriptors, it has been bold-faced. The ranking has 12,914 elements.

TABLE 6
Recommended Choice of Descriptors for Different Data Sets

Unknown data is a data set where no prior knowledge about the lighting
conditions or the object and scene categories is available. Without such
prior knowledge, OpponentSIFT is the best choice.
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