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Abstract—The softmax and binary classifier are commonly pre-
ferred for image classification applications. However, as softmax
is specifically designed for categorical classification, it assumes
each image has just one class label. This limits its applicability
for problems where the number of labels does not equal one,
most notably zero- and multi-label problems. In these challenging
settings, binary classifiers are, in theory, better suited. However,
as they ignore the correlation between classes, they are not as
accurate and scalable in practice. In this paper, we start from the
observation that the only difference between binary and softmax
classifiers is their normalization function. Specifically, while the
binary classifier self-normalizes its score, the softmax classifier
combines the scores from all classes before normalisation. On the
basis of this observation we introduce a normalization function
that is learnable, constant, and shared between classes and data
points. By doing so, we arrive at a new type of binary classifier
that we coin quasibinary classifier. We show in a variety of image
classification settings, and on several datasets, that quasibinary
classifiers are considerably better in classification settings where
regular binary and softmax classifiers suffer, including zero-
label and multi-label classification. What is more, we show that
quasibinary classifiers yield well-calibrated probabilities allowing
for direct and reliable comparisons, not only between classes but
also between data points.

Index Terms—Binary classifier, softmax classifier, image clas-
sification.

I. INTRODUCTION

Learning deep convolutional neural networks to classify
an image requires a proper prediction activation function. It
maps an internal network representation from feature space
to prediction space, where a loss can be more easily defined.
Softmax has been the dominant choice, and very successfully
so [1]–[4]. In general, the softmax classifier is designed to
model the probabilities for one-vs.-rest classification problems,
where the number of ground truth labels per sample is assumed
to be one. As the output predictions are normalized to be
summed to one, softmax becomes a natural fit to return the
categorical distribution prediction. However, this one-label
assumption limits the application of softmax for problems
where the number of labels for a sample is not one, most
notably zero-label [5], [6] and multi-label [7]–[9] classification
problems. Nonetheless, the softmax classifier is sometimes still
being considered for zero-label [10], [11] and multi-label [7],
[9], [12] classification problems, with the risk of violating the
categorical assumption.

Instead of ‘abusing’ the softmax for out-of-distribution and
multi-label problems, one may opt to build a set of binary

classifiers for each of the classes, e.g. [13]–[18]. However,
binary classifiers suffer from modeling class likelihoods in-
dependently. As a result, building binary classifiers becomes
a suboptimal choice when the number of classes is large or
imbalanced [13], [14], [16], [19]. Moreover, given an input
image, the confidence scores per classifier are uncalibrated,
making them incomparable in practice.

In this paper, we introduce a new definition of binary
classifiers, which we coin quasibinary classifiers. Similar to
regular binary classifiers, quasibinary classifiers compute prob-
abilities for binary outputs. Yet, different from regular binary
classifiers, quasibinary classifiers incorporate the information
that other labels may exist in the image. We achieve this by
having the normalization function of the quasibinary classifiers
learnt rather than defined, as with binary and softmax classi-
fiers. Specifically, quasibinary classifiers set the normalization
function to be a constant and share it not only between classes
but also between data points, allowing for tractability, high ef-
ficiency, and most importantly better calibration in computing
the probabilities. As a result, quasibinary classifiers can work
seamlessly in a variety of classification settings without the
need for any specialized adaptation. They work well in regular
single-label, multiple-class settings, as well as in multiple-
label multiple class settings. They even work well when none
of the labels are present in the image, that is out-of-distribution
classification [10], [17] where the out-of-distribution samples
are visible during training, but without any label attached
to them. Importantly, quasibinary classifiers yield calibrated
probabilities that can be used to compare predictions more
reliably amongst different classes and different images, see
Fig. 1.

We make the following contributions. First, we identify
restrictions of the widely used binary and softmax classifiers.
Second, on the basis of these restrictions, we propose quasi-
binary classifiers that learn a constant normalization function
shared among classes and data points to return well calibrated
binary outputs. Third, we show that quasibinary classifiers
perform well on a variety of classification settings that are
important in realistic application scenarios, including multiple-
or even zero-label out-of-distribution image classification.

II. BACKGROUND

Thanks to deep learning, probabilistic learning has become
the de facto choice for training classifiers [1]–[4]. Probabilistic
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Fig. 1: Comparison of quasibinary classifiers with binary
and softmax classifiers for zero-label and multi-label clas-
sification. While binary classifiers can in principle handle both
cases, the confidence scores are not credible. Softmax fails in
both cases as it restricts the sum of all the confidence to be
equal to one. Our proposed quasibinary classifiers are trained
jointly and assign credible confidence scores in both cases.

classifiers, be it binary or multi-class, maximize the (log-) like-
lihood p(Y |X) on the training data {X,Y } = {(x(i), y(i))}.
Specifically, both binary and multi-class classifiers assume the
following decomposition of the total probability

p(Y |X) =
∏
i

p(y(i)|x(i)) (1)

The decomposition in equation (1) is based on the assumption
that the class predictions y(i) are conditionally independent
given the input data points x(i). The classifiers are then
typically the neurons pk, k = 1, ...,K for K classes in the
ultimate layer of the neural network. For probabilistic training
of the classifiers the neurons pk must correspond to valid
probabilities, namely, pk ∈ [0, 1]. In a probabilistic, rather than
a frequentist perspective, this probability can also represent the
belief that one has in the event k being true or not.

A. Ensembles of sigmoid classifiers

For binary classifiers given K classes, the random variables
y
(i)
1 ∈ {0, 1}, ..., y(i)K ∈ {0, 1} of the i-th sample correspond

to the K independent predictions. These K random variables
follow a Bernoulli distribution, y(i)k ∼ Bernoulli(p(i)k ), which
means pk can be conveniently modelled by independent sig-
moids, that is

p
(i)
k = p(y

(i)
k |x

(i)) =
exp(z

(i)
k )

1 + exp(z
(i)
k )

(2)

where z(i)k = h(x(i)) is the k-th logit computed by the neural
network h(·) on the input x(i). The probability output space of
the Bernoulli random variable is complemented by p̄k, such
that p̄k = 1 − pk. This is guaranteed by the normalization
factor C(i)

k = 1 + exp(z
(i)
k ). Since binary classifiers work

independently for each class given a data sample, it is possible
to use the binary classifier in multi-label classification settings.
As binary classifiers do not consider the dependency between

classes, their performance is usually sub-optimal [13], [14],
[16], [19].

We note that while sigmoid activation functions have been
conflated with binary and independent classifiers, their func-
tion is simply to return binary decisions. Being independent
is a modeling choice. This is important to emphasize in
the context of the proposed quasibinary classifiers that we
introduce later.

B. Softmax classifiers

When having multiple classes in the training set while
knowing that each image contains only a single class, i.e.,
#label = 1, the classifier neurons are usually parameterized
by softmax functions. The softmax function models the proba-
bility of a categorical distribution parameterized by the means

p
(i)
k = p(y

(i)
k |x

(i); #label=1) =
exp(z

(i)
k )∑

j exp(z
(i)
j )

. (3)

We observe that both definitions of the binary classifier
and the softmax classifier in equations (2) and (3) have a
similar form. The numerator is precisely the same and equal
to the exponentiation of the logit z(i)k . We refer to this as the
scoring function s(i)k = exp(z

(i)
k ). The denominator, however,

is different. While in the binary classifier the denominator only
depends on the same logit z(i)k , in the softmax classifier the
denominator depends on the logits from all classes. This is
beneficial for optimization, as using the logits from all classes
couples together the otherwise independent scoring functions
and trains them jointly.

Despite the popularity and accuracy of softmax over the
binary classifier, however, the softmax classifier also suffers
from a limitation: the number of labels is not always known at
test time. Most notable for out-of-distribution data (#label=0)
and multiple-label data (#label=n). In both cases, the proba-
bility outputs are meaningless.

In this work, we are interested in defining a classifier that
inherits the flexibility of binary classifiers, while leveraging
the prior knowledge of the number of labels per sample that is
given for free for optimization. To this end, we present quasibi-
nary classifiers. Quasibinary classifiers seamlessly handle any-
label (even zero-label) classifications like a binary classifier,
but they can be trained in a coupled way like softmax. They
also return much more calibrated probabilities as per the
definitions recently introduced by Guo et al. [20].

III. QUASIBINARY CLASSIFIERS

A. Definition

As with the ensembles of binary classifiers, we want binary
decisions since in the image there can be multiple classes
present. That is, we have again random variables y

(i)
1 ∈

{0, 1}, ..., y(i)K ∈ {0, 1} mapped to the binary output space.
Different from the ensembles of binary classifiers, we do not
assume that these binary classifiers are independent to each
other. That is, we want the likelihood terms of the random
variables to be both binary and correlated.



In defining our model, we also start from Bernoulli random
variables. However, in the mean parameters of the Bernoulli
distributions we introduce a shared constant C that is not a ran-
dom variable and is shared across all likelihood terms across
classes (like softmax) and -importantly- all images. Namely,
our Bernoulli variables are modelled as y(i)k ∼ Bernoulli(qk),
where

q
(i)
k = q(y

(i)
k |x

(i), X\(i)) =
exp(z

(i)
k )

C(x(i), X\(i))
=

exp(z
(i)
k )

C(X)
. (4)

Note that, as intended, the normalization constant is shared
between samples and does not depend on specific classes.
Therefore, the predictions modelled by the Bernoulli random
variables are still binary but not independent. As such, qua-
sibinary classifiers can seamlessly work in multiple-label or
zero-label setting, where an image may contain several objects
from different classes or none at all. In the case of multiple
labels present in an image, each of the Bernoulli variables shall
return their confidence in the class being present or not, albeit
these confidences are not independent to each other. And in
the case the image contains no relevant objects, the Bernoulli
variables shall all return low confidence without being forced
to either select wrongly one of the classes as being present or
to assign the same likelihood to all wrong classes.

For the quasibinary classifiers we use the same scoring
function as the binary and softmax classifiers, that is an
exponential exp(·), which ensures positivity. Importantly, note
that now the normalization function depends on all the training
data, C(X). Namely, we have a normalization function that is
shared across all classes and training data points, as it depends
on the logits of all the training data points. This is crucial,
since (i) a shared normalization function across classes is able
to couple individual binary classifiers together, thus jointly
optimizing them while taking into account the knowledge of
how many labels are present. Moreover, (ii) having a shared
normalization function across training data points allows the
quasibinary scoring functions to “communicate” with each
other. Thus, the classifiers learn to predict confidence scores
that are comparable across classes and different data points,
thus returning better calibrated probabilities.

As with ensembles of binary classifiers, the probability
output space is complemented by p̄k = 1 − pk, thus having
the total sum p̄k + pk = 1, which is a requirement for a valid
probability space. Furthermore, for a valid probability space
we need to make sure that 0 < pk < 1, which is possible
by a careful choice of an activation function for the classifier
neurons. In the end, the joint likelihood is equal to

p(Y |X) =
∏
i

p(y(i)|X) =
∏
i

p(y(i)|x(i), X\(i)), (5)

where the conditioning variables x(i), X\(i)) together make up
for the X variable in the normalization constant C(X).

Choosing normalization function C(X). Clearly, the
choice of the normalization function is critical. There exist
several requirements.

First, we want our quasibinary classifiers to be jointly
optimized while exploiting the free prior knowledge of the
number of labels per training sample, i.e. #label = n where
n ∈ [0, 1, · · · ,K]. We can show that this prior knowledge
is equivalent to the following constraint in the predicted
probability qk, ∑

k

qk = #label. (6)

We provide the proof in the supplementary material. Note that
the reason for the sum of all qk being possibly greater than 1 is
that the presence (or not) of the various labels yk in a training
sample is not mutually exclusive. As a special case, consider
#label=1, equation (6) is exactly what the softmax classifier
enforces. A second requirement regarding the normalizing
function is computational tractability, as depending on all data,
x(i), X\(i), is potentially prohibitive.

B. Algorithm
In the previous section we explained that the normalization

function of quasibinary classifiers is a function shared across
classes and across data points. As this normalization function
is shared across all data points and classes, it needs to be a
constant function. This constant normalization function must
then be learned throughout the training so as to satisfy several
constraints. First, by the end of the training the probability
estimates must lie within the [0, 1] range. Second, the normal-
ization function must be trained to adhere to the constraint of
equation (6). That is, we want our quasibinary classifiers to
satisfy

arg max
∑
i,k

y
(i)
k log(q

(i)
k ) (7)

s.t. q(i)k ∈ [0, 1] ∀i, k (8)∑
k

q
(i)
k = #labels(i) (9)

Similar to stochastic gradient descent, we rely on stochastic
mini-batches B instead of the whole training set.

Training. Rather than enforcing the constraint in equa-
tion (6) for all samples, we relax the constraint to batch
level for computational tractability. Namely, given that our
normalizing function is a constant we have that

B∑
i

K∑
k

exp(z
(i)
k )/C =

∑
i

#label(i)

⇒ C =
1

N

B∑
i=1

K∑
k=1

exp(z
(i)
k ) (10)

where N is the total number of labels a batch of data has.
Following [21] we resort to Lagrange relaxation to derive the
final learning objective and optimize for the model parameters
θ

L(θ) =
1

B

B∑
i=1

K∑
k=1

y
(i)
k · log q

(i)
k −max(log q

(i)
k , 0), (11)

where log q
(i)
k = z

(i)
k − logC (12)
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Fig. 2: The normalization function C(X) converges over
time to a constant value on CIFAR100. We observe that the
mean and variance of the softmax normalization are up to 8x
larger than for the quasibinary normalization. The variance is
extreme due to alternating spikes (from 1.6e9 to 1e2). The
fluctuations continue with no convergence. That is expected,
as for softmax the normalization needs not to converge for
accurate classification. However, a fluctuating normalizing
constant means that scores between different images are hardly
comparable. Overall, softmax behaves completely opposite to
the quasibinary.

The summands correspond to the losses by the qk likelihood
terms. The second term makes sure that qk yields by the end
of the training a valid probability (in log-space the maximum
probability is 0).

Note that because of the Lagrange relaxation, it is not
theoretically guaranteed that qk will always be within the
(0, 1) range and thus yield a probability. However, we find
the optimizer is able to find good enough solution to satisfy
the constraint. In practice, we only observed a negligible
amount (∼ 0.1%) of violations i.e. (qk > 1) on test data,
which are simply clipped to [0,1] to makes sure qk are proper
probabilities. Similar optimizations for learning to compute
probabilities were also previously proposed in [22] with suc-
cess. Note also that during training time as the model gets
updated per iteration, C varies till convergence.

Training in batches. It is important to note that we define
the normalization function in equation (10) as a batch-level
implementation of equation (6). This means that the number
of labels changes per image. Also, just like other multi-label
classification settings, the total number of classes K is fixed
both at training and test. As the training is in batches, with
imbalanced datasets it is important to account for the class
frequencies in the batch constitution. We simply follow the
spirit of SGD to randomly select a mini-batch of samples [8],
[12], [18].

Testing. After training we substitute the normalization
function C(X) in equation (4) with the moving average of
C(mavg) as a constant to make prediction at test time. Thus,
unlike softmax classifiers that assume #label=1 on test data
to compute normalization factor, we do not need to make any
such assumptions.

Moving average of normalization constant. Since it is
inefficient to compute at test time the normalization factor C
based on training data, we track a moving average of C(t)

over training iterations,

C(mavg) = C(mavg) + α · C(t), (13)

where C(t) is the constant normalization function at iteration t,
see Fig 2. This is similar to batch-normalization. Note that just
like in batch normalization, the α smooths out the fluctuations
and helps the learnt constant to converge to a single value
consistent for all images, as shown in Fig. 2. Further, we
empirically find that the training is not negatively affected by
the moving average computation in terms of accuracy. We find
that the algorithm is rather robust in the choice of α with the
differences in the variance of C(mavg) up to 1e-2. We find that
setting α = 0.1 is good enough.

IV. RELATED WORK

A. Zero-label problems

In general, zero-label data refers to irrelevant samples that
belong to neither class of the in-distribution training data.
Recent deep models achieve good accuracy on in-distribution
data, but are known to be over-confident on out-of-distribution
data [10], [11]. Based on statistics of the softmax prediction,
Hendrycks and Gimpel [10] introduce a baseline detector
to differentiate misclassified samples from out-of-distribution
samples. They point out the softmax probabilities have a poor
direct correspondence to model confidence, but do not provide
a solution. Liang et al. [5] find that using temperature scaling
and adding small perturbations to the input data increases the
statistical significance of the softmax output for the in- and
out-of-distribution samples. This leads to an improvement in
detection performance.

Passively detecting zero-label out-of-distribution data based
on a trained model is not enough. Rather, one may opt to
build a model that is aware of out-of-distribution data during
training. To do so, Lee et al. [6] add two additional loss
terms upon the standard cross-entropy loss to train a softmax
classifier. The first loss models out-of-distribution data by
enforcing the softmax to output a uniform distribution predic-
tion. The second loss guides a generative adversarial network
to generate the most effective out-of-distribution samples for
training. In contrast, Hein et al. [11] introduce noise data
as out-of-distribution samples during training. With the same
intention as Lee et al. [6] to encourage an uniform distribution
prediction for out-of-distribution data, Hein et al. [11] propose
a loss function that suppresses the largest predicted confidence
from softmax.

In this paper, we continue the line of work on explicitly
modeling out-of-distribution data. However, instead of intro-
ducing new losses for the softmax classifier, we introduce
the quasibinary classifier which is able to handle out-of-
distribution data by design.

B. Multi-label problems

In most real life classification problems, one sample may
be associated with multiple labels at the same time, rather
than just one. For example, an image from a social network
can have multiple user tags and a medical image may show



none or multiple symptoms of a certain diseases. Multi-
label classification considers problems where the number of
labels for a sample is unknown. The traditional strategy is
to reduce the multi-label classification problem to multiple
binary classification problems [15]–[18]. When each class is
being modeled independently, an ensemble of binary classifiers
is able to make multi-label predictions. However, as binary
classifiers are trained independently, their confidence scores
lack calibration. As a result, binary classifiers have difficulty
when extended to multi-label problems with a large number
of classes.

Although softmax is exclusively designed for one-vs.-rest
classification, it is also being adapted to solve multi-label
classification [7]. For example, the softmax with cross-entropy
loss is trained to push the prediction of a multi-label sample to
be an equally weighted multi-hot vector. However, as softmax
forces the sum of the output predictions to be one, a softmax
classifier cannot provide credible confidence scores for multi-
label classification problems. Alternatively, one may transform
a multi-label classification problem into a ranking problem [8],
[9], [23]–[25]. Given training data, the objective is to learn a
model able to rank the most relevant labels above the irrelevant
ones. However, as such a strategy does not directly solve a
classification problem it cannot provide model confidence of
the predictions. In this paper, we are interested in building
a multi-label classifier that can provide reasonable model
confidence scores.

V. EXPERIMENTS

In this section, we evaluate the quasibinary classifier on
several classification problems, with a variety of benchmark
datasets and a Resnet18 [26] backbone. Although the evalua-
tion settings may depend on the specific problem, the training
settings are mostly the same. To avoid repeated description,
we first detail this common training setting for all models.

Common training protocol. All model parameters are
randomly initialized, following He et al. [3]. We use the SGD
optimizer with momentum set to 1e-4. The initial learning rate
is set as 0.1 and decreased by a factor of 10 after 50% and
75% of the epochs. We train all the models for 200 epochs
with a batch size of 64. For the quasibinary classifier, we
set the momentum of the moving average used to track the
normalization factor during training as 0.9.

A. One-vs.-rest image classification

Setup. First, we evaluate the performance of the quasibinary
classifier on the common image classification problem with
one ground truth label per image. While we are particularly
interested in the comparison with the binary classifier, we
also compare with the softmax classifier, known to be the
better solution for this problem. We choose four datasets,
i.e.CIFAR10 [27], CIFAR100 [27], Tiny-ImageNet and Ima-
geNet [28] with {10, 100, 200, 1000} classes respectively. The
total number of images for each of the three datasets are 60K,
60K, 110K, and 1200K, and for all datasets the images are
equally distributed over each class. Except for the ImageNet

TABLE I: One-vs.-rest image classification. Comparison of
top-1 error rate on CIFAR10, CIFAR100, Tiny ImageNet and
ImageNet, with the total number of classes being 10, 100,
200 and 1000. Binary classifiers are good for small amounts
of classes, but have difficulty to converge as the number of
classes increases. In that case our quasibinary classifier does
much better. For up to 200 classes it is even comparable with
the softmax classifier.

CIFAR10 CIFAR100 Tiny-ImageNet ImageNet

Binary classifier 4.8 35.4 × ×
Quasibinary classifier (Ours) 4.9 21.9 42.9 25.4

Softmax classifier 5.2 22.2 43.3 23.9

experiments where we use standard 224×224 input size, we
always use a 32×32 input size in order to share the same
network architecture. The top-1 error rate on the test sets is
reported.

One-vs.rest image classification results. We report results
with models trained with a Resnet18 [26] backbone in Table I.
Similar results were obtained with VGG16 and DenseNets, see
supplementary material. The performance differences between
the binary classifier and our quasibinary classifier are subtle
on CIFAR10, when there are only a small number of classes.
Already for 100 classes, on CIFAR100, our quasibinary classi-
fier does much better. When increasing the number of classes
further the binary classifier fails to converge. This is partially
due to the fact that each binary classifier models the likelihood
prediction independently. We further suspect the optimization
difficulty of binary classifiers on large class dataset is due to
the sigmoid activation function, which is known to saturate
easily [29]. Interestingly, the quasibinary classifier is even
competitive with the softmax classifier for classification prob-
lems up to 200 classes. For the more challenging ImageNet
setting with 1000 classes, the softmax classifier performs
better, as expected.

B. Zero-label image classification

Setup. Next, we evaluate the performance of the quasibinary
classifier in modeling zero-label image data. In particular, our
goal is to build a model that is able to separate out data
samples that belong to neither of the predefined classes (out-
of-distribution classes), while maintaining the classification
performance on the in-distribution classes. Similar to [6],
[11], we use out-of-distribution data for training. Previous
works [5], [6], [10], [11] construct out-of-distribution samples
by either taking natural image samples from other datasets
different from the training source or by synthesizing noise
images. As those out-of-distribution samples are usually easy
to distinguish from the source dataset, and consequently most
methods achieve near perfect performance, we construct a new
dataset based on CIFAR100.

In CIFAR60+40 the zero-label out-of-distribution data is
created to have more confusion with the in-distribution data.
The original CIFAR100 dataset has 20 coarse classes where
each of them is subdivided into 5 fine-grained classes. Thus, a



TABLE II: Zero-label image classification on CIFAR60+40.
Binary classifiers perform reasonable, but do not excel. Soft-
max based methods obtain good performance on either in-
distribution accuracy [6] or out-of-distribution MMC [11], but
cannot do both well. Our quasibinary classifier achieves good
performance on all measures.

IN OUT BOTH
Accuracy ↑ MMC ↓ AU-ROC↑

Binary classifiers [16], [18], [30] 77.8 % 14.7 % 0.901
Softmax + LUniform [6] 80.7 % 59.8 % 0.800
Softmax + LMaxConf [11] 45.2 % 7.4 % 0.764

Quasibinary classifier 80.6 % 6.9 % 0.913

total of 100 fine-grained classes are considered in CIFAR100.
We take the identical image data from CIFAR100 for CI-
FAR60+40, however, for each coarse class, 2 out of the 5 fine-
grained classes the labels are removed, meaning they become
our zero-label out-of-distribution samples. As a result, images
for 60 classes are retained as labeled in-distribution (IN) and
the images from the remaining 40 classes are treated as zero-
label out-of-distribution (OUT). Splits will be made available.

Baselines. We compare the quasibinary classifier with
three methods for modeling out-of-distribution data: 1) binary
classifiers; 2) softmax classifier with LUniform loss [6] that
minimizes KL-divergence of predicted probability distribution
for OUT samples w.r.t.a uniform distribution; and 3) softmax
classifier with LMaxConf loss [11] that suppresses the predicted
probability dimension with the maximum confidence for OUT
samples.

Evaluation. We consider three metrics: 1) Accuracy on IN
samples, 2) Mean of Maximum Confidence (MMC) [11] for
OUT samples and 3) AU-ROC measure to evaluate how good
a model can differentiate OUT from IN.

Results. We report results in Table II. The quasibinary
classifier and softmax with LUniform loss [6] obtain a similar
accuracy on IN samples, but softmax with LUniform loss fails
to suppress the MMC for OUT samples. Compared to the
softmax classifier with LMaxConf loss [11], the quasibinary
classifier obtains a slightly better MMC performance on OUT
samples, but a much better accuracy is achieved on IN samples
(80.6% vs 45.2%). What is more, since [6], [11] optimize the
softmax classifier towards a uniform distribution prediction for
OUT samples, they both have a theoretical upper bound for
MMC performance that is equal to 1/#classes. In theory, the
quasibinary classifier and binary classifier can both assign 0%
confidence to OUT data. However, in practice, we observe
binary classifiers obtain a suboptimal performance on the
accuracy for IN data and MMC for OUT data. We conclude
our quasibinary classifier is successful in modeling zero-label
samples.

C. Multi-label image classification

Setup. Last, we evaluate the quasibinary classifier for
multi-label image classification on NUS-WIDE [33] and MS-
COCO [34]. NUS-WIDE consist of 260K Flickr images with

TABLE III: Multi-label image classification. Although the
softmax returns good predictions in multi-label settings, their
calibrated confidence scores (ECE) suffer compared to the
proposed quasibinary classifiers, even when softened with
a temperature. This indicates that softmax classifiers make
unjustifiably overconfident predictions.

MS-COCO NUS-WIDE

F1↑ ECE(%)↓ F1↑ ECE(%)↓

Binary classifier [16], [18], [30] 51.2 26.8 40.7 23.6
Softmax [31] 54.7 32.2 43.2 25.8
Softmax w/ temperature [32] 54.7 31.4 43.2 24.6

Quasibinary classifier 54.7 2.8 43.5 3.3

(a) Binary classifier (b) Softmax classifier (C) Quasibinary classifier

Fig. 3: Reliability diagrams for multi-label classification on
MS-COCO, where being diagonal means a perfect calibrated
confidence prediction (with ECE=0). Our quasibinary classifier
achieves the best confidence calibration, leading to more
credible confidence scores.

81 classes selected from high frequency user tags. MS-COCO
consists of 120K images that are labeled by 80 object classes.
The average number of labels per image for the two datasets
are 2.41 and 2.94, respectively. We follow Gong et al. [8] to
remove 60K invalid images in NUS-WIDE and split the rest
into a 150K training set and a 50K test set. For MS-COCO,
we use the original training/validation splits, namely 82K for
training and 40K for testing. We compare three classifiers: 1)
binary classifiers [16], [18], [30], 2) Softmax classifier [7],
[9], [12] and 3) quasibinary classifier. We follow the setting
of Li et al. [9] to fine-tune a VGG16 [35] backbone for 20
epochs. During test time, the top-4 most confident predictions
are outputted as suggested by Li et al. [9].

Evaluation. For evaluation, we first follow the conventional
evaluation protocol to report macro F1 score, which assesses
the quality of the confidence score for ranking. However, we
are more interested in how credible the predicted confidence
scores are. Thus, we also report the Expected Calibration
Error (ECE) [20], which indicates how well the predicted
confidence score indicates the actual likelihood of the model
to make a correct prediction. Notice that ECE is mostly used
to evaluate the reliability of the top-1 confidence in single-
label classification problem. In our setting, we evaluate the
top-4 confidence reliability.

Results. We report results in Table III. Regarding the
F1 score, the performance of the quasibinary classifier and
softmax are similar, while the binary classifier is worse. This
is mainly because binary classifiers do not use the #labels



as a prior during training. Considering the ECE score, we
observe the quasibinary classifier improves the reliability of
the confidence predictions over binary classifiers and softmax
considerably. Further, we show in Fig. 3 the 10-bins reliability
diagrams [20] as a visualization of the ECE score, where
being diagonal means the accuracy of test samples in each bin
aligns with received confidence score, i.e. perfect calibrated
confidence prediction (with ECE=0). We again observe the
quasibinary classifier achieves the best performance. Although
modulating the temperature for softmax helps with over-
confident scores in one-vs-rest classification (data not shown),
when multiple labels are present the returned scores are still
overconfident. The reason is that even with multiple labels
the sum of outputs remains 1 and more than one logits must
still share the “max” score. Last, we show qualitative results
in Fig. 4. We observe that only the quasibinary classifier is
able to assign high confidence to multiple correct labels at
the same time. Most interestingly, we observe quasibinary
classifier helps to retrieve part of the missing annotations with
high confidence, e.g. “sunset” and “clouds” for the second
image of NUS-WIDE examples. We conclude that the qua-
sibinary classifier models multi-label classification problems
with credible confidence scores.

VI. CONCLUSION

Softmax and binary classifiers face difficulties in image
classification settings beyond the regular multi-class classifica-
tion. Characteristic examples are multiple class, multiple label
problems, where an image may contain more than one object.
Another example is the zero-label out-of-distribution problem,
where the image may contain none of the relevant labels.
To address the limitations of binary and softmax classifers,
we introduce the quasibinary classifiers. Quasibinary classi-
fiers define a novel normalization function that is learnable,
constant, and shared between classes and data points. This
allows them to compute probabilities that are better calibrated
and, thus, more directly comparable between classes as well
other data points. We show in a variety of settings and
datasets that quasibinary classifiers are considerably better
in image classification settings where regular binary and
softmax classifiers suffer, including zero-label and multi-label
image classification. Importantly, we show that quasibinary
classifiers yield well calibrated probabilities allowing for direct
and reliable comparisons not only between classes but also
between data points.
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MS-COCO examples

------------------ -------------------- --------------- ---------------- -------------------
book: 13.4%  person: 98.9%   person: 65.6%     person: 92.5%  person: 97.1%

laptop: 13.3%  baseballglove: 1.0%   car: 14.3%     skis: 7.4%  dining table: 0.9%
cell phone: 9.8%  baseball bat: 0.1%   truck: 13.0%     backpack: 0.1%   cup: 0.4%

mouse: 8.5%  sports ball: 0.0%   handbag: 1.5%    snowboard: 0.0%  bottle: 0.3%

------------------ -------------------- --------------- ---------------- -------------------
laptop: 16.9%  baseballglove: 34.4%     person: 17.0%    skis: 45.9%  person: 12.0%

cell phone: 13.5%  person: 31.2%    handbag: 12.9%     person: 35.6%  bottle: 11.5%
book: 12.3%    sports ball: 14.9%    car: 12.8%     backpack: 10.8%  dining table: 11.2%
bed: 11.3%  baseball bat: 13.3%    truck: 10.9%    snowboard: 2.4%   cup: 7.8%

------------------ -------------------- --------------- ---------------- -------------------
laptop:100.0%  baseballglove:100.0%   person:100.0%     person:100.0%  person:100.0%

cell phone: 72.1%   person:100.0%    handbag:100.0%     skis:100.0%  bottle:100.0%
book: 66.5%   baseball bat: 74.9%    truck:100.0%     backpack: 43.9%  dining table: 98.9%
bed: 65.1%  sports ball: 63.5%    car: 91.5%    snowboard: 11.6%   cup: 85.3%

(a) Binary classifiers

(b) Softmax

(c) Quasibinary classifiers (Ours)

COCO

NUS-WIDE examples

------------------ ------------------ ------------------ ------------------ ------------------
animal: 78.1% water: 28.5% buildings: 25.1% water: 71.0% sky: 43.5%

snow: 11.6% sky: 26.8% nighttime: 23.0% boats: 8.1% mountain: 21.1%
dog: 6.1% clouds: 22.3% water: 22.2% buildings: 6.5% clouds: 17.1%

person: 0.8% ocean: 14.6% reflection: 5.7% reflection: 3.6% valley: 11.5%

------------------ ------------------ ------------------ ------------------ ------------------
animal: 36.7% ocean: 19.1%   nighttime: 25.9%    water: 26.9% valley: 20.7%

snow: 28.2% sky: 17.6%   buildings: 16.3%    boats: 19.8% mountain: 19.8%
dog: 22.0%  clouds: 15.8%   water: 15.4%    buildings: 10.6%  sky: 15.4%
sky: 2.1% water: 13.6% reflection: 10.7% window: 7.9% clouds: 13.7%

------------------ ------------------ ------------------ ------------------ ------------------
dog:100.0% water:100.0% water:100.0% boats:100.0% mountain:100.0%

snow:100.0%  sunset:100.0% nighttime: 96.5% water: 96.6%  sky:100.0%
animal:100.0% sky:100.0%    reflection: 91.8%       window: 62.9% clouds: 90.3%

sky: 20.4%  clouds:100.0% buildings: 83.6% sky: 62.5% valley: 81.3%

(a) Binary classifiers

(b) Softmax classifier

(c) Quasibinary classifiers (Ours)

NUS-WIDE

Fig. 4: Multi-label image classification with credible confidence. We show the top-4 most confident predictions and scores
for all three classifiers, with the correct prediction being marked in bold font. The images are from NUSWIDE and MS-COCO.
While binary classifiers perform sub-optimal and softmax has to enforce the predictions to be summed to one, the quasibinary
classifier provides credible confidence scores by design.
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I. PROOF OF EQ. (6)

Given qk as the probability for a sample to be the k-th class,
we will prove that the sum of all qk equals the total number
of labels (#label) in the sample (Eq. (6) in the main paper),
i.e.: ∑

k

qk = #label (1)

As a quick explanation, we first show a simple example.
The mathematical proof is followed after.

Example. Let us consider a 3-class problem, e.g. {A,B,C}
and for a specific sample we have #label=2. We can decom-
pose the Bernoulli probabilities P (A), P (B) and P (C) for
each class into the summation of joint probabilities from a set
of mutually exclusive joint events. The decompositions are:

P (A) = P (ABC) + P (ABC) (2)

P (B) = P (ABC) + P (ABC) (3)

P (C) = P (ABC) + P (ABC) (4)

Note that #label=2 indicates a sample can only have 2 labels,
thus probabilities like P (ABC), P (ABC) are 0, since they
correspond to #label=1 and #label=3. As a result, we have

P (A) + P (B) + P (C) (5)

=2× (P (ABC) + P (ABC) + P (ABC)) (6)
=2× 1 (7)
=#label (8)

Problem definitions. Let us now consider a K-class problem.
We define a binary random variable Yk ∈ Ω = {0, 1} as
the event for a data sample to associate with the k-th label
(Yk = 1) or not (Yk = 0). Thus, P (Yk) follows Bernoulli
distribution, and we have

P (Ω) = p(Yk = 1) + p(Yk = 0) = 1 (9)
and P (Yk) ∈ [0, 1], (10)

where Ω = {Yk = 0, Yk = 1}.

If we assume Y1, · · · , YK are independent w.r.t. to each
other, we naturally have

0 ≤
K∑
k

P (Yk) ≤ K, where {Yk} are independent.

But now, given the constraint of #label = n, Y1, · · · , YK
are no longer independent. Essentially, Eq. (6) in the main
paper need us to prove:

K∑
k

p(Yk = 1) = n, given #label=n. (11)

Proof. We denote the event set Φ = ΩK as the joint
probability for a sample to have/not have each of the K labels
as:

J = (Y1, · · · , Yk, · · · , YK) ∈ Φ

Since each Yk has a binary choice and they are mutually
exclusive, the joint event space Φ is of size ||Φ|| = 2K , and∑

J∈Φ
P (J) = 1 (12)

Now, we know a sample only has n labels, i.e. #label=n,
the non-zero probability of joint event J corresponds to the n-
combinations of choosing n classes out of K to have Yk = 1.
We denote such a subset of the joint events space as Φ

(
K
n

)
,

which has a size of
(
K
n

)
= K!

n!(K−n)! .∑
J∈Φ(Kn)

P (J) = 1, when #label=n. (13)

Decomposing binary event p(Yk = 1) as the summation
of the joint probability like equations (2),(3),(4), we observe
each J ∈ Φ

(
K
n

)
contributes n times in such a decomposition

of each binary event p(Yk = 1) separately. Thus, according to
equation (13), we get:

K∑
k

p(Yk = 1) = n×
∑

J∈Φ(Kn)

P (J) = n (14)



II. MORE RESULTS ON ONE-VS.REST IMAGE
CLASSIFICATION

TABLE I: One-vs.-rest image classification. Comparison of
top-1 error rate on CIFAR10, CIFAR100 and Tiny ImageNet,
with the total number of classes being 10, 100, and 200. Binary
classifiers are good for small amounts of classes. Quasibinary
classifiers are competitive with softmax.

CIFAR10 CIFAR100 Tiny-ImageNet

ResNet18

Binary classifiers 4.8 35.4 ×
Quasibinary classifiers (Ours) 4.9 21.9 42.9
Softmax classifiers 5.2 22.2 43.3

DenseNet40

Binary classifiers 8.6 × ×
Quasibinary classifiers (Ours) 6.7 32.6 55.0
Softmax classifiers 6.4 31.2 53.0

VGG16

Binary classifiers 6.1 25.8 ×
Quasibinary classifiers (Ours) 8.3 25.5 48.9
Softmax classifiers 8.0 25.8 48.7
×: Failed to converge.
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