
Can Object Detectors Aid Internet Video Event Retrieval?

Davide Modolo a and Cees G.M. Snoekb

a, b University of Amsterdam, Science Park 904, 1098 XG, Amsterdam, The Netherlands;

ABSTRACT

The problem of event representation for automatic event detection in Internet videos is acquiring an increasing
importance, due to their applicability to a large number of applications. Existing methods focus on representing
events in terms of either low-level descriptors or domain-specific models suited for a limited class of video only,
ignoring the high-level meaning of the events. Ultimately aiming for a more robust and meaningful representation,
in this paper we question whether object detectors can aid video event retrieval. We propose an experimental
study that investigates the utility of present-day local and global object detectors for video event search. By
evaluating object detectors optimized for high-quality photographs on low-quality Internet video, we establish
that present-day detectors can successfully be used for recognizing objects in web videos. We use an object-
based representation to re-rank the results of an appearance-based event detector. Results on the challenging
TRECVID multimedia event detection corpus demonstrate that objects can indeed aid event retrieval. While
much remains to be studied, we believe that our experimental study is a first step towards revealing the potential
of object-based event representations.

Keywords: Video-Event Recognition, Object Recognition, Video and Scene Understanding, Performance eval-
uation

1. INTRODUCTION

Video event retrieval in web videos has become an important research topic, due to its applicability in domains
like web search, broadcast news, and sports.1,2 The problem of event retrieval is, however, challenging for several
reasons including large variance in the appearance of particular events, similarity in the appearance of different
events, and ambiguity in translating semantic definitions of events into a low-level formalism for representation
and recognition. Furthermore, most web videos are captured by everyday users using hand-held cameras or
smart-phones, and generally contain considerable camera motion, occlusion and cluttered background. For all
these reasons, there is an urgent demand to find a robust event representation for video.

We categorize state-of-the-art approaches to the problem of event representation in video as either model-
based3–5 or appearance-based .6–10 The former attempt to estimate a set of pre-defined model parameters, such as
geometric transformations, from the video data and use them to recognize the event. Most of these methods are
domain specific, or impose constraints on the environment as well as the type of motion that can be detected.
In addition, some assume knowledge of the scene and/or cameras. For example, Bobick et. al. use motion-
energy images and motion-history images to recognize many types of aerobics exercises.3 While their method is
efficient, their work and many others4 assume that the person involved is well segmented from the background
and centered in the image. In contrast, appearance-based approaches perform inference directly on the observed
pixel responses. The state-of-the-art event detection approach relies on bag-of-words,8,9 where each video is
represented by its vector quantized visual word frequency.11 These methods represent videos in terms of low-
level edge orientations. However, events are high-level semantic activities that humans perceive when observing
a video sequence. Hence, there is a case to be made for representations which describe events semantically.

Indeed, it is well known from cognitive science that the human ability to perceive events develops through
the understanding of objects.14,15 First, humans learn about objects. Second, they learn to detect relations
among individual objects. Finally, they perceive events by analyzing regularities in terms of object relationships.
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Figure 1. Objects in high-quality photographs12 are typically items of desire and therefore the focus of attention. In
contrast, objects in arbitrary Internet video13 may appear in low quality, recorded from unusual points of view, and
within complex scenes. Hence, generalizability of present-day object detectors utilized on photo collections is unclear.

We start from this theory, with the aim to make event retrieval more robust. While much progress in object
detection for high-quality photographs has been reported recently,12 their utility for low-quality web video is
unclear. See Figure 1 for visual differences. This paper seeks to unravel whether present-day object detectors
can aid event retrieval. To the best of our knowledge, no experimental evaluation has been proposed in the
literature to quantify this utility. To shed light on the matter, we formulate two hypotheses that we address in
this paper. Our first hypothesis states:

Hypothesis 1: State-of-the art photo object detectors are suited for arbitrary Internet video.

Once object detectors generalize, they form a potentially effective means to describe events. There is no
evidence, however, that a video representation relying on object detectors only improves event retrieval and this
motivates our second hypothesis:

Hypothesis 2: Present-day object detectors can aid arbitrary Internet video event detection.

Before testing our two hypothesis we first discuss the state-of-the-art in object detection.

2. RELATED WORK

Various object detection methods exist in the literature. We organize them by the way they classify images. We
refer to global object detection as the ability to indicate whether an image contains a desired object. In order
to do so, these detectors analyze the entire image and typically exploit the context information surrounding an
object. In contrast, we refer to local global detectors for those methods that, in order to recognize an object,
reject parts of the image that are considered non-relevant and, instead, search for local evidence. Figure 2 shows
the difference between global and local object detectors.



Figure 2. Global object detectors indicate whether an image contains a desired object or not, while local object detectors
also define the bounds of the object in the image.

2.1 Global Object Detectors

One of the most effective approaches for global object detection is bag-of-words.11,16 In bag-of-words models,
an image is first represented by a collection of local features detected from image pixels, either sparsely (e.g.,
Harris Laplace) or in a regular, dense grid (e.g., Dense Sampling). Each local feature is then represented by one
or more descriptors, each describing one aspect of the small region surrounding the considered feature. Typical
descriptors include color, shape, and texture, but the most effective one are Lowe’s SIFT17 and its color SIFT
variants. See van de Sande et al. paper18 for a deep discussion.

Once the descriptors are extracted, they are assigned to discrete visual words predefined in a vocabulary
(obtained by clustering methods like k-means or gaussian mixture models). The frequency count of the visual
words is used as the image representation. See van Gemert et al. paper19 for a detailed comparison of several
visual word assignment methods. To allow for region-specific weighting of visual words, a feature pyramid is
typically employed, as suggested by Lazebnik et al.20 In the final stage of the bag-of-word approach the histogram
representation of word counts are analyzed by a kernel-based classifier, like a support vector machine.21

State-of-the-art global object detectors18 have evolved to an accurate level of performance for both high-
quality photographs and low-quality web video. In our experimental study, we evaluate state-of-the-art global
object detectors based on bag-of-words for the purpose of event representation.

2.2 Local Object Detectors

State-of-the-art approaches for local object detection are based on an exhaustive search over the image, in order
to find the best object positions. However, because the number of possible positions grows exponentially with
the size of an image, the search space becomes huge quickly and several heuristics have been proposed to speed
up the search.

Lampert et al.22 proposed a simple, but powerful, branch and-bound technique, called efficient subwindow
search, which directly searches for the optimal window within an image. While they obtain impressive results
for linear classifiers, for non-linear classifiers the search remains too slow.23 To further speed-up local object
detectos, Alexe et al.23 proposed to search for any object, independently from its class. They train a classifier
on the bounding boxes of those objects having a well-defined shape. They then randomly sample boxes to which
they apply their classifier. The boxes with the highest likelihood of containing an object serve as a set of object
hypotheses, thereby reducing the number of windows that need to be evaluated by class-specific object detectors.

Van de Sande et al.24 reduced the huge search space by pre-defining bounding boxes using segmentation.
They initially oversegment an image to obtain relatively small rectangles which describe object parts. They then
hierarchically and greedily group similar regions together to define new bigger regions that aim to capture a



Table 1. 6000 Internet video data13 used to validate hypothesis 1.

Object Video Frames

Airplane 264
Bird 168
Boat 309
Bus 46
Car 1644
Cat 166
Chair 759

Object Video Frames

Cow 5
Dog 125
Horse 66
Motorcycle 150
Sofa 117
Table 736
ExtraNegative 1590

more complete object representation. All the rectangles created during the hierarchical grouping form then the
new, reduced, search space.

Felzenswalb et al.25 speeded the search up using a linear SVM, HOG features and by introducing a semantic
object representation. Their approach builds on the pictorial structures framework, which represents objects by
a collection of parts arranged in a deformable configuration. The idea is that the parts capture local appearance
features while the deformable configuration captures the spatial relationship between them.

In contrast to global detectors, local object detectors have been evaluated for photographs only, and their
utility for video remains unclear. We evaluate the utility of the local object detectors by Van de Sande et al.24

and Felzenswalb et al.25 in our study.

3. OBJECT DETECTOR SUITABILITY

To understand what object detectors are best suited for representing events in arbitrary Internet video, we per-
form an experiment to test our first hypothesis.

3.1 Photo and Video Data Sets

We train detectors on the PASCAL VOC 2007 data set,12 which is a collection of consumer photographs from the
Flickr photo-sharing web-site. The data set consists of 9,963 images containing 24,640 annotated objects from
20 classes. The annotations provide what objects are present in an image and in what sub-regions. The images
span the full range of consumer photographs, including indoor and outdoor scenes, close-ups and landscapes.

We test object detectors on the collection of web videos from the TRECVID 2011 Semantic Indexing task.13

These are characterized by a high degree of diversity in creator, content, style, production qualities, recording
devices, encoding, language, etc.

In our experiment we consider the object classes shared among the two data sets, which are airplane, bird,
boat, bus, car, cat, chair, cow, dog, horse, motorcycle, sofa and table.

For testing, we collected and manually verified all the positively annotated keyframes for the 13 object classes.
In addition, we added 1590 negative keyframes not containing any of the 13 objects to arrive at a dataset of 6000
frames. The final data set statistics are summarized in Table 1.

3.2 Experiment 1: Object Detector Suitability

To provide an appropriate evaluation, we test the performance of four state-of-the-art techniques, namely two
global and two local detectors. We evaluate them on the task of video frame classification. In order to avoid
confusion, we assign a discriminative name to each detector. The names are an indication of how the methods
train object models (entire image vs bounding boxes) and how they score test images (entire image vs bounding
boxes).



1. TrainAll-ClassifyAll. In order to capture information about the object of interest and its context,
we use the global detector based on bag-of-words described by van de Sande et al.18 The contextual
information might prove useful in classifying some object classes. We train object models using as positive
samples the images containing the object of interest.

2. TrainBB-ClassifyAll. In order to capture a different visual appearance, we use, again, the global detector
presented by van de Sande et al.,18 but this time we train object models considering as positive samples
only the sub-regions of the positive images delimitated by the positive bounding boxes.

3. TrainBB-SegmentationBB. To model directly the object of interest rather than statistical regularities in
the image background, we use the local detector described by van de Sande et al.24 This approach explicitly
ignores all but the object, using bounding boxes for training, and performing a selective search for testing.
It has shown discriminative potential for non-rigid objects.

4. TrainBB-DeformableBB. We use the local detector proposed by Felzenszwalb et al.,25 in order to model
directly the objects of interest instead of capturing context information. This approach, differently from
the previous one, uses an exhaustive search for testing. It has shown discriminative potential mainly for
rigid objects.

For the local object detectors, we represent the likelihood of an image to contain an object, as the maximum
score over all the bounding boxes evaluated by a detector. We apply all the detectors to the frames in the test
set and we evaluate their ranked lists in terms of average precision, which is a common measure to evaluate
retrieval experiments.13

3.3 Implementation Details

We train object models for TrainAll-ClassifyAll, TrainBB-ClassifyAll and TrainBB-SegmentationBB using
the following settings. We use Harris-Laplace and Dense Sampling detectors to sample interest points. The latter
uses a regular grid with an interval of 6 pixels and at a single scale (σ = 1.2). From these points we extract
SIFT, opponentSIFT and RGB-SIFT features, as suggested in.18 We create a codebook of 4,096 words for each
of the three features using k-means clustering with hard assignment. Moreover, we use 1x1 and 1x3 spatial
pyramids.20 In this way our final feature vector has a dimension of 24 × 4096 = 98, 304. We learn a Support
Vector Machine with kernel based on histograms intersection.21 In addition, for the segmentation procedure of
TrainBB-SegmentationBB we use a software provided by van de Sande,24 and for TrainALL-DeformableBB we
use the software and the object models released by Felzenswalb.25

3.4 Result 1: Object Detector Suitability

Results are shown in Figure 3. They show that the detectors are able to recognize several instances of objects,
considerably outperforming a random search. The detector achieving the best results is TrainBB-DeformableBB,
with a Mean Average Precision of 0.257 and best Average Precision on 7 of the 13 objects. TrainAll-ClassifyAll
achieves the second best MAP, 0.187, and best AP on 4 of the 13 objects. TrainBB-SegmentationBB achieves
the third best MAP, 0.166, and best AP on 2 of the 13 objects. TrainBB-ClassifyAll is the least discriminative,
with an MAP of 0.129.

TrainBB-DeformableBB is the detector least affected by the transition from photographs to video frames.
As expected, the method shows potential in recognizing rigid objects, such as car, motorcycle, bus and chair, but it
surprisingly achieves best results also for classes such as horse, birds and cat. In contrast, TrainBB-SegmentationBB,
which in high-quality photos performs well for non-rigid objects such as birds, cats, dogs, and plants,24 seems
to be susceptible to the change of domain. We attribute this to their segmentation process,26 which fails in
segmenting low-quality frames.

TrainAll-ClassifyAll and TrainBB-ClassifyAll, which differ in the way they address the training phase
(entire image vs bounding boxes), achieve considerably different results. On objects like airplane, boat, sofa
and table, TrainAll-ClassifyAll performs particularly well, showing how important it is to capture context
information in order to recognize these object classes. In contrast, TrainBB-ClassifyAll does not perform
satisfactorily.



Figure 3. Results of Experiment 1: Object Detector Suitability. All the detectors clearly outperform a random search and
results suggest that present-day object detectors for photos can successfully be used for recognizing objects in Internet
videos.

Figure 4 present the top 6 frames for the rigid object airplane and the non-rigid object cat. The results of all
the detectors on both classes are good. No relevant difference is present in the results of the class airplane, while
it is interesting to note how well TrainBB-DeformableBB is able to detect the cats. By exploiting the object in
“parts”, it is able to match properly the face of the cat and recognize the video frame as positive instance.

The results of Experiment 1 suggest that present-day object detectors for photos can successfully be used
for recognizing objects in Internet videos, which confirms our first hypothesis. In addition, the most suitable
object detector is the local detector TrainBB-DeformableBB; to compensate the global context information not
captured by this method, a global detector TrainAll-ClassifyAll seems suitable to be used as support.

Figure 4. Experiment 1: Object Detector Suitability. Top 6 results for the four detectors trained on the rigid object
Airplane (left) and on the non-rigid object Cat (right). (1) is TrainAll-ClassifyAll, (2) is TrainBB-ClassifyAll, (3)
is TrainBB-SegmentationBB and (4) is TrainBB-DeformableBB. Green surrounds indicates correct detection, while a red
rectangle indicates wrong prediction.



4. OBJECT EVENT-REPRESENTATION

By using object detector scores as representation, we aim to increase the robustness of event retrieval and to
validate our second hypothesis. We evaluate our object-based approach in terms of how well it re-ranks a list of
videos obtained by an appearance-based event detector.

4.1 Data sets

Experimentation with our object-based approach is performed on the TRECVID 2011 Multimedia Event Detec-
tion data set.13 In this set, a huge collection of unconstrained Internet video clips together with ground truth
annotations for fifteen events is provided. We restrict our analysis to the events defined in terms of objects
present in experiment 1, which are “Feeding an animal”, “Changing a vehicle tire”, “Getting a vehicle unstuck”
and “Grooming and animal”. The statistics are provided in Table 2 while the event names and their designation
are listed in Table 3.

Table 2. Statistics of TRECVID 2011 Event Detection data set.

Set Videos Frame Hours

Train 2680 9.1×106 92
Validation 10403 32×106 324
Test 32061 98×106 991

Table 3. Training and testing events defined in the TRECVID 2011 Event Detection task. We restrict ourselves to those
events that have a one-to-one correspondence with the objects evaluated in Experiment 1 (denoted with italics).

Training Events Testing Events

Attempting a board trick Birthday Party Making a sandwich
Feeding an animal Changing a vehicle tire Parade
Landing a fish Flash mob gathering Parkour
Working on woodworking project Getting a vehicle unstuck Repairing an appliance
Wedding ceremony Grooming an animal Working on a sewing project

4.2 Experiment 2: Object Event-Representation

Re-ranking. To re-rank the results of an appearance-based event detector, we simply promote in rank those
videos that are considered as positive by our object-based event detector and leaves unchanged the other videos.
We call this Object Verification. Formally, this is defined by:

Snew(Xi) =

{
−P1(Xi) +M f2(Xi) > θ

−P1(Xi) otherwise
(1)

where Snew(Xi) indicates the final score of the video Xi, P1(Xi) is the position of the video in the ranked
list obtained by the appearance-based technique. In addition, M is the total number of videos in the test data
set, f(. . . ) is the event detector score and θ is a threshold used to select only the videos where the detector is
certain about the positive prediction.

Video Object Representation. We represent a video as follows. Let’s consider an event V. For it, we
define:

L = {(dk(), ldk
), k = 1, . . . , D} (2)

G = {(cj(), lcj ), j = 1, . . . , C} (3)

where L is a set of D local object detectors and G is a set of C global object detectors. In addition, dk() and
cj() indicate the k-th local object detector and the j-th global object detector, which take as input a frame and
returns a value telling how likely the frame is to contain the object. Finally, ldk

and lcj are object labels.



Then, we define the i-th video of the data set as the sequence {fi,1, . . . , fi,F }, where F is the number of
frames in the i-th video and fi,j represents the j-th frame. We apply all the detectors to all these frames and we
extract the maximum score of each detector, over all the frames, in order to ensure the presence of an object:

LMAXi
= [ max

j=1,...,F
(d1(fi,j)), . . . , max

j=1,...,F
(dD(fi,j))] (4)

GMAXi
= [ max

j=1,...,F
(c1(fi,j)), . . . , max

j=1,...,F
(cC(fi,j))] (5)

where LMAXi
contains scores for the objects trained with the local detector and GMAXi

contains scores for the
objects trained with the global detector.

In addition, in order to capture temporal information and to be able to distinguish between a video where
an object plays an important role and a video where the object appears shortly as noise, we extract the average
score of each detector, over all the frames:

LAVGi = [
1

F

F∑
j=1

(d1(fi,j)), . . . ,
1

F

F∑
j=1

(dD(fi,j))] (6)

GAVGi
= [

1

F

F∑
j=1

(c1(fi,j)), . . . ,
1

F

F∑
j=1

(cC(fi,j))] (7)

Finally, we define a video in terms of an object-vector, as the concatenation of these scores:

Xi = [LMAXi
, GMAXi

, LAVGi
, GAVGi

] (8)

Video Classification. Finally, this video object representation is classified into an event using a simple
linear support vector machine.27 This classifier returns a score (f2(Xi) from Eq. 1) indicating how likely the
video is to contain the considered event.

4.3 Implementation Details

Event Detection. We implemented an appearance-based event detector using bag-of-words and we applied it
to all shot-segmented keyframes from the TRECVID Multimedia Event Detection 2011 test set. The approach is
based on multiple (visual) kernels using hard-assignment on SIFT, OpponentSIFT, and RGB-SIFT descriptors.
Fusion is performed using an average rule combination. To relieve the computational burden of running various
object detectors, we re-rank the top 400 results obtained with the appearance-based event detector.

Object Detection. As results of Experiment 1 suggest, for Eq. 2, we use the local detector TrainBB-DeformableBB
and for Eq. 3, the global detector TrainAll-ClassifyAll. For the local detector we use the previously trained
object models from experiment 1. For the global detector we train object models on the data set of the TRECVID
2011 Semantic Indexing task. We apply the object detectors to frames sampled every 2 seconds.

Object Selection. For each event, we pre-select from experiment 1 the set of objects described in the event
definition. For example, for the event “Feeding an animal”, this is represented by the objects bird, cat, cow, dog
and horse. We include both the global and local object detectors. To compensate for those types of animals and
vehicles for which we do not train object detectors, we also include global detectors for animals and vehicle for
which annotations are provided in the TRECVID 2011 Semantic Indexing Task.

4.4 Result 2: Object Event-Representation

Results are shown in Figure 5. Object Verification, which simply promotes those videos that our object-based
approach considers as positive, improves the results of all the events. Out of all results, it is interesting to notice
the improvement for “Grooming an animal”, where the average precision raises with 70%, from 0.089 to 0.151.

Furthermore, it is worth to have a look into the videos promoted to the top of the ranked lists. Figure 6(a)
show some positive videos appearing in the top 10 and promoted by our Object Verification. In contrast, Figure



6(b) shows some negative videos appearing in the top 10 list of all the events. Even though such videos are
negative, results shows that our approach is particularly good in finding videos where the objects of interest
are present for a considerably long amount of time. Despite this, more detectors could be easily added in order
to allow for more discrimination power, for example the inclusion of a person and/or a hand detector could
potentially reject some of the videos shown in Figure 6(b).

All in all, our object-based event representation, which is a simple collection of statistics from object detectors,
helps the baseline considerably. Results improve for all the events, showing good generalization. We conclude
that present-day object detectors can successfully aid arbitrary Internet video event detection, which confirms
our second hypothesis.

5. CONCLUSION

In this paper, we assess the potential of using object detectors to represent events. We formulate two hypotheses
and experiments to evaluate this potential. Experiment 1 confirms our first hypothesis by showing that state-of-
the-art local object detectors for photos can successfully be used for recognizing objects in low-quality Internet
videos. Our experiments indicate that the most suitable detector is the local detector based on deformable
part-based models by Felzenswalb et al.25 (Figure 3). To compensate for the global context information ignored
by this method, we advise to include in the event representation a global detector based on bag-of-words as
support. Our second hypothesis states that present-day object detectors can aid arbitrary Internet video event
detection. In experiment 2 we use a preselected object-based video representation to re-rank the results of an
appearance-based event detector. Our results in Experiment 2 seem to confirm this hypothesis (Figure 5). Re-
ranking with object verification aids event detection performance. To conclude, we believe that our experimental
study reveals the potential of object-based event representations.

While we consider our results promising, a lot of research is needed to further enhance the quality of semantic
representations for events. First, increasing the number of local object detectors is likely to enhance the discrim-
inative power. Second, it is of interest to automatically learn from training data what objects are relevant for an
event. Finally, it would be interesting to study semantic interactions between objects and humans. We believe
that exploiting the spatio-temporal position of several objects could lead to the most semantic representation.

Figure 5. Results of Experiment 2: Object Event-Representation. The numbers next to the event names indicate the
number of positive videos in the data set. Results show that present-day object detectors can successfully aid arbitrary
Internet video event detection.



(a) Positive videos.

(b) Negative videos. It is worth noticing that all the videos contain the objects of interest and for the event “Changing a
vehicle tire” two videos even contain a car with a flat tire, but not in the process of being changed.

Figure 6. Experiment 2: Object Event-Representation. Videos promoted to the top 10 by our Object Verification. Both
positive and negative videos contain the object of interests, showing that our object-based video representation can aid
Internet video event retrieval.
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