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Abstract— Social image analysis and retrieval is important
for helping people organize and access the increasing amount
of user-tagged multimedia. Since user tagging is known to be

uncontrolled, ambiguous, and overly personalized, a fundamental bridge
problem is how to interpret the relevance of a user-contributed User -—->bicycle

tag with respect to the visual content the tag is describing. Tagging erfect
Intuitively, if different persons label visually similar images using  |Images — P .

the same tags, these tags are likely to re ect objective aspects|tags ----» MyWinners

of the visual content. Starting from this intuition, we propose
in this paper a neighbor voting algorithm which accurately and
ef ciently learns tag relevance by accumulating votes from visual Fig. 1. Dataow of user tagging. According to whether a tag is relevant
neighbors. Under a set of well de ned and realistic assumptions, With respect to a given image, we divide user-contributes ia® two types,

we prove that our algorithm is a good tag relevance measurement N2mMely objective and subjective tags. The objective tagsamked by an

for both image ranking and tag ranking. Three experiments on italic font. In this exa_mple, tadridge is objective, while the o_ther three tags
3.5 million Flickr photos demonstrate the general applicability are subjective. We aim for automated approaches to learagpgeievance.

of our algorithm in both social image retrieval and image tag

suggestion. Our tag relevance learning algorithm substantially . . .

improves upon baselines for all the experiments. The results the visual content, or in other words, users with common

suggest that the proposed algorithm is promising for real-world knowledge relate the tag to the visual content easily and

applications. consistently. Other tags are subjective or overly persoeal
Index Terms— Social tagging, tag relevance learning, neighbor and thus we consider those irrelevant, as illustrated inréid.
voting, multimedia indexing and retrieval Apart from the fact that tags can be subjective, individagst

are mostly used once per image. This tagging behavior isplie
that given an image, relevant tags and irrelevant ones dre no

distinguishable by their occurrence frequency [11]. Herzce

T HE advent of social multimedia tagging — assigning tag§,yamental problem in social image analysis and retriaval
or keywords to images, music, or video clips by commog,,; 14 accurately and ef ciently learn the relevance of a tag

users — is signi cantly reshaping the way people generalgiy, respect to the visual content the tag is describing.
manage, and search multimedia resources. Good examples af:existing methods to automatically predict tag relevance

Flickr, which hosts more than 2 billion images with aroung ;. respect to the visual content often heavily rely on

3 million new uploaded photos per day [1], and YouTubgy, o ised machine learning methods [12]-[14]. In general

which serves 1_00 million videos and 65,000 uploads daily [%e methods boil down to learning a mapping between low-
Apart from their usage for general-purpose search, the$e rg,o| yisual features, e.g., color and local descriptorsd a

multimedia databases are triggering many innovative rebeahigh-level semantic concepts, e.g., airplane and clagsroo

scenarios In areas as d|ve_r_se as personah;eq mformatgmce the number of training examples are limited for the

delivery [3], landmark recognition [4], concept similgrinea- g, nerised methods, the methods are not scalable to cover

surement [5], tag recommendation [6], and automatic image, hotentially unlimited array of concepts existing in isbc

tagging [7], [8]. One would expect user-contributed taghéo 544ing. Moreover, uncontrolled visual content contrétliby

a good starting point for all thgse app_llcauons. users creates a broad domain environment having signi cant
.Desplte the success of social tagging, howgver, tag§ ?‘Efi\?ersity in visual appearance, even for the same concept

tributed by common users are known to be ambiguous, limit ]. The scarcity of training examples and the signi cant

in terms of completeness, and overly personalized [9],.[1Qersity in visual appearance might make the learned nsodel
This is not surprising because of the uncontrolled nature gf ojiahje and dif cult to generalize. Therefore, in a sdci
social tagging and the diversity of knowledge and culturglyqing environment with large and diverse visual contant,
background of its users. Although the relevance of a tagngive, htweight or unsupervised learning method which effesigi

the visual content can be subjective for a specic user, d ef ciently estimates tag relevance is required

objective criterion is desirable for general-purpose &®and —qqjitively, if different persons label visually similamiages
visual content understanding. We consider a tag relevant fo

X . ! el Ing the same tags, these tags are likely to re ect objectiv
an image if the tag accurately describes objective aspécts,@, e s of the visual content. The intuition implies that th

Copyright (c) 2008 IEEE. Personal use of this material is peechi relevance 'of a tag W?th respept to an'image might be .inferred
However, permission to use this material for any other puposest be from tagging behavior of visual neighbors of that image.
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by visual similarity, each tag accumulates its relevaneglitr tagging accuracy by taking into account both the tags automa
by receiving neighbor votes. Under a set of well de nedtally predicted by an existing model and the tags provided
and realistic assumptions, we prove that our tag relevarimg a user as implicit relevance feedback. In contrast to the
learning algorithm is a good measure for both image rankimgodel-based approaches, the model-free approaches attemp
and tag ranking. To demonstrate the viability of the progos¢o predict relevant tags for an image by utilizing images on
algorithm, we provide a systematic evaluation on 3.5 milliothe Internet [7], [8], [21], [22]. These approaches assumaeet
Flickr images for both social image retrieval and image tagxists a large well-labeled database such that one can nd
suggestion. a visual duplicate for the unlabeled image. Then, automatic
The rest of the paper is organized as follows. We revietagging is done by simply propagating tags from the dugpicat
related work in Section Il. We then describe in detail tatp that image. In reality, however, the database is of liciite
relevance learning in Section Ill. We setup experiments 8tale with noisy annotations. Hence, neighbor search is rs
Section IV. Experimental results are presented in Section ¥onducted to nd visual neighbors. Disambiguation methods

We conclude the paper in Section VI. are then used to select relevant tags out of the raw annogatio
of the neighbors. In [7], for instance, the authors rank fags
Il. RELATED WORK terms of their frequency in the neighbor set. However, tags

We review work closely related to our motivation for taﬁccurring frequen.tly in the entire collection may domintte '
relevance learning in the following two directions, that i esults. To restrain such effects, the authors in [8] reghei

: Lo : - Lo . the frequency of a tag by multiplying this frequency by its
improving image tagging and improving image retrieval. inverse document frequency (idf). The idf value of a tag is
) ] inversely and logarithmically proportional to the occuice
A. Improving Image Tagging frequency of the tag in the entire collection. Nonetheldss,
Depending on whether a target image is labeled, we c&f scheme tends to over-weight rare tags.
egorize existing methods into two main scenarios, namelyTo summarize, the existing methods for image tagging try to
improving image tagging for labeled images and automateahk relevant tags ahead of irrelevant ones in terms of th& ta
image tagging for unlabeled images. relevance value with respect to an image. However, since the
In the rst scenario, given an image labeled with some taggg ranking criterion is not directly related to the perfame
one tries to improve image tagging by removing noisy tags image retrieval using the tagging results, optimizingaga
[16], recommending new tags relevant to existing ones [6], tagging does not necessarily yield good image rankings [23]
reducing tag ambiguity [17]. In [16] for instance, the autho
assume that the majority of existing tags are relevant with
respect to the image. They then measure the relevance cﬁ'a
tag by computing word similarity between the tag and other Given unsatisfactory image tagging results, one might ex-
tags. While in [6], the authors nd new tags relevant wittpect to improve image retrieval directly. Quite a few method
respect to the original ones by exploiting tag co-occureeinc follow this research line, either by reranking search rasul
a large user-tagged image database. To be precise, by usntight of visual consistency [24]-[29] or by expanding the
each of the original tags as a seed, they nd a list of candidatriginal queries [30]-[33]. We brie y review these methods
tags having the largest co-occurrence with the seed tageThin the following two paragraphs. For a more comprehensive
lists are later aggregated into a single list and the topednksurvey, we refer to [15], [34].
tags are selected as the nal recommendation. Since new tagReranking methods assume that the majority of search
are suggested purely using the initial tags, images with thesults are relevant with respect to the query and relevant
same starting tags will end with the same new tags, regardlesamples tend to have similar visual patterns such as color
of the visual content. Hence, methods addressing bothaextand texture. To nd the dominant visual patterns, density
and visual clues are required. estimation methods are often used, typically in the form
Methods in the second scenario try to predict relevant tags clustering [25], [26] and random walk [28]. In [28] for
for unlabeled images. We divide these methods accordimgtance, the authors leverage a random walk model to nd
to their model-dependence into model-based and model-frgsually representative images in a search result listiobth
approaches. The model-based approaches, often condunctellyi text-based retrieval. To be precise, rst an adjacenplgra
a supervised learning framework, focus on learning a mappiis constructed wherein each node corresponds to a result
or projection between low-level visual features and higbel image and the edge between two nodes are weighted in
semantic concepts given a number of training examples [12kfrms of the visual similarity between the two correspogdin
[14], [18], [19]. Due to the expense of manual labelingmages. A random walk is then simulated on the graph to
however, currently only a limited number of visual conceptsstimate the probability that each node is visited. SincGges
can be modeled effectively. Besides, the approaches ar ofin dense regions are more likely to be visited, the above
computationally expensive, making them dif cult to scalgrobability is used to measure the representativeness of an
up. Furthermore, the rapid growth of new multimedia dafaage in the visual feature space and accordingly rerank the
makes the trained models outdated quickly. To tackle thesearch results. However, density estimation is inaccuraen
dif culties, a lightweight meta-learning algorithm is prosed feature dimensionality is high and samples are insuf cient
in [20]. The gist of the algorithm is to progressively impeov for computing the density [35]. Besides, density estinratio

Improving Image Retrieval
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Fig. 2. Learning tag relevance by neighbor voting The tag relevance value of each tag is estimated by accunmildite neighbor votes it receives from
visually similar images of the seed image. In this example, sioge neighbor images are labeled whhidge, the tag relevance value bfidge with respect
to the seed image is 4. Hence, we update the tag frequeniosidafe from 1 to 4.

is computationally expensive. In [26] for example, the aush and tag ranking in a uni ed tag relevance learning framework
report an execution time of 18 seconds per search roundewhit contrast to approaches for image ranking which are query-
a study on web users [36] shows the tolerable waiting timipendent, e.g., [25], [28], our algorithm is query-indegent.

for web information retrieval is only 2 seconds, approxieiat This advantage allows us to run the algorithm of ine without
The dif culty in density estimation and the associated comp imposing extra waiting time on users. Further, by updating
tational expense put the utility of reranking methods fariglb tag frequency with the learned tag frequency, we seamlessly
image retrieval into question. embed visual information into current tag-based socialgena

Query expansion methods augment the original query K§trieval paradigms. For automatic image tagging, our-algo
automatically adding relevant terms [30]-[32]. In [31],r fo rithm shares s_|m|lar|t|es with the model-free approacle_eg,,
instance, the authors use synonyms from a dictionary, waiseré’], [8], [21], since they can be regarded as propagating tag
in [30] the authors select strongly related terms from tef€tween neighbor images. Note however that our algorithm
snippets returned by web search engines. Another examjfignore general as it is applicable to both image retrieval
is [32], where the authors use clustering methods to n@nd tagging. Moreover, we provide a formal analysis which is
correlated tags. Though adding more query terms may retrid¥iSsing in previous studies.
more relevant results, how to choose appropriate expansion
terms requires further research [37]. [1l. L EARNING TAG RELEVANCE BY NEIGHBOR VOTING

In summary, the reranking and query expansion methodsin order to ful ll image retrieval, we seek a tag relevance
try to rank images relevant with respect to a query ahead gkasurement such that images relevant with respect to a tag
irrelevant images. However, the methods leave the fund&henyre ranked ahead of images irrelevant with respect to the tag
problem of subjective user tagging unaddressed. Meanwhile, to ful Il image tagging, the measurement should

Though we have witnessed great efforts devoted into imank tags relevant with respect to an image ahead of tags
proving both image tagging and image retrieval, the efforigelevant with respect to the image. Recall the intuitibattif
are almost disconnected. Recent research, e.g., [38]-@1] different persons label visually similar images using tame
vestigates the potential of leveraging automatic tagg@syllts tags, these tags are likely to re ect objective aspects efvih
for image and video retrieval. To the best of our knowledgspal content. This intuition suggests that the relevanaetafy
however, up till now the solutions to the two problems argiven an image might be inferred from how visual neighbors
still separated, including our previous work [11], [22] whi of that image are tagged: the more frequent the tag occurs in
deal with social image tagging and social image retrievahe neighbor set, the more relevant it might be, as illustrat
respectively. This work is an attempt to solve image rankirig Figure 2. However, some frequently occurring tags, sih a
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TABLE |

"2007"' and "2008', are unlikely to be relevant to the majodf
M AIN NOTATIONS DEFINED IN THIS WORK .

images. Hence, a good tag relevance measurement should take
into account the distribution of a tag in the neighbor setiand “Notation  De nition
the entire collection, simultaneously. Motivated by th&rin

mal analysis above, we propose a neighbor voting algorithm

a collection of user-tagged images.

for learning tag relevance, as depicted in Figure 2. Thohght Lw tmlecﬂonj all images labeled with tagy in the

proposed algorithm is simple, we deem it important to gain Rw , all images relevant with respect to tag

insight into the rationale for the algorithm. The followitgo Rw in the collection.

subsections serve for this purpose. Concretely, we rsinge c RS = nRuw, all images irrelevant with respect to
Rw tagw in the collection.

in Section IlI-A two criteria to describe the general objeet
offtag r?levaTcg Iea:crnmg. :[I'her), in S(Zlctlontlll—Bbwe C;i)rowde P(WiRw)  selected fromRy is labeled with tagy.

a _Orma analysis of user tagging an . Con_ ent-base ne'_arESt e probability of incorrect tagging, i.e., an image ran-
neighbor search. We see how our algorithm is naturally ddriv. P (WiRY)  domly selected fronRS, is labeled with tagw.

probability of correct tagging, i.e., an image randomly

from the analysis. Finally, we describe in detail the altioni probability that an image randomly selected from the
in Section IlI-C. P(Rw) entire collection is relevant to tag.
c probability that an image randomly selected from the
o . P(R%) entire collection is irrelevant to tagy.
A. The Objective of Tag Relevance Learning f a similarity function between two images, measured
We rst introduce some notation for the ease of explanation. on low-level visual features.
We denote a collection of user-tagged images asnd a N: (1 k N (k) » k nearest neighborsk{nn) of an
£ (15k) imagel found in the collection by .

vocabulary of tags used in asW. For an imagd 2 and
atagw 2 W, letr (w;l):fW; g7! R be a tag relevance Nrand (K)  the collection.

measurement. We call (w;1) an ideal measurement for an operator counting the number of tag in any
image and tag ranking if it satis es the following two criiar Nwl ] subset of the collection.

Nrand (K) , k images randomly selected from

Criterion 1: Image ranking. Given two images
I, 2 and tagw 2 W, if w is relevant to

By approximating the probability of correct taggin
I but irrelevant tol ,, then y app 9 p y gging

P (wjRy) usingjLy \ Rywj5Rwj and the the probability of

ro(wily) >r (w;ly) (1) incorrect taggingP (WjRS,) usingjLy \ RS j5RSj, we have
o _ _ P(WjRy) > P (WjR{,). Hence, we make an assumption on
Criterion 2: Tag ranking . Given two tagsvy; w; 2 user tagging behavior, that is,
W and imagel 2 , if | is relevant tow; but
irrelevant tow,, then Assumption 1: User tagging In a large user-tagged
o (wil) ST (wal) @) image database, the probability of correct tagging is

larger than the probability of incorrect tagging

Our goal is to nd a tag relevance measurement satisfying Next, we analyze the distribution of images relevant and

the two criteria. irrelevant with respect to tag in the k nearest neighbor set
of imagel . Compared to random sampling, a content-based
B. Learning Tag Relevance from Visual Neighbors visual search de ned by a similarity functidncan be viewed

as a sampling process biased by the query image. We consider
two situations with respect to the visual search accurédmay, t
is, equal to and better than random sampling. In the rst

that the neighbors can be decomposed into two parts acgordfjjuation where the visual search is equal to random sagiplin
to their relevance tav, i.e., images relevant and irrelevant t&he number of relevant Images |n.the ”e'thor setis the same
w. If we know how relevant and irrelevant images are labeldtf the number of relevant images in a sek ahages randomly

with w and how they are distributed in the neighbor set wielected from the collection. While in the second situation
can estimate the tag's distribution in the neighbors. where the visual search is better than random samplingngive

To formalize the above notions, we rst dene a fethO imagesl relevant to tagw and |, irrelevant tow, we

notations as listed in Table I. We now study how imageesXpect to have

relevant and irreleva_nt to a tag are Ia_be_led With that tag. |I’j]Nf (11:K)\ Rwj > jNrang (K)\ Rwj > jN¢ (12:K)\ Ruj:

a large user-tagged image database, it is plausible tha for

speci ¢ tagw, the number of images irrelevant to the tag ifor instance, considerv to be “bridge',1; a bridge image
signi cantly larger than the number of relevant images,,i.eandl, a non-bridge image. In this examplé; (I 1; k) should
iRS) ] Rwj, wherej j is the cardinality operator on imagecontain more bridge images th@yang (k), while N (12; k)
sets. Moreover, one might expect that user tagging is bett#ould contain less bridge images thBlpng (K). Viewing
than tagging at random such that relevant images are moaedom sampling as a baseline, we introduce an offset Variab
likely to be labeled, meaning-w \ Ryj > jLw \ RSj. "Iw 1o indicate the visual search accuracy. In particular,

As aforementioned, given an imadelabeled with a tag
w, the occurrence frequency uf in visual neighbors of to
some extent re ects the relevancewfwith respect td . Note
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we use(P(Ry) + ".w ) to represent the probability that an tag ranking for imagel, that is, for two tagsw;

image randomly selected from the neighbor N&t; (1;k) is and wp, if I 2 Ry, and1l 2 Ry,, we have
relevant with respect tav. Since an image is either relevant tagRelevancdw, ;1) > tagRelevance(ws;1).

or irrelevant tow, we use(1 (P(Rw) + "iw)), namely

(P(RS) "), to represent the probability that an image We refer to the appendix for detailed proofs of the two
randomly selected frofNN; (1;k) is irrelevant with respect theorems. Note that in the proof of theorem 1, assumption
to w. Then, the number of relevant images in the neighbor s&t(Eq. 5) can be relaxed a$,(w > ",w) which we call

is expressed as relaxed assumption 2. Since the relaxed assumption is more
. . . likely to hold than its origin, this observation indicatdsat
iNF (LK) N Rwj =k (P(Rw)+ "iw ); (3) image ranking is relatively easier than tag ranking.

and the number of irrelevant images in the neighbor set as Our tag relevance function in Eq. 9 consists of two compo-
nents which represents the distribution of the tag in thalloc

iNe(BK)V RGj =k (P(RR)  "iw): (4)  neighborhood and in the entire collection, respectivelyisT
observation con rms our conjecture made in the beginning of
Section Ill that a good tag relevance measurement shoudd tak
both distribution into account.

It is worth mentioning that the variablg.,, is introduced to

help us derive important properties of the proposed algarit

We do not rely on'y,, for implementing the algorithm.
Based on the above discussion, if the visual search is equal

to random sampling, we have,, = 0. If the visual is better C. A Neighbor Voting Algorithm

than random sampling, we have We have argued in Section I1I-B that learning tag relevance

) boils down to computingn,, [N (I;k)] Prior (w;Kk)), i.e.,

"w > 0>" . forl; 2 Ry andl, 2 RS : . . ) :
how 12w ! v 2 W the count of tagv in thek nearest neighbors of imageminus

We then make our second assumption as the prior frequency ofv. Consider that each neighbor votes on
] i w if it is labeled withw itself, ny, [N¢ (I; k)] is then the count

Assumption 2: Visual search A content-based of neighbor votes orw. Thereby, we introduce a neighbor
visual search is better than random sampling voting algorithm: given a user-tagged image, we rst pemor

. . . . content-basell-nn search to nd its visual neighbors, and then
Bearing the analysis of user tagging and visual search fl

8k each neighbor image, we use its tags to vote on tags of
mind, we now consider the distribution of tag within the . . . :
neighbor set of image. Since we can divide the neighbor seEhe given image. We approximate the prior frequency of tag

into two distinct subsetdls (I;k)\ Ry andN; (I;k) \ RS, was , iLwi
we count the number aoff in the two subsets, separately. That Prrior (w; k) kﬁ; (10)
S wherek is the number of visual neighborgd,,j the number
nw[Ne (15K)T = nw[Ng (1K) N Ry]+ nwNs (KK)V RAT of images labeled withw, and j j the size of the entire
= k (P(Rw)+ "iw )P (WjRw)+ collection. Note that the functiotagRelevancein Eq. 9 does
k (P(RR)  "iw)P(WRE): not necessarily obtain positive results. We set the minimum

(6) value oftagRelevanceto 1. In other words, if the learned

tag relevance value of a user-contriubted tag is less thsan it
Nw[Nrand (K)] = k (P(Rw)P(WjRy) + P(RS)P(WRS)) : original frequency in an image, we reject the tag relevance

(7) learning result for that image. In addition, we observe that
Since nw[Nang (K)] re ects the occurrence frequency of Voting result might be biased by individual users who have a
in the entire collection, we denote it a@rior (w;k). By number of visually similar images, as shown in Figure 3(a).
substituting Eq. 7 into Eq. 6, we obtain In order to make the voting decision more objective (which
. ] o ) cwa.  Wwe target at), we introduce a unique-user constraint on the

nw ([Nt (15k)] Prior (w;k) = k (P(WjRw)  P(WjRy)) "iw i neighbor set. That is, each user has at most one image in the
©) neighbor set per voting round. As shown in Figure 3(b), with

the unique-user constraint we effectively reduce the gotin
tagRelevancegw; I;k) := ny[Nf (1;k)]  Prior (w;k); (9) bias. We nally summarize the procedure for learning tag
relevance by neighbor voting in Algorithm 1.

In a similar fashion we derive

Further, by de ning

we arrive at the following two theorems:

. . . IV. EXPERIMENTAL SETUP
Theorem 1: Image ranking. Given assumption 1 SETU

and assumption 2tagRelevance yields an ideal A. Experiments

image ranking for tagw, that is, forl; 2 Ry We evaluate our tag relevance learning algorithm in both an

and I, 2 Rg, we havetagRelevancgw;l;) > image ranking scenario and a tag ranking scenario. For image

tagRelevancdw; | ,). ranking, we compare three tag-based image retrieval method
with and without tag relevance learning. For tag ranking, we

Theorem 2: Tag ranking. Given assumption 1 demonstrate the potential of our algorithm in helping user

and assumption 2tagRelevance yields an ideal tagging in two settings, namely, tag suggestion for labeled
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() (b)

Fig. 3. Tag relevance learning with the unique-user constraint The query example is the biggest image in the center of (a) @ndfie query is labeled
with tag "tiger' by a user. Figure (a) shows visual neighberhout the unique-user constraint, namely standard coiiitesed search. Since the neighbor
set is dominated by images from few users, the tag relevance &l “tiger' voted by 1000 neighbors is 557. While in Figure, (with the unique-user
constraint, each user has at most one image in the neighboeisebfing round. The tag relevance value of “tiger' voted B9 neighbors is thus reduced
to 6. The unique-user constraint makes the voting result mbjective.

Algorithm 1 Learning tag relevance by neighbor voting frequency ofw in the tags of , |, the total number of tags of
Input: A user-tagged image. andlayg the average value dof over the entire collection. The
Output: tagRelevance(w;1;k), i.e., the tag relevance value Offunction icf (w) is calculated adog Nj Luwj+0:5 \boraN is

jLwj+0:5
the number of images in the collection ghg, j is the number

Find k nearest visual neighbors dffrom the collection with the of images labeled withw. By using learned tag relevance
unique-user constraint, i.e., a user has at most one image in Yiz@ue as updated tag frequency in the ranking function, hame

each tagw in I.

neighbor set. substitutingtagRelevancew; |; k) for tf (w) in Eq. 11, we
fortatag\évlécatr?g:(xf-ll-dkc; -0 investigate how our algorithm improves upon the baseline.
end %‘]or v We study the performance of the baseline method and our
for imageJ in the neighbor set of do method, given various combinations of parameters. In total
for tagw in (tagsof.J \ tagsof.l) do there are three parameters to optimize. Onk, ithe number
tagRelevance(w; I k) = tagRelevance(w; 1}k ) +1 of neighbors for learning tag relevance. We cho&séom
oy for £100; 200; 500; 1000; 2000; 5000; 10,000; 15,000; 203000
tagRelevance(w; I:k ) = tagRelevance(w;1:k) Prior (w;k) The other two aré andk; in OKAPI-BM25. The parameter
tagRelevance(w; I; k ) = max (tagRelevance(w; I;k); 1) b( b 1) controls the normalization effect of document

length. Here, document length is the number of tags in a
labeled image. We ldb range from O to 1 with interval 0.1.
[fhe variablek; is a positive parameter for regularizing the
impact of tag frequency. Sinde does not affect ranking for

Experiment 1: Tag-based image retrieval We employ a single-word queries, we s&t to 2, a common choice in text
general tag-based retrieval framework widely used in st retrleval' [42_]' . ' o
systems such as Flickr and YouTube. We adopt OKAPI-BM25, Considering that the OKAPI-BM25 ranking function origi-

a well founded ranking function for text retrieval [42] as &ally aims for text retrieval and hence might not be optineal f
baseline. Given a que@containing keyword$wl; 11 Wng, tag-based image retrieval, we further compare with a recent

images and tag suggestion for unlabeled images. Spegj,cal
we design the following three experiments.

the relevance score of an imagds Computed as achievement in web image retrieval by Jlng and Baluja [28]
X (see details in Section II-B). As depicted in [28], there @ave
score(q; 1) = qtf (w)idk (w) tf(w) (ki+1) . parameters to optimize: a dump factb(d > 0:8) controlling

tf(w)+ ky (1 b+ bdﬁ) the restart probability of random walk antlthe number of top
(11) ranked results in an initial list to calculate the prior pabbity.
where gtf (w) is the frequency of tagv in q, tf (w) the We try various parameter combinations, ig¢2 f 0.85; 0.90;

w2q
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TABLE Il
GROUND TRUTH STATISTICS FOR OUR IMAGE RETRIEVAL

0.95 andm 2 f 5; 10; 20; 100; 100§.
Experiment 2: Tag suggestion for labeled images

. . . . EéPERIMENT . EACH QUERY HAS 1000MANUALLY LABELED EXAMPLES .
Given an image labeled with some tags, we aim for automate
methods that accurately suggest new tags relevant to thgeima
We investigate how our algorithm improves upon a recent
method by Sigurlgjrnsson and Van Zwol [6] by introducing 3.5 million user-tagged images
visual content information into the tag suggestion process

USER TAGGING ACCURACY IS THE NUMBER OF RELEVANT IMAGES
DIVIDED BY 1000.

L . f . Query Tag frequency  User tagging accuracy

Similar to [6], we rst nd x candidate tags having the highest o 15 231 0.447
. L . airplane , .

co-occurrence _Wlth the initial tags. For each candldate_\mg beach 64,343 0331
then compute its relevance score with respect to the image as boat 25,385 0.424
follows, bridge 25,197 0.762
bus 14,296 0.641
Y = . ) butter y 8,476 0.701
score(c; 1) = score(c;w) F(rank. 1) (12) car 37614 0548
¢ cityscape 11,063 0.657
wherec is the candidate tad, the image, andv, the set of classroom 7,763 0.388
initial tags. The functiorscore(c;w,) computes a relevance do?/?er b2t 070
score between the candidate tag and the initial tags. We harbor 8,420 0.503
adoptV ote', the best method in [6], as an implementation horse 27,008 0.736
of the score function. The inputrank. is the position of I‘i‘gﬁhe” 13'383 8-222
tag c in the candidate tag list ranked hggRelevance in mountain 36,844 0.502
descending order. The variableis a positive parameter for rhino 4,929 0.346
regularizing the effect of tag relevance learning. By ojzting 2{:22? 4008 02
the algorithm on the same training set as used in [6], we tiger 8214 0.224

determine the optimized setting of the two parameteand
as 17 and 20, respectively.

Experiment 3: Tag suggestion for unlabeled images Evaluation set for image retrieval We create a ground
We compare with two model-free approaches: a tag frequengyin set as follows. We select 20 diverse visual concepts as
(tf) approach by Torralbat al. [7] and an approach by Wang q eries. The queries are listed in Table Il with visual ext@sp
et al. [8] which re-weights the frequency of a tag by itg, Figure 4. As de ned earlier, we consider a query concept

inverse document frequency (tf-idf). For our algorithmc& 54 a5 image relevant if the concept is clearly visible in the

no user-de ned tags are available, we consider all tagsen thy, ;46 and we shall relate the concept to the visual content ea
vocabulary as candidates. We estimaigRelevancefor each ily and consistently with common knowledge. Thereforestoy

candidate tag with respect to the unlabeled image, and thef,ons painting, and statues of the concept are treated a
rank the tags in descendln_g orderllatg_ReIev_ance We take _irrelevant. For each query, we randomly select 1000 exasnple
care to make the comparison fair. First, since the baselingsy, images labeled with the query in our 3.5 million Flickr
do not consider user information, we remove the unique-Usgfjiection, and relabel them according to our labelingeciin.
constraint from our_algonthm. Second, for all methods we Xyve report user tagging accuracy of all 20 queries in Table II.
th_e number of the visual neighbors to 500, as suggested.in [§1)r each query, we score its 1000 test images with the two
Finally, for each method, we select the top 5 tags as a nghseline methods and the proposed algorithm, respectively
suggestion for each test image. , The images are then ranked in light of their relevance scores
In all the three experiments, we ubaselineto represent |t images have the same score, they are ranked according
the baseline methods, atagRelevancéor our method. to photo ids in descending order so that latest uploadedémag
are ranked ahead.
B. Data Collections Evaluation set for tag suggestionTo evaluate the perfor-
We choose Flickr as a test case of user tagging. Vdeance of tag suggestion for labeled and unlabeled images, we
downloaded images from Flickr by randomly generating photalopt a ground truth set from [6], which is created by maguall
ids as query seeds. By removing images having no tags as$essing the relevance of tags with respect to images.€ethe s
those failed to extract visual features, we obtain 3.5 orilli consists of 331 Flickr images, having no overlap with the 3.5
labeled images in total. The images are of medium size withillion collection. Since the relevance of tags "2005', 080
maximum width or height xed to 500 pixels. After Porterand “2007' with respect to an image is quite subjective, we
stemming, the number of distinct tags per image varies froramove the three tags from the ground truth beforehand. Note
1 to 1230, with an average value of 5.4. The collection ha&sat these tags might be predicted by tag suggestion methods
573,115 unique tags and 272,368 user ids. In that case, we consider the tags irrelevant. The number of
Note that the image retrieval experiment studies how welgs per image in the evaluation set varies from 1 to 14, with
images are ranked, while the two tag suggestion experimeats average value of 5.5. Examples of the ground truth are
focus on how well tags are ranked. Different targets result shown in Figure 5. For experiment 2, we follow the same
two different evaluation sets, one for image retrieval amel t data partition as [6], that is, 131 images for training anel th
other for tag suggestion. remaining 200 for testing. Since no training is requireddtbr
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average precision (AP) AP measures ranking quality of
the whole list. Since it is an approximation of the area under
the precision-recall curve [43], AP is commonly consideasd
a good combination of precision an$recal|, e.g., [23], [26]
[33]. The AP value is calculated a5 |_, Rt i, whereR
is the number of relevant instances in the IRt,the number
of relevant instances in the topranked instances,;=1 if
the i-th instance is relevant and O otherwise. To evaluate the
overall performance, we use mean average precision (MAP),
a common measurement in information retrieval. MAP is
the mean value of the AP over all queries in the image
retrieval experiment and all test images in the tag suggesti
experiments.

D. Large-scale Content-based Visual Search

To implement the neighbor voting algorithm, we need to
de ne visual similarity between images and then searchalisu
neighbors in our 3.5 million Flickr photo database. Visual

Fig. 4. Visual examples of 20 queries in our image retrieval experirant. similarity between two images is measured using correspond
ing visual features. Since we need features relativelyletab
for search and ef cient to compute to cope with millions of
images, we adopt a combined 64-dimensional global feature
as a tradeoff between effectiveness and ef ciency. Theufeat
is calculated as follows. For each image, we extract 44-
d color correlgoram [44], 14-d color texture moment [45],
and 6-d RGB color moment. We separately normalize the
three features into unit length and concatenate them into a

Fig. 5. Multimedia examples of the ground truth for our tag suggestio single vector. We use the Euc.:“dean disiance as a dissiyilar

experiments. measurement. The feature is used throughout all the three
experiments.

To search millions of images by content, ef cient indexing

the three methods in experiment 3, we take the entire groumgthods are imperative for speed up. We adot -means

truth set (331 images in total) for testing. clustering based method for its empirical success in large-
scale content-based image retrieval [46]. First for indgxive
C. Evaluation Criteria divide the whole dataset into smaller subsets byKheneans

. . . . clustering. Each subset is indexed by a cluster center. Then
For image retrieval, images relevant with respect to usgr

. . . r a query image, we nd neighbors within fewer subsets
queries ShO.UId be ranked as .h|gh as possible. MeanWh{/ﬁ%ose centers are the closest to the query. The search space i
ranking quality of the whole list is important not only forars

; o X thus reduced. Since the search operation in individualetabs
browsing, but also for applications using search resulta as

: . . . can be executed in parallel, we execute neighbor search in a
starting point. For tag suggestion, tags relevant witheespp . . .

. ; . distributed super computer.

user images should be ranked as high as possible. Moreover,

the candidate tag list should be short such that users pick
out relevant tags easily and ef ciently. Therefore, we adop ) ]
the following two standard criteria to measure the différeft: Experiment 1: Tag-based Image Retrieval

aspects of the performance. Given a ranked lidt ioStances ~ As shown in Figure 6, outagRelevanceubstantially out-
where an instance is an image for image retrieval and a tagrforms thetag baselinefor all parameter settings. Recall

V. RESULTS

for tag suggestion, we measure that the OKAPI-BM25 parameteb controls the impact of
precision at n (P@n). The proportion of relevant in- normalizing scores by the total number of tags within an
stances in the top retrieved results, whene |. For image image. Hence, we observe different behavior kofin the

retrieval, we report P@10, P@20, and P@100 for each quewo methods: theag baselinetends to perform well when
For tag suggestion, we report P@1 and P@5, averaged dvepproaches 1; in contrast, th@gRelevancemproves ash

all test images, as used in [6]. We consider a predicted tagproaches 0. Since tag frequency is not discriminative in
relevant with respect to a test image if the tag is from thariginal tagging, the baseline method heavily relies on the
ground truth tags of the image. The Porter stemming is donermalization factor. While in the new method, tag frequency
before tag matching. Since we always predict 5 tags for ealsacomes more discriminative after tag relevance learning.
image, for those images having less than 5 ground truth tagsThe proposed algorithm is also robust to the number of
their P@5 will be smaller than 1. neighbors used for voting. To show this property, we rst run
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Fig. 6. Experiment 1: An overall comparison between image retrievh
methods with and without tag relevance learning Thetag baselinemethod

TABLE IV
EXPERIMENT 2: TAG SUGGESTION FOR LABELED IMAGES . FOR EACH
IMAGE, WE CHOOSE THE TOF5 RANKED TAGS. BOLD NUMBERS INDICATE
THE TOP PERFORMERS

Tag suggestion methods

Evaluation criteria baseline[6] tagRelevance

Precision at 1 0.522 0.555

Precision at 5 0.359 0.375

Mean average precision 0.622 0.663
TABLE V

EXPERIMENT 2: EXAMPLES OF TAG SUGGESTION FOR LABELED
IMAGES BY DIFFERENT METHODS . THE italic FONT INDICATES
RELEVANT TAGS AND THE BOLD FONT INDICATES UNIQUE RELEVANT

uses original tags, while ouagRelevancenethod uses learned tag relevance tags PRODUCED BY OUR METHOD WE IMPROVE UPON THEbaselinesy

as updated tag frequency. We study the retrieval performgivem various
combinations of the OKAPI-BM25 parametbrand the number of neigh-
bors for tag relevance learning. We measure the overall padoce using
mean average precision of the 20 queries from Figure 4.tahRelevance
consistently outperforms thiag baselinefor all parameter settings.

0.251

o o o
i = N
o 3 =}
T T T

Relative improvement of mean average precision
o
o
(9
T

i
10k 15k 20l

500 1k 2k 5k
Number of neighbors (log10 scaled)

Fig. 7. Experiment 1: Relative improvement in terms of mean average
precision (MAP) over the besttag baselinewith respect to the number
of neighbors for learning tag relevance. The best baselinesireached at

ADDRESSING TAG RELEVANCE WITH RESPECT TO THE VISUAL CONTENT
COMPARED TO THEbaseling OUR METHOD FINDS MORE RELEVANT TAGS
WHICH DESCRIBE VISUAL ASPECTS OF THE IMAGES

User-labeled images New suggested tags

Image Tags baselingg] tagRelevance
beach sea
sea beach
lighthouse ocean ocean
harbor harbor
2005 sunset
loch water water
scotland castle mountain
lake beach beach
waves katrine castle
edinburgh sea
d40 england england
london sister sister
stonehenge  nikon water
uk nikond40 street
bath stone stone
2006 2006
vacation vacation
mexico new beach
oaxaca new
honeymoon  honeymoon

b=0.8 with MAP 0.605 By using learned tag relevance value as updated tag
frequency for retrieval, we obtain at least 20% relative iowement in terms
of MAP when the number of neighbors is between 200 and 20,000.

[28] is on a par with outagRelevanceespecially for the top

leave-one-out cross validation on the 20 queries to detmmlrankeol results. Nevertheless, for the majority of the @eeri

the optimized OKAPI-BM25 parametéfor tag baselineand and the eva_lluatlon metrics, _the proposed algorithm corspare
fﬁvorably with the two baselines. On average, compared with

our method, which is 0.8 gnd 0.3, respectively. As sh_own the tag baseline, we obtain a relative improvement in terins o
Figure 7,tagRelevanceonsistently outperformtag baseline P@ZO by 28.8% and 24.3% in terms of MAP. Compared with

. o R
:\:cire(arrﬁgeg;s:/:xpw\;evhr:r? (E[?] eat]:]en::]\ts)terz gf/o n;eilat;ut\)/ grslr?sprsg:,v rzz{r]w baseline [28], we obtain a relative improvement in terms
9 of P@20 by 15.3% and 19.9% in terms of MAP.

200 and 20,000.
We conclude experiment 1 with a per-query comparison ) )

between three methods, nameg baseline baseline[28], B- Experiment 2: Tag Suggestion for Labeled Images

and ourtagRelevanceéWe again use the optimized parameters We report the performance of the two tag suggestion meth-

for tag baselineandtagRelevanceThe number of neighbors isods in Table IV. For all evaluation metrics, th&gRelevance

1000. Forbaseling 28], we take the best output tdg baseline improves upon thebaseline More precisely, we obtain an

as initial search results and run leave-one-out crossatédidl improvement of 6.3% in terms of P@1 and 6.6% in terms

to obtain an optimized parameter setting, i.€=0.85 and of MAP. While the improvement in terms of P@5 is 4.5%,

m=100. As shown in Table Ill, for some queridmseline which is relatively small. The reasons are two-fold. Fitst,
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TABLE Ill
EXPERIMENT 1: PER-QUERY COMPARISON BETWEEN IMAGE RETRIEVAL METHODS WITH AND W ITHOUT TAG RELEVANCE LEARNING . BOLD
NUMBERS INDICATE THE TOP PERFORMERSFOR MOST OF THE20 QUERIES WE IMPROVE UPON THE BASELINE METHODS BY USING LEARNED TAG
FREQUENCY AS UPDATED TAG FREQUENCYON AVERAGE, COMPARED WITH THE TAG BASELINE, WE OBTAIN A RELATIVE IMPROVEMENT IN TERMS OF
P@20BY 28.8%AND 24.3%IN TERMS OFMAP. COMPARED WITH THE BASELINE[28], WE OBTAIN A RELATIVE IMPROVEMENT IN TERMS OFP@20BY

15.3%AND 19.9%IN TERMS OF MAP..

Precision at 5 Precision at 20 Precision at 100 Average presion

Query tag baseline  baselinf28] tagRelevance tag baseline baseli28] tagRelevance tag baseline basel{@8] tagRelevance tag baseline baseli28] tagRelevance
airplane 0.400 0.800 0.600 0.500 0.750 0.400 0.520 0.520 0.510 0.446 0.513 0.531
beach 0.400 0.400 1.000 0.500 0.350 0.900 0.370 0.370 0.710 0.383 0.356 0.666
boat 0.400 0.200 1.000 0.600 0.550 0.950 0.520 0.520 0.720 0.477 0.487 0.619
bridge 1.000 0.800 0.800 0.950 0.900 0.900 0.880 0.880 0.900 0.802 0.806 0.830
bus 1.000 1.000 0.600 0.700 0.850 0.850 0.740 0.740 0.870 0.684 0.792 0.836
butter y 0.800 0.800 1.000 0.800 0.900 0.950 0.940 0.940 0.990 0.816 0.838 0.932
car 1.000 1.000 0.800 0.650 0.800 0.900 0.660 0.660 0.800 0.610 0.674 0.730
cityscape 0.000 1.000 1.000 0.500 0.950 0.950 0.690 0.690 0.980 0.698 0.683 0.907
classroom 0.800 1.000 0.600 0.500 0.900 0.750 0.500 0.500 0.600 0.482 0.551 0.532
dog 1.000 0.800 1.000 0.950 0.950 0.950 0.830 0.830 0.930 0.806 0.820 0.869
ower 1.000 1.000 1.000 0.900 0.950 1.000 0.910 0.910 0.980 0.889 0.891 0.963
harbor 0.800 0.600 0.800 0.700 0.650 0.950 0.600 0.600 0.900 0.582 0.614 0.768
horse 0.800 1.000 1.000 0.550 0.950 1.000 0.700 0.700 0.890 0.718 0.774 0.829
kitchen 0.800 1.000 1.000 0.800 0.900 0.900 0.600 0.600 0.900 0.518 0.642 0.742
lion 0.800 0.800 1.000 0.950 0.450 1.000 0.420 0.420 0.930 0.476 0.393 0.774
mountain 0.600 0.400 1.000 0.500 0.650 0.900 0.500 0.500 0.840 0.517 0.550 0.769
rhino 1.000 1.000 1.000 0.950 1.000 0.950 0.820 0.820 0.860 0.697 0.659 0.746
sheep 1.000 1.000 0.800 0.850 0.900 0.950 0.790 0.790 0.890 0.638 0.677 0.748
street 0.400 0.400 0.600 0.300 0.500 0.600 0.390 0.390 0.680 0.412 0.477 0.578
tiger 0.400 0.800 1.000 0.550 0.450 0.900 0.610 0.610 0.780 0.442 0.338 0.673
average 0.720 0.790 0.880 0.685 0.765 0.882 0.649 0.649 0.833 0.605 0.627 0.752
TABLE VI TABLE VII

EXPERIMENT 3: TAG SUGGESTION FOR UNLABELED IMAGES . FOR
EACH IMAGE, WE CHOOSE THE TOP5 RANKED TAGS. BOLD NUMBERS

EXPERIMENT 3: EXAMPLES OF TAG SUGGESTION FOR UNLABELED
IMAGES BY DIFFERENT METHODS . THE italic FONT INDICATES

INDICATE THE TOP PERFORMERS RELEVANT TAGS AND THEBOLD FONT INDICATES UNIQUE RELEVANT
TAGS PRODUCED BY OUR METHOD WE ILLUSTRATE HOW THE THREE
METHODS PERFORM WHEN THE ACCURACY OF THE VISUAL SEARCH IS

HIGH (FOR THE IMAGE AT THE TOP), LOW (FOR THE IMAGE IN THE

Tag suggestion methods

Evaluation criteria baseling[7] baseline[8] tagRelevance

N MIDDLE), OR MEDIUM (FOR THE IMAGE AT THE BOTTOM). COMPARED TO
Precision at 1 0.061 0.068 0.097 THE TWO BASELINE METHOD R METHOD PREDICTS MORE RELEVANT
Precision at 5 0.068 0.059 0.074 O BAS obs ou © CTS MO
Mean average precision 0.126 0.120 0.153 TAGS EVEN WHEN THE VISUAL SEARCH IS UNSATISFACTORY

Visual Search Suggested tags by different methods

Image Accuracy baseling] baseline[8] tagRelevance
measuring the relevance of a.candldate tag with respect to ower ower ower
an image at both textual and visual aspects,tfgRelevance red red red
is more likely to rank relevant tags ahead of irrelevant ones 0.77 m?CFO macro macro
. . . . . nature rose rose
Second, since we use thmselineas a :_stgrtmg .pomt, if the garden garden garden
method fails to retrieve relevant tags, it is unlikely to ate .
k i h . | h 2006 2006 icehockety
a bet‘Fer ranked list. As shown in Table V, compared to the family cat hockey
baseling our method nds more relevant tags which describe 0.00 japan family family
visual aspects of an image. beach campcourtney hurricane
vacation august12006 cat
2006 2006 japan
C. Experiment 3: Tag Suggestion for Unlabeled Images wedding  pepperell  bike
. 0.10 japan wedding hiking
As shown in Table VI, ourttagRelevancemethod outper- park japan park
forms the two baseline methods for all evaluation criteria. vacation  park texas

Since thetf baseline [7] ranks tags in terms of tag frequency,

it tends to suggest tags occurring frequently in the entire

collection such as "2006'. By re-weighting tag frequenangs method is more effective and robust.

the idf value, thef-idf baseline [8] may restrain such effects Since all the three methods rely on the effectiveness of the
to some extent. However, it risks over-weighting rare taggsual search, we further study how the methods behave when
like ‘campcourtney'. By contrast, ouagRelevancaises the the accuracy of the visual search is low (P@@&05), medium
frequency of a tag minus its prior frequency to restrain higd.05 P@n 0.20), and high (P@n0.20). As illustrated in
frequent tags. Meanwhile, since the prior frequency of gre r Table VII, we select three test images, where the manually
tags are small, these tags are not over-weighted. Hence, assessed accuracy of the 30 nearest neighbors is 0.77a0d0,
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Fig. 9. Validation of the two assumptions on content-based visuaksrch.
Fig. 8. Experiment 3: The effect of content-based visual search oray We refer to Section 1lI-B for the de nitions of assumption 2cdarelaxed
suggestion for unlabeled imagesWe categorize the accuracy of a contentassumption 2. For each of the 20 queries used in the imagevedterperi-
based visual search into three levels, that is, low (prewssd.05), medium ment, we count the proportion efrelevant image; irrelevant image >
(0.05 precision 0.20), and high (precisien0.20). The proposed algorithm pairs that satisfy assumption 2 and relaxed assumption Zctgply. We use
outperforms the baselines, given different levels of visesirch accuracy. In boxplot to visualize the results. On average, 37.8% paitisfgaassumption
particular, our algorithm performs especially better whie Vvisual search 2 and 73.4% pairs satisfy relaxed assumption 2.
accuracy is medium or low.

evidences from the three experiments conrm this conclu-

0.10, respectively. We observe that all methods succeed Whgon, To better understand how our assumptions on visual
the visual search is good. Obviously, all methods fail when yagrch hold in practice, we introduce a validation experi-
relevant images exist in the neighbor set. Interestinglyan ment as follows. For each of the 20 queries used in the
intermediate situation when the visual search is unsatisifa image retrieval experiment, we count the proportion <of
with only a f(_ew relevant examples in the neighbor set, OWelevant image; irrelevant image > pairs that satisfy
method predicts more relevant tags than the two baseliggsymption 2 and relaxed assumption 2, respectively. Kate t
methods. We make a further investigation on the entire t§8} other visual similarity functions in the literature, vean

set. Since manually assessing the visual search accuracy ig this method to estimate how a particular visual sintylari
the test set is laborious, we estimate the accuracy as ®lloyheasurement meets the assumptions and consequently select
For each test image with a number of ground truth tags, Weoper features based on the estimation. As shown in the box-
consider a neighbor image relevant if the tags of the neightgot in Figure 9, on average, 37.8% pairs satisfy assumption
image and the tags of the test image have at least one tag ing 73.4% pairs satisfy relaxed assumption 2. The results
common. Itis in this way that we count relevant neighbors angyain verify our conclusions that learned tag relevance is a
subsequently compute the visual search accuracy. As shqwbd criterion for image ranking and it can be improved

in Figure 8, our algorithm outperforms the baselines, givg{irther for tag ranking by leveraging more advanced visual
different visual search accuracy. In particular, our alhon  oqiyres.

performs especially better when the visual search accusacy yp to now, we have successfully managed 3.5 million
medium or low. The evidence from both Table VIl and Figurgser-tagged images by executing our algorithm in parallel.
8 demonstrates the potential of our tag relevance learniggnsidering the heavy computation effort, however, it woul
algorithm. In addition, note that the majority of the tespe interesting to investigate in the future how to regutariz
images have unsatisfactory visual search results (61.996 Ithe |earning process, say from a Hill-climbing set, to ease
and 35.5% medium), resulting in a relatively low performanche computation for new user-submitted images. Though our
for automatic image tagging. This observation implies tagt eyajuations are conducted on Flickr, the proposed algurith
suggestion for unlabeled images can be improved further Rygeneral. Hence, it is also applicable to other social ghot
including more advanced visual features. sharing websites. Finally, we present in Figure 10 some®f th
tag relevance learning results with updated tag frequency.
D. Discussion
So far, we have veri ed the effectiveness of the proposed VI. CONCLUSIONS
algorithm for tag-based image retrieval and automatic tagSince user tagging is known to be subjective and overly
suggestion for labeled and unlabeled images. As discusgeaisonalized, a fundamental problem in social image aisalys
in Section IlI-B, since image ranking imposes a relativelgnd retrieval is how to accurately interpret the relevanfca o
looser requirement on content-based visual search than tag with respect to the visual content the tag is describing.
ranking, the former is easier than the latter. The empirichd this paper, we propose a neighbor voting algorithm as
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an initial step towards conquering the problem. Our keye have
idea is to learn the relevance of a tag with respect to an tagRelevancew; ;) tagRelevancgw; I »)
image from tagging behaviors of visual neighbors of that =k (PWjRw) PWRS)) (" w
image. In particular, our algorithm estimates tag releedog _ ’
counting neighbor votes on tags. We show that when 1) tkiven assumption 1, we have
probability of correct user tagging is larger than the ptolity P(WjRyw) P(WjRy)> O:
of incorrect user tagging and 2) content-based visual bearc
is better than random sampling, our algorithm producesaad given assumption 2, we get
good tag relevance measurement for both image ranking and
tag ranking. Moreover, since the proposed algorithm doés no
require any model training for any visual concept, it is éfigt Hence,tagRelevancegw; 1,) > tagRelevance(w;l,). Note
in handling large-scale image data sets. that we only requirg; .y "i,.w > O, thereby the assumption
To verify our algorithm, we conduct three experiments op, namely";,., > 0>",., can be relaxed d$,w >" 1,w.
3.5 million Flickr photos: one image ranking experiment ang/e call the latter relaxed assumption 2.

two tag ranking experiments. For the image ranking exper-

iment, we improve social image retrieval by using learned Theorem 2: Tag ranking. Given assumption 1 and assump-
tag relevance as updated tag frequency in a general tag-bdi@ 2, tagRelevanceyields an ideal tag ranking for image
retrieval framework. Retrieval with tag relevance leagnob- | thatis, for two tagsw; andwy, if I 2 Ry, andl 2 Ry,
tains a 24.3% relative improvement in terms of mean avera@f€ havetagRelevancegw, ;1) > tagRelevance(wy; ).
precision, when compared to a tag-based retrieval basélote  poof. Recall Eq. 8 and Eq. 9 that

the tag ranking experiments, we consider two settings,tag. ) )

suggestion for labeled images and tag suggestion for ueldbe tagRelevancgwa;l) =k P(WijRw,) P(WijRy,) "1w.;
images. In the tag suggestion experiment for labeled image®dRelevancewy; 1) = k  P(WzjRw,) P(W2jRE,) "iw:
our algorithm nds more tags which describe visual aspe€ts @jven assumption 1, we have

an image, leading to a relative improvement of 6.3% in terms ) )

of mean average precision when compared to a text baseline. P(wijRw,) P(WijRy,) > O;

In the tag suggestion experiment for unlabeled images, our P(w2jRw,) P (W2jRy,) > O:

algorithm compares favorably against two baselines. Spechand given assumption 2, we get

cally, we effectively restrain high frequency tags withouer-

weighting rare tags. Our study demonstrates that the peapos “wy > 0>y

algorithm predicts more relevant tags even when the visyghie  that
search is unsatisfactory. In summary, all the three exparim change the direction of an inequation. Therefore, by
show the general applicability of tag relevance learning f‘?nultiplying the left side and the right side of the
both image ranking and tag ranking. The results suggestg,e inequation byk P(wijRw,) P(WijRS.) and
large potential of our algorithm for real-world applicat® K P(WojRw,) P(WsjRS,) respecltively, we otv)vtiain

o)

n " .
1w l2;w > 0

multiplying  positive factors does not

k  PWijRw,) PWijRy,) "1w, > 0>
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