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ABSTRACT
Social image retrieval is important for exploiting the increas-
ing amounts of amateur-tagged multimedia such as Flickr
images. Since amateur tagging is known to be uncontrolled,
ambiguous, and personalized, a fundamental problem is how
to reliably interpret the relevance of a tag with respect to
the visual content it is describing. Intuitively, if different
persons label similar images using the same tags, these tags
are likely to reflect objective aspects of the visual content.
Starting from this intuition, we propose a novel algorithm
that scalably and reliably learns tag relevance by accumulat-
ing votes from visually similar neighbors. Further, treated as
tag frequency, learned tag relevance is seamlessly embedded
into current tag-based social image retrieval paradigms.

Preliminary experiments on one million Flickr images de-
monstrate the potential of the proposed algorithm. Overall
comparisons for both single-word queries and multiple-word
queries show substantial improvement over the baseline by
learning and using tag relevance. Specifically, compared
with the baseline using the original tags, on average, re-
trieval using improved tags increases mean average precision
by 24%, from 0.54 to 0.67. Moreover, simulated experiments
indicate that performance can be improved further by scal-
ing up the amount of images used in the proposed neighbor
voting algorithm.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.2.4 [Database Management]: Sys-
tems—Multimedia databases

General Terms
Algorithms, Design, Experimentation
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Social image retrieval, Tag relevance, Neighbor voting
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1. INTRODUCTION
Social multimedia sharing systems have successfully moti-

vated amateur users around the world to tag and share their
content on the web. A good example is Flickr which hosts
more than two billion images, and receives around three mil-
lion new uploaded photos per day [1]. Apart from its usage
for general purpose retrieval, this rich multimedia database
is triggering many innovative research scenarios in area as
diverse as personalized multimedia retrieval [24], landmark
recognition [16], visual query construction [30], and auto-
matic image labeling [29]. For all these scenarios, one would
expect tag-based retrieval approaches to be a good starting
point for search.

Despite the success of amateur tagging, tags are known to
be ambiguous, limited in terms of completeness, and overly
personalized [10, 21]. This is not surprising because of the
uncontrolled nature of social tagging and the diversity of
knowledge and cultural background of its users. Note that
the relevance of a tag given the visual content is subjective.
Relevance is indeed a relationship between an image and a
user. Nonetheless, to find images relevant to a majority of
users, an objective criterion of tag relevance is required. We
define a tag and an image as relevant if the tag accurately
describes objective aspects of the visual content, meaning
the content can be easily and consistently recognized by
common knowledge. Consider the examples in Figure 1.
When we seek an airplane object and submit an “airplane”
query to Flickr, the result typically includes inside scenes
like persons in seats or aerial views from airplane windows
depicting clouds and grounds. The airplane tag for Figure
1-c,d is subjective because the airplane concept is not easily
and consistently captured by common users. Apart from the
fact that tags can be subjective, individual tags are mostly
used once per image. This implies that within an image,
relevant tags and irrelevant ones are not distinguishable by
their occurrence frequency. Hence, given the fact that tags
are ambiguous, noisy, and limited, a fundamental problem
in social image retrieval is how to reliably learn the relevance
of a tag with respect to the visual content it is describing.

Existing methods to automatically predict tag relevance
with respect to the visual content often heavily rely on com-
plicated machine learning algorithms [2, 4, 17]. In general,
the methods boil down to learning a mapping between low-
level visual features and high-level semantic concepts. Com-
pared to a potentially unlimited vocabulary existing in social
tagging, currently only a very limited number of visual con-
cepts can be effectively modeled using small-scale datasets.
Moreover, uncontrolled visual content contributed by ama-



Figure 1: Social tagging examples. Images (a) and (b)

are objectively tagged as“airplane”, while images (c) and

(d) are subjectively tagged as “airplane”.

teurs creates a broad domain environment having significant
diversity in visual appearance even for the same concept [25].
The scarcity of training examples and the significant diver-
sity of visual appearance might make the learned models
unreliable and hardly generalizable.

Intuitively, if different persons label visually similar im-
ages using the same tags, these tags are likely to reflect
objective aspects of the visual content. The intuition im-
plies that the relevance of a tag with respect to an image
might be inferred from tagging behavior of visual neighbors
of that image. Starting from this intuition, we propose a
novel neighbor voting algorithm for learning tag relevance.
The key idea is, by propagating common tags through vi-
sual links induced by visual similarity, each tag accumulates
its relevance credit by receiving neighbor votes. To demon-
strate the viability of the proposed algorithm, we provide a
systematic evaluation on one million Flickr images.

The rest of the paper is organized as follows. Section 2
reviews related work. Learning tag relevance is described in
Section 3. The experimental setup is in Section 4, followed
by results in Section 5. The paper is concluded in Section 6.

2. RELATED WORK
Many methods have been developed to improve multi-

media search where textual descriptions of visual content
are vague, e.g., web images [8, 23] and news videos [31,
11]. These methods might also be used to improve so-
cial image retrieval. We divide them according to their
query-dependence into two types of approaches, i.e. query-
dependent and query-independent approaches.

2.1 Query-dependent Approaches
Given a user query, query-dependent approaches try to

improve search results either by reranking search results us-
ing pseudo relevance feedback algorithms [31, 23, 8, 11] or
by expanding the original query [20, 5, 3].

Reranking methods assume that the majority of search
results are relevant to the query and relevant examples tend
to have similar visual patterns such as color and texture. To
find the dominant visual patterns, density estimation meth-
ods are often used, typically in the form of clustering [23, 11].
However, density estimation is known to be inaccurate when
feature dimensionality is high and samples are insufficient,
which is mostly the case in the reranking scenario. Besides,
density estimation is computationally expensive. In [11] for
example, the authors report an execution time of 18 seconds
per search round, while a study on web users [22] shows the
tolerable waiting time for web information retrieval is ap-
proximately 2 seconds. The difficulty in density estimation

and the associated computational expense put the utility of
reranking methods for social image retrieval into question.

Query expansion methods augment the original query by
adding relevant terms [20, 5, 3]. The methods are either
lexicon-driven or corpus-driven. In [5], for instance, the au-
thors use synonyms from WordNet [7], whereas in [20] the
authors select strongly related terms from snippets returned
by Google web search. Another example is [3], where the
authors rely on clustering techniques to find correlations be-
tween tags. Though the methods may recall more relevant
results as more query terms are used, they leave the funda-
mental problem of noisy amateur tagging unaddressed.

2.2 Query-independent Approaches
The query-independent approaches improve tagging qual-

ity either by adding new annotations [2, 4, 17] or by remov-
ing existing noisy ones [14, 28]. Most of the approaches are
model-based. That is, by treating tags as visual concepts,
they first train concept classifiers for each tag and then use
the learned classifiers to predict relevant image tags. Despite
their success in small-scale image databases, however, such
model-based approaches are not scalable to handle a mas-
sive amount of social-tagged images. The scarcity of learning
examples and the significant diversity in visual appearance
might make the learned classifiers unreliable and hardly gen-
eralizable. Furthermore, training such a large amount of
classifiers is computationally prohibitive.

More recently, a new “model free” method is developed
to learn visual concepts from web images, e.g. [29, 26].
The intuition is assuming there exists a well-annotated and
unlimited-scale image database such that for any unlabeled
image outside the database, we can find its visual duplicate.
Then, annotating an unlabeled image can be done by first
finding its duplicate from the database and then propagating
tags from the duplicate to that image. In a more realistic
case where the database is very large, e.g., images on the
web, we can still find a set of visually similar images for a
given image, and use tags of neighbor images to annotate
the given image. However, due to the semantic gap prob-
lem [25], i.e., the inconsistency between visual similarity and
semantic similarity, irrelevant tags may be also propagated.

Note the query-independent approaches optimize the im-
age annotation problem, an intermediate step for retrieval.
They might be suboptimal for the retrieval goal. Besides,
to search the massive amount of social-tagged images, an
effective and scalable retrieval framework is crucial. Conse-
quently, how to effectively and flexibly leverage learned tag
relevance information within the retrieval framework is an
important and practical requirement. However, this prob-
lem is overlooked or at least understudied in previous work.

2.3 Contribution of This Work
Our neighbor voting algorithm is query-independent. Dif-

ferent from other query-independent approaches that target
at addding new annotations or removing noisy ones [17, 14],
our method preserves original tags but estimates tag rele-
vance by votes from visually similar neighbors. The neigh-
bor voting framework does not impose any model training
for any visual concepts. It is thus scalable to handle a large
amount of social-tagged images. Our method shares simi-
lar spirits with the “model-free” method [29, 26], since both
methods can be regarded as propagating tags between neigh-
bor images. Nonetheless, our method has two distinguish-



able novelties. First, only common tags shared by neighbors
are propagated. We do not introduce new tags to an im-
age. Such self-validation mechanism reduces the risk of in-
correctly propagating irrelevant tags, which is caused by the
inconsistence between visual similarity and semantic similar-
ity. Second, the neighbor voting process directly optimizes
the retrieval problem. When the neighbor search is bet-
ter than random sampling, learned tag relevance is a good
ranking criterion. Finally, tag relevance, treated as tag fre-
quency, is flexibly integrated into a scalable tag-based re-
trieval framework. The scalability, reliability, and flexibility
of our method make it promising for real applications.

3. LEARNING TAG RELEVANCE
3.1 Problem Formulation
3.1.1 Tag relevance for image retrieval

We introduce some notations first. Given an image col-
lection I, a tag vocabulary T , and a user set U , we define
three indicator functions to describe relationships between
images, tags, and users. That is, for image I ∈ I, tag w ∈ T ,
and user u ∈ U ,

8

<

:

s(I, w) = 1, if I is tagged as w, 0 otherwise
r(I, w) = 1, if I and w are relevant, 0 otherwise
h(I, u) = 1, if I is tagged by user u, 0 otherwise

Let Lw = {I ∈ I|s(I, w) = 1} be images tagged as w,
Rw = {I ∈ I|r(I, w) = 1} images relevant to w, and R̄w =
{I ∈ I|r(I, w) = 0} images irrelevant to w. We further
denote P (w|Rw) as probability of correct tagging, i.e., an
image relevant to w tagged as w. Similarity, P (w|R̄w) is
probability of incorrect tagging, i.e., an image irrelevant to
w tagged as w. Since |R̄w| � |Rw| in general, P (w|R̄w) <

P (w|Rw).
Given query tag w, its search result set Lw consists of two

distinct subset. One is Lw

T

Rw, the image set relevant to
the query. The other is Lw

T

R̄w, the image set irrelevant to
the query.

T

is the intersection operator on image sets. A
good ranking function ranks images from Lw

T

Rw ahead of
those from Lw

T

R̄w. Clearly, if we can accurately estimate
tag relevance with respect to the visual content, we solve
the retrieval problem. Since individual tags are typically
used once per image, estimating tag relevance by tag fre-
quency, a well-founded principle in document retrieval [15],
is unfeasible here.

3.1.2 Learning tag relevance from neighbors
Let f be a visual similarity function between two images.

For each image I ∈ I, we denote its k nearest neighbors
found in I by f as NNf (I, k). We use nf (I, k, w) to repre-
sent the count of tag w in NNf (I, k), i.e.,

nf (I, k, w) = |{J ∈ I|J ∈ NNf (I, k), s(J, w) = 1}| (1)

where image J is a neighbor of image I. We argue that
nf (I, k, w) is a good estimation of tag relevance.

For image I ∈ Lw, its neighbor set NNf (I, k) is decom-
posed into two distinct subset. One subset consists of images
from Rw. The other consists of images from R̄w. Specifi-
cally, for image I ′ ∈ Lw

T

R̄w, we assume that NNf (I ′, k)
has β examples from Rw and k−β examples from R̄w, where
0 ≤ β ≤ k. Similarly for image I ′′ ∈ Lw

T

Rw, NNf (I ′′, k)

has β + ε examples from Rw and k − β − ε examples from
R̄w. ε is a variable indicating the quality of k-nn search us-
ing the similarity function f . If we use random sampling to
find neighbors, E[ε] = 0. E[•] is the expectation operator.
For a k-nn search using f ,

E[ε] =

8

<

:

> 0, if it is better than random sampling
= 0, if it is equal to random sampling
< 0, otherwise

Now for image I ′ ∈ Lw

T

R̄w, we have

E[nf (I ′
, k, w)] = E[β · P (w|Rw) + (k − β) · P (w|R̄w)] (2)

For image I ′′ ∈ Lw

T

Rw, we have

E[nf (I ′′, k, w)]
= E[(β + ε) · P (w|Rw) + (k − β − ε) · P (w|R̄w)]
= E[β · P (w|Rw) + (k − β) · P (w|R̄w)]

+E[ε](P (w|Rw) − P (w|R̄w))
= E[nf (I ′, k, w)] + E[ε](P (w|Rw) − P (w|R̄w))

(3)

and

E[nf (I ′′
, k, w) − nf (I ′

, k, w)] = E[ε](P (w|Rw) − P (w|R̄w))

If E[ε] > 0, we get E[nf (I ′′, k, w)− nf (I ′, k, w)] > 0, mean-
ing Lw

T

Rw and Lw

T

R̄w are expectedly distinguishable
by nf (I, k, w). Therefore, when the k-nn search is better
than random sampling, n(I, k, w) is a good measure of the
relevance of tag w with respect to image I.

3.2 A Neighbor Voting Algorithm
We have argued that learning tag relevance boils down to

computing n(I, k, w), i.e., the count of tag w in the k nearest
neighbors of image I. Considering that each neighbor of I

votes on w if itself is tagged as w, then n(I, k, w) is the
count of neighbor votes on w. Accordingly, we introduce
a neighbor voting algorithm (Algorithm 1). Given a user-
tagged image I, we first perform k-nn search to find its visual
neighbors NNf (I, k). Then, for each neighbor image, we use
its tags to vote on tags of image I. The key idea is illustrated
in Figure 2.

Algorithm 1 Learning tag relevance by neighbor voting

Input: Image I ∈ I tagged by user u ∈ U .
Output: nf (I, k, w), i.e., relevance value of each tag w in I.

Find NNf (I, k), the k nearest neighbors of I.
for w ∈ {w′ ∈ T |s(I, w′) = 1} do

nf (I, k, w) = 0
end for
for image J ∈ NNf (I, k) do

if h(J, u) = 0, i.e., not the same user then
for w ∈ {w′ ∈ T |s(J, w′) = 1, s(I, w′) = 1} do

nf (I, k, w) = nf (I, k, w) + 1
end for

end if
end for

Recall the intuition that if different persons use the same
tags to label visually similar images, the tags are likely to
be relevant to the visual content it is describing. We follow
the intuition by imposing a user-related restriction in the
algorithm: image J ∈ NNf (I, k) is excluded in the voting
process if there exists user u ∈ U such that h(I, u) = 1 and
h(J, u) = 1. In other words, neighbor images from the same
user of the seed image are ignored in the voting process.



Figure 2: Learning tag relevance by neighbor voting. The relevance value of each tag is estimated by accumulating

neighbor votes it receives from visually similar images of the seed image. For instance, five neighbors of the seed image

are tagged as bridge. So the relevance value of bridge with respect to the seed image is 5.

3.3 Searching Visual Neighbors
Visual feature representation. Visual similarity be-

tween two images are measured by the similarity between
corresponding visual features. Though numerous work have
been done for visual feature representation, it is still a chal-
lenging problem for content-based image retrieval [25, 6].
Features efficient for extraction and effective for searching
large-scale image sets are needed to handle the increasing
amounts of social-tagged images. We choose a combined
64-dimensional global feature for its empirically success in
searching millions of web images [18, 27]. The feature is cal-
culated as follow. For each image, we extract 44-dimensional
color correlgoram in the 44-bin HSV color space [12], 14-
dimensional color texture moments [32], and 6-dimensional
RGB color moments. We separately normalize the three fea-
tures into unit length and concatenate them into the final
64-d feature. The dissimilarity between images are measured
using the Euclidean distance between features.

Searching millions of images by content. To search
millions or even billions of images by content, efficient index-
ing algorithms are imperative for speed up. Though high di-
mensional indexing has been studied over decades, it is still
a difficult problem. We adopt K-means clustering based
indexing methods for their empirical success in large-scale
content-based image retrieval [9, 19]. First for indexing, we
divide the whole dataset into smaller blocks by K-means
clustering. Then for a query, we find neighbors within fewer
blocks closest to the query. The search space is thus re-
duced. The advantages of the architecture are its efficiency
for retrieval and its flexibility for updating existing indexes.

4. EXPERIMENTAL SETUP
We evaluate the proposed neighbor voting algorithm within

a retrieval framework.

4.1 Tag-based Social Image Retrieval
We employ a general tag-based retrieval pipeline used in

existing systems such as Flickr. The retrieval system indexes
tags of Flickr images. We adopt Okapi BM25, a well-founded
ranking function for text retrieval [15]. Given a query q

containing keywords {w1, . . . , wn}, the relevance score of an
image I is computed as,

score(q, I) =
n

X

i=1

qtf(wi)idf(wi)
tf(wi) · (k1 + 1)

tf(wi) + k1 · (1 − b + b · LI

Lave
)

Here, qtf(wi) is the frequency of tag wi in query q, tf(wi)
the frequency of wi in image I, LI the total number of tags in
I, and Lave the average value of LI over the whole collection.

idf(wi) = log N−|Lw|+0.5

|Lw|+0.5
is the inverse document frequency

(idf) weight of wi, where N is the total number of images
in the collection, and |Lw| the number of images tagged as
wi. Since individual tags are typically used once per image,
original tf(w) is 1. We substitute tf(w) by nf (I, k, w) +
tf(w). It is in this manner that we seamlessly embed learned
tag relevance into the retrieval framework. The variable
k1 is a positive parameter for regularizing the effect of tag
frequency. The other parameter b (0 ≤ b ≤ 1) determines
the scaling by LI . We refer to [15] for more discussion. In
general, k1 and b need to tune for specific datasets.

4.2 Datasets
We download one million tagged images from Flickr using

its API service (http://www.flickr.com/services/api/).
The images are of medium size with maximum width or
height fixed to 500 pixels, and cost 110 GB disk storage
in total. The whole dataset has 227,658 unique tags (after
Porter stemming) and 96,410 unique user ids.

Since no benchmark dataset is available, we construct a
ground truth set for evaluation. Due to the expense of hu-



man labeling, we select 10 queries, consisting of 8 object-
level concepts (airplane, bicycle, boat, bridge, car, dog, flower,
and tiger) and 2 scene-level concepts (beach and mountain).
For each concept, we adopt definitions from WordNet [7],
and divide examples into two distinct groups in light of rel-
evance and image quality, that is,

• relevant examples: non-blurred images with objects or
scenes of the concept clearly visible, without any oc-
clusion. Real world stuff, not toys, cartoon, painting,
statues, etc. Should be an external view if the concept
is an object.

• irrelevant examples: all images not meeting the rele-

vant examples standards, e.g., objects or scenes of the
concept are invisible, occluded, or rather insignificant
in the whole image.

The definitions and examples of concepts are listed in Ta-
ble 1. For each concept, we randomly select 1000 examples
from images tagged as the concept keyword from the Flickr
database, and label them according to our labeling criterion.
The ground truth statistics is summarized in Table 2.

4.3 Evaluation Criteria
Since users often view fewer result pages [13], images rel-

evant to user queries should be ranked as high as possible.
Meanwhile, ranking quality of the whole list is important
not only for user browsing, but also for applications using
search results as a starting point. We evaluate both as-
pects by employing Precision at top X and Average Pre-

cision. Given a ranked list L with length n, Precision at

top X=
No. of relevant results in top X

X
, where X � n. We

choose X = 5, 10, 20. Average Precision is computed as
1

R

Pn

j=1

Rj

j
Ij , where R is the number of relevant instances

in L, Rj the number of relevant instances among the top
j ranked instances, Ij = 1 if the j-th instance is relevant
and 0 otherwise. To evaluate the overall performance, we
use Mean Average Precision (MAP), the mean value of AP
scores over all queries.

4.4 Experiments
We index original image tags in a baseline system, called

Baseline hereafter. Meanwhile, we index the same tags using
learned tag relevance value as tag frequency in a new system,
called Neighbor henceforth. By comparing search accuracy
between the two systems, we demonstrate how the proposed
algorithm improves social image retrieval.

In total, there are three system parameters to investigate.
One is k, the number of neighbors for voting. The other
two are k1 and b in the BM25 ranking formula. Since k1

does not affect ranking for single-word queries, we divide
the evaluation into two settings, i.e., one using single-word
queries and the other using multiple-word queries.

Experiment-1: Single-word query. We try various
parameter combinations by choosing the neighbor number
from {10, 50, 100, 200, 500, 1000, 2000, 3000, 5000, 10000,
20000} and ranging b from 0 to 1 with interval 0.1. Since k1

does not affect ranking, we set k1 to 2, a common choice in
text retrieval [15].

Experiment-2: Multiple-word query. In this part,
we study queries consisting of multiple keywords. We sim-
ulate the scenario by expanding single-word queries. That

Table 1: Definition and visual examples of ten queries

used for our experiments with one million Flickr images.

Examples

Query Definition Relevant Irrelevant

airplane

A heavier than air,
fixed-wing aircraft
- gliders included.
NOT balloons, he-
licopters, missiles,
and rockets.

beach

An area of sand
sloping down to
the water of a
sea or lake, with
both sand and wa-
ter visible.

bicycle

A wheeled ve-
hicle that has
two wheels and
is moved by foot
pedals.

boat

A vessel for travel
on water, e.g.,
canoe, rowboat,
kayak, hydrofoil,
hovercraft, air-
craft carrier, and
submarine.

bridge

A structure that
allows people or
vehicles to cross
an obstacle such
as river, canal, or
railway.

car

A motor vehicle
with four wheels;
usually propelled
by an internal
combustion en-
gine.

dog

A member of the
genus Canis that
has been domesti-
cated by man since
prehistoric times.

flower

a plant cultivated
for its blooms or
blossoms.

mountain

A land mass that
projects well above
its surroundings,
higher than a hill,
with the slopes
visible.

tiger

Large feline of
forests in most
of Asia having a
tawny coat with
black stripes.

is, for each query, we first find synonyms from both Word-
Net [7] and an online English Synonym Dictionary (http:
//dico.isc.cnrs.fr/dico/en/search). We then manually
select and add four most relevant terms to the original query.
If less than four synonyms are found, we add them all. The



Table 2: Ground truth statistics for our evaluation.

Each query has 1000 manually labeled examples. Pre-

cision is No of relevant images / 1000.

Query Total no. of images in the database Precision

airplane 5622 0.451
beach 60631 0.331
bicycle 4062 0.295
boat 16771 0.417
bridge 13968 0.471
car 31076 0.548
dog 41494 0.846
flower 63006 0.829
mountain 29068 0.502
tiger 1982 0.224

Table 3: Expanded query terms for Experiment-2.

Original query New query

airplane airplane, airbus, aircraft, aeroplane, plane
beach beach, seashore, seaside, shore, strand
bicycle bicycle, bike, cycle, pedal, wheel
bridge bridge, connect, cross, link, span
boat boat, barge, craft, ship, vessel
car car, auto, automobile, machine, motorcar
dog dog, canine, cur, mongrel, mutt
flower flower, bloom, blossom, flourish, prosper
mountain mountain, heap, stack
tiger tiger, Panthera, tigris

expanded queries are listed in Table 3. In each new query,
we empirically set the query term frequency of the original
query term to 5 and that of new added terms to 1 such that
the original query is not overwhelmed. We try k1 from {1,
2, 4, 8, 16} and range b from 0 to 1 with interval 0.1.

Experiment-3: The impact of database size. Since
the amount of social-tagged images is rapidly increasing,
an interesting problem is whether the neighbor voting algo-
rithm will improve search accuracy as the database grows.
We conduct a simulated experiment to gain insight into the
problem. The experimental procedure is as follows. First,
we construct a subset of size x by randomly select x im-
ages from the whole 1M database. x is ranged from 100K
to 1M with interval 100K. Then, we use the selected subset
to learn tag relevance for images in the evaluation set. The
procedure is repeated 10 times for each x.

5. RESULTS
5.1 Experiment-1: Single-word Query

As shown in Figure 3, Neighbor clearly outperforms Base-

line for all parameter settings. The result verifies the ef-
fectiveness of the proposed algorithm. One interesting ob-
servation is different behavior of the ranking parameter b

in the two systems. Baseline tends to perform well when
b approaches 1. By contrast, Neighbor improves as b ap-
proaches 0. Recall that b controls the impact of normalizing
scores by the total number of tags within an image. Since
tag frequency is not discriminative in original tagging, the
baseline system heavily relies on the normalization factor.
While in the new system, tag frequency becomes more dis-
criminative to distinguish relevant examples from irrelevant
ones after tag relevance learning. This observation further
demonstrates the effectiveness of learning tag relevance by
neighbor voting.
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Figure 3: Experiment-1: Single-word query. We evalu-

ate overall search performance by MAP.
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Figure 4: Improvement percentage of MAP over the

oracle baseline with respect to the number of neigh-

bors. The oracle baseline is reached at b = 0.8 with

MAP=0.544.

The neighbor voting algorithm is also robust. As shown
in Figure 4, Neighbor (k1 = 2, b = 0.1) consistently outper-
forms the oracle Baseline (k1 = 2, b = 0.8). Specifically, we
reach at least 20% improvement of MAP when the neigh-
bor number is widely ranging from 200 to 10000. In two
extreme cases when the neighbor num is very small or very
large, Neighbor degenerates to Baseline. We fix the number
of neighbors to 1000 throughout the rest of experiments as
a moderate trade-off between accuracy and efficiency.

We further provide a per-query comparison. The parame-
ters for Neighbor are k = 1000, k1 = 2, b = 0.1, and those for
Baseline are k1 = 2, b = 0.8. Evaluation results using Preci-

sion at top 5,10,20 and Average Precision are summarized
in Table 4. Top ten search results are presented in Figure
5. Neighbor improves Baseline in general. On average, we
improve MAP by around 24%. An interesting result is the
query “tiger”. The top results of Baseline are either tigers of
distance view or cats. While in top results of Neighbor, such
examples are brought down. Instead, tigers of close-up view
are ranked top. Note that irrelevant images of toy tigers or
places named tigers are brought up as well. There might be
two reasons for this. First, the “tiger” query is itself very
ambiguous. Second, there are only 1982 images tagged as
tiger in our Flickr database (see Table 2). The insufficient
examples may weaken the estimation of tag relevance.

5.2 Experiment-2: Multiple-word Query
Similar to the single-word query scenario, Neighbor im-

proves Baseline with a clear margin for all parameters, as
shown in Figure 6. The result again shows the effectiveness
of the proposed algorithm. We notice for both systems, the
ranking parameter k1 dose not affect the performance much.



Figure 5: Top ten search results of ten queries. (a) is the baseline results, and (b) the results using learned tag

relevance as tag frequency for retrieval. Green color denotes relevant examples, and red color for irrelevant ones.

Table 4: Per-query comparison. Baseline is the baseline system. Neighbor is the new system using learned tag

relevance as tag frequency for retrieval. Bold numbers in the table indicate top performers.

Precision at Top 5 Precision at Top 10 Precision at Top 20 Average Precision

Query Baseline Neighbor Baseline Neighbor Baseline Neighbor Baseline Neighbor

airplane 0.80 0.80 0.60 0.70 0.45 0.70 0.42 0.59

beach 0.40 1.00 0.50 0.90 0.50 0.85 0.50 0.63

bicycle 0.20 0.80 0.40 0.60 0.25 0.45 0.28 0.40

boat 0.40 1.00 0.60 0.90 0.55 0.75 0.46 0.57

bridge 0.60 1.00 0.50 1.00 0.55 0.85 0.52 0.60

car 1.00 0.80 0.80 0.80 0.55 0.90 0.62 0.72

dog 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.92

flower 1.00 1.00 0.90 1.00 0.90 1.00 0.89 0.96

mountain 0.80 1.00 0.90 0.90 0.70 0.85 0.53 0.76

tiger 0.40 0.00 0.50 0.45 0.50 0.60 0.42 0.50

average 0.66 0.84 0.67 0.82 0.59 0.80 0.54 0.67
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Figure 6: Experiment-2: Multi-word query. We evalu-

ate overall search performance by MAP.

5.3 Experiment-3: The Impact of Database Size
The search performance, i.e., MAP, improves, as the database

size x increases (see Figure 7). To model the relationship be-
tween x and MAP, we approximate the mean value curve by
a log function f(x) = 0.0113 × ln x

100000
+ 0.6407. If the

rules holds when one billion images are used, we will obtain
an MAP of 0.74, meaning 37% improvement over the oracle
baseline.

6. CONCLUSIONS
Since amateur tagging is known to be ambiguous, noisy,

and personalized, a fundamental problem in social image re-
trieval is how to reliably learn the relevance of a tag with
respect to the visual content it is describing. In this paper,
we propose a neighbor voting algorithm as an initial step
towards solving the problem. The key insight is to learn
the relevance of a tag with respect to an image from tagging
behavior of visual neighbors of that image. Specifically, esti-
mating tag relevance boils down to counting neighbor votes
on tags. For a query tag, we show that if the visual neigh-
bor search is better than random sampling, the relevant set
to the query and the irrelevant set are distinguishable by
learned tag relevance. The advantage of the proposed algo-
rithm are three-fold: 1) reliable, since only common tags are
propagated between neighbors without introducing new tags
to an image. Such self-validation scheme reduces the risk of
incorrectly propagating irrelevant tags; 2) scalable, since the
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Figure 7: Experiment-3: The impact of database size.

Search performance of the Neighbor system improves as

the database size increases.

proposed method does not require any model training for
any visual concepts; 3) flexible, since learned tag relevance
information, treated as tag frequency, can be seamlessly em-
bedded into current tag-based retrieval framework.

Experiments on one million Flickr images verify the pro-
posed algorithm. We study retrieval performance for both
single-word queries and multiple-word queries. Overall per-
formance comparisons and per-query analysis show the effec-
tiveness of the algorithm. Compared with the baseline using
the original tags, on average, retrieval using improved tags
increases mean average precision by 24%, from 0.54 to 0.67.
Furthermore, simulated experiments predict that when one
billion images are used, we might obtain an MAP of 0.74,
meaning a 37% improvement over the baseline.
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