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ABSTRACT

To learn classifiers for many visual categories, obtaining la-
beled training examples in an efficient way is crucial. Since
a classifier tends to misclassify negative examples which are
visually similar to positive examples, inclusion of such infor-
mative negatives should be stressed in the learning process.
However, they are unlikely to be hit by random sampling,
the de facto standard in literature. In this paper, we go
beyond random sampling by introducing a novel social neg-
ative bootstrapping approach. Given a visual category and
a few positive examples, the proposed approach adaptively
and iteratively harvests informative negatives from a large
amount of social-tagged images. To label negative examples
without human interaction, we design an effective virtual
labeling procedure based on simple tag reasoning. Virtual
labeling, in combination with adaptive sampling, enables us
to select the most misclassified negatives as the informative
samples. Learning from the positive set and the informative
negative sets results in visual classifiers with higher accu-
racy. Experiments on two present-day image benchmarks
employing 650K virtually labeled negative examples show
the viability of the proposed approach. On a popular visual
categorization benchmark our precision at 20 increases by
34%, compared to baselines trained on randomly sampled
negatives. We achieve more accurate visual categorization
without the need of manually labeling any negatives.
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(a) Positive examples of ‘aeroplane’

(b) Randomly sampled negative examples of ‘aeroplane’
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(c) Automatically generated negative examples (this paper)

Figure 1: A positive set and two negative sets of the
visual category ‘aeroplane’. The negative set (b) is
obtained by random sampling, while the negative
set (c) is automatically generated by our approach.
Note that, compared to (b), our negatives are vi-
sually more similar to the positive set (a). Hence,
they are more informative, yielding more accurate
visual classifiers. Such negatives are found without
the need of actually labeling them.

1. INTRODUCTION

Labeled examples are crucial to learn classifiers for visual
categorization. To be precise, we need positive and neg-
ative examples with respect to a specific visual category.
When the number of categories is large, obtaining labeled
examples in an efficient way is essential. To that end, cur-
rent research focuses on obtaining positive examples [6,19].



In [6], for instance, the authors investigate online collabo-
rative annotation. The authors in [19] gather positive ex-
amples by re-ranking web image search results. While in-
tensive effort has been devoted to the positive examples,
random sampling is the de facto standard for achieving the
negatives [6,10,11,17,19, 25, 32].

In practice, a classifier tends to misclassify negative exam-
ples which are visually similar to positive examples. As Fig.
1 shows, to derive an accurate classifier for a category, say
‘aeroplane’, confusing negatives such as images of birds or
sky should be included when training classifiers. However,
such informative negatives are unlikely to be hit by random
sampling.

In this paper we go beyond random sampling by proposing
a novel, yet technically simple, social negative bootstrapping
approach. Our approach conceptually bears some resem-
blance to active learning [22] and AdaBoost [8], as all of
them seek informative examples for learning a new classi-
fier. However, there are two notable differences between our
approach and traditional active learning. First, in contrast
to active learning which requires human interaction to label
examples selected in each round, our approach selects infor-
mative negatives without human interaction. Second, our
definition of informative examples differs from its counter-
part in a typical active learning setting. There, one assumes
that the input data consists of both positive and negative ex-
amples. Thus, examples the system is most uncertain about,
namely closest to the decision boundary [22], are considered
informative. Our approach, by contrast, selects negatives
falling on the positive side and far away from the bound-
ary. Compared to AdaBoost which works on fully labeled
data, our approach is grounded on social-tagged data, with-
out the need of manually labeling any negative examples.
Since most annotation efforts to create fully labeled data are
consumed by annotating the negatives [11], social negative
bootstrapping is suited for exploiting large-scale datasets.

2. RELATED WORK

This study is about sampling negative examples for visual
categorization. But, it cannot stand alone without positive
examples. So we first review recent progress in obtaining
positive examples, and then discuss work on the negatives.

2.1 Obtaining Positive Examples

Much research has been conducted towards devicing effi-
cient solutions to acquire positive examples. E.g., by data-
driven learning from web image search results [19,23,28, 30]
or social-tagged data [12,14,20, 25,31, 32], or by online col-
laborative annotation [6,16,18]. In [19], for instance, the
authors train a visual classifier on web image search results
of a given category, and re-rank the search results by the
classifier. By estimating the relevance of user tags to image
content [12], social-tagged data can be cleaned up. The au-
thors in [18] develop an online annotation tool, letting web
users label images as volunteers. Though the automated ap-
proaches are not comparable to human annotation [10, 25],
their output already gives a good starting point for man-
ual labeling. Therefore, a recent trend is to combine data-
driven learning and online annotation. For instance, the
authors in [6] build an ImageNet wherein positive examples
of a WordNet category [15] are obtained by labeling web
image search results of the category using the Amazon Me-
chanical Turk service. In this service, web annotators are

paid by micro payments. In a recent release of ImageNet,
for almost 9,000 categories, there are at least five hundred
positive examples per category. Compared to traditional
expert labeling, the new labeling mechanism yields positive
examples for many categories with lower cost. In this pa-
per we assume that positive examples are obtained by (one
of) the approaches described above, and focus on obtaining
negative examples.

2.2 Obtaining Negative Examples

Despite the achievement of gathering positive examples,
the problem of how to effectively obtain the negatives re-
mains unclear and its importance underestimated. One might
consider bypassing the negative labeling problem by one-
class learning, which creates classifiers using positive ex-
amples only [21]. However, as in principle learning from
more information will lead to better results, visual classi-
fiers trained by one-class learning are inferior to classifiers
trained by two-class learning with randomly sampled nega-
tives [11].

To automatically create a negative training set for a given
category, the mainstream approach is to randomly sample a
relatively small subset from a large pool of (social-tagged)
examples [6,10,11,17,19,25,32]. Apart from the obvious
fact that random sampling is simple and easy to use, we at-
tribute its popularity to the following two reasons. First, as
the possible negatives significantly outnumber the positive
training set, down-sampling the negatives bypasses class im-
balance which is known to affect classifier learning [9]. Sec-
ond, except for some over-frequent categories such as ‘sky’
and ‘person’, the chance of finding genuine positive examples
in a random fraction of the pool is low. If the pool is suffi-
ciently large, one might end with a set of reliable negatives,
but not necessarily the most informative ones.

Since negative examples are selected at random, the per-
formance of individual classifiers may vary. According to
the bootstrap aggregation theory [2], such variance can be
reduced by model averaging. Hence, the authors in [17]
perform random sampling multiple times to create multi-
ple classifiers, and combine them uniformly. Although the
robustness of the final classifier might be improved by clas-
sifier aggregation, such a “random-aggregation” approach
seems not strategically better than random sampling.

Negative bootstrapping has also been studied in the con-
text of text categorization, e.g., [13]. There, unlabeled ex-
amples are inserted into the negative set, if they are most
dissimilar to the positives, or predicted as negatives with
high confidence by the current classifier. A similar idea is
reported in [29] for video retrieval, where negatives are se-
lected at the bottom when ranking unlabeled examples by
their scores of being positives in descending order. Though
sampling at the bottom probably yields reliable negatives,
an intrinsic drawback is that those negatives are already cor-
rectly classified, adding them to the training process is not
so useful by definition. Indeed, empirical evidence from [17]
indicates that such conservative sampling is inferior to ran-
dom sampling.

In this paper, we strive to reveal the true value of social-
tagged images as negative training examples. As a reward,
we obtain visual classifiers which are more accurate than
classifiers trained on randomly sampled negatives or their
aggregated version.



3. SOCIAL NEGATIVE BOOTSTRAPPING

3.1 Problem Statement

Let « be a target image which we want to categorize, and
V' alarge set of visual categories. Let S be a large set of im-
ages, where each image is labeled with at least one category
from V' by social tagging. Given a specific category w € V,
let B+ be a positive training set, which are obtained, for
instance, by the approaches described in Section 2.1. In
a classical two-class learning setting, one has access to B+
and a set of manually labeled negative examples. In random
negative bootstrapping, manually labeled negatives are re-
placed by randomly sampled pseudo-negatives. Social neg-
ative bootstrapping derives a visual classifier G(z,w) from
Bw+ and from B,,_ which contains negative examples ob-
tained from S. The output of G(z,w) is a likelihood score
of the image = being positive with respect to the category
w. We aim for negative examples most informative to train
classifiers, but without actually labeling any negatives.

3.2 The Algorithm

For a given category w and a positive set By, we adap-
tively and iteratively select informative negatives B,,— from
S. In particular, we select the informative examples from
those negatives having the highest probability of being mis-
classified. We detail our proposal as follows.

3.2.1 Virtual Labeling

For social-tagged data, even though user tags are often
unreliable for identifying positive examples, we argue that
they are reliable for determining negative examples, allow-
ing us to construct an effective virtual labeling procedure
exploiting tag statistics and semantics.

We base the virtual labeling procedure on our observation
about social image tagging. User tags of an image may con-
tain some visual categories, or they may contain no visual
categories, as shown in Fig. 2. In both cases, determining
the positiveness of the image to a given category w is diffi-
cult, due to the subjectiveness of social tagging. However,
on a set of randomly sampled images we observe that if an
image is labeled with visual categories, but not labeled with
w or its semantically related tags, the image is likely to be
a negative example of w. We illustrate this observation in
Fig. 2(a).

To obtain a set of reliable negatives, we need to determine
Vw, a tagging vocabulary the average user uses to depict the
category w, where V,, C V. By simply excluding images
labeled with tags from V,,, we will obtain a set of reliable
negative examples. We use S,,— to represent the virtually
labeled negative set,

Sw— + virtual labeling(S, w). (1)

Concerning general criteria for creating V,,, to cope with the
diversity of user tags, we construct V,, as a set of tags se-
mantically correlated to the category. Semantic correlation
between tags can be measured, say, by tag co-occurrence in
alarge corpus [5] or by human knowledge [15]. Note that our
virtual labeling is conducted in the tag space, rather than
in the visual feature space wherein visual categorization is
performed. As a consequence, we obtain reliable negatives,
among which we expect sufficient samples which are infor-
mative for training classifiers.
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Figure 2: Inferring negative examples of a specific
visual category by tag reasoning. Tags correspond-
ing to visual categories are marked by a bold font.
If an image is labeled with visual categories, but not
with a target category, say ‘bird’, or its semantically
related tags, the image is likely to be a negative ex-
ample of the category. Images in all other cases are
not taken as positives, nor as negatives.

3.2.2 Adaptive Sampling

The virtually labeled set S,,— is large, say having millions
of images. Directly training classifiers on B, and Sy—
is not only computationally challenging, but also suffering
from extreme class imbalance. To make learning feasible,
we iteratively exploit S,,— by performing multi-round learn-
ing. We use T to denote the number of learning rounds, and
t=1,...,T to index the rounds. In each round t, we adap-
tively select the most informative negative examples based
on classifiers trained in previous rounds. To that end, we
propose a two-stage adaptive sampling strategy. Suppose
we have a classifier G¢(x, w) obtained in the round ¢. In the
first stage, we randomly sample n, samples from S, _ to
form a candidate set Uy,

U, < random sampling(Sw—, n). (2)

To scale down the computational cost of selecting informa-
tive negatives from U; and to reduce the chance of having
genuine positives in Uy, we make n, < |Sy—|. In the second
stage, we use Gy_1(z,w) to predict labels for each example

in U, and obtain U; in which each example is associated
with a likelihood score of being positive to w,

U +— predction(Ug, Gi—1(z, w)). 3)

We consider examples which are most misclassified, i.e., pre-
dicted as positive with the largest scores, the most informa-
tive negatives. We rank examples in U by their scores in
descending order and select the top ranked examples as the
informative negative set found in the round ¢. We denote
this negative set as BS)_ To bypass class imbalance, we
enforce the number of the selected negatives to be equal to
|Bw+ |, namely

Bl(ut)_ « selection(Uy, | Bu+ ), (4)

where | - | denotes set cardinality. By repeating the adaptive
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Figure 3: The proposed social negative bootstrapping approach. Given a specific visual category w and a
positive set B, ., we obtain a series of informative negative sets {iji} from a large set of virtually labeled
negative examples S,,— by multi-round adaptive sampling. In round ¢, we use G:_1(z,w) to classify a candidate

set U;, and select the most misclassified negatives to form Bfutl To initialize the bootstrapping process, Bfulz is
randomly sampled from S,,_. By iteratively exploiting the informative negatives, we obtain visual classifiers
with better discrimination ability, but without the cost of manually labeling any negatives.

sampling procedure, we iteratively select informative nega-
tives from S,,— in an adaptive manner.

3.2.3  Classifier Learning and Aggregation

In each round ¢, we learn a new classifier g¢(z,w) from
By+ and ijl As ijl is composed of negatives which
are most misclassified by previous classifiers, we suppose
that the new classifier is complementary to its ancestors.
Therefore, we choose classifier aggregation to obtain the fi-
nal classifier. Let G¢(z,w) be an aggregated classifier which
uniformly combines g;(z,w) and the previous ¢-1 classifiers:

t—1 1
Gi(z,w) = TGFl(aaw) + Egt(a:, w). (5)

To trigger the bootstrapping process, we train an initial
classifier g1 (z, w) on B+ and Bfull, which consists of exam-
ples randomly sampled from S, with |Bl(ull| = |Buw+].

We illustrate the entire framework in Fig. 3, with the algo-
rithm given in Table 1. By adaptively selecting informative
negative sets, social negative bootstrapping enables us to
derive visual classifiers with better discrimination ability.

4. EXPERIMENTAL SETUP

We compare the proposed approach with the following two
types of baselines, both of which rely on random sampling
to obtain negative training data: 1) “random sampling” [10,
11,19,25,32], and 2) “random+aggregation” [17]. For a fair
comparison, whenever applicable, we will make our approach
and the baselines share the same input and parameters.

4.1 Data sets

Positive training set B,+. We choose the PASCAL
VOC 2008 training set [7], collected from Flickr, with expert-
labeled ground truth for 20 visual categories. For each cat-
egory, we randomly sample 50 positive examples as By .

Social-tagged image set S. We construct S as follows.
We create the visual category vocabulary V' by taking the
intersection between the ImageNet vocabulary [6] and a so-
cial tagging vocabulary in which each tag is used by at least
100 distinct users in a set of 10 million Flickr images. The
size of V is 5,009. Next, we go through 3.5 million Flickr
images! created in our previous work [12], and remove im-

!Data available at http://staff.science.uva.nl/"xirong

Table 1: The proposed social negative bootstrapping
algorithm.

INPUT: visual concept w, expert-labeled positive
examples B+, social-tagged examples S, and

the number of learning rounds 7.

OUTPUT: visual classifier Gr(z, w).

1. Creating negative example pool:
Sw— < virtual labeling(S, w).

2. Creating an initial classifier:
(a) Bf}l <+ random sampling(Sw—, |Buw+|)-
(b) g1(x,w) < classifier learnz’ng(Bw+,B$1).
(©) Ga(,w) = g1 (, w).
3. Fort=2,...,T do
3.1 Adaptive sampling:
(a) Uy < random sampling(Sw—,ny).
(b) Uy « prediction(Us, Gy—1 (z, w)).
(c) B« selection(Us, | Buy|).
3.2 Classifier learning:
git(z,w) + classifier learning(By+, ijl)
3.3 Classifier aggregation:
Ge(z,w) = %G’tﬂ(x,w) + %gt(x,w).

ages batch-tagged or having no tags from V. We end with
S consisting of 650K images.

Two test sets. To evaluate classifiers derived from the
same training set but by different approaches, we adopt the
following two test sets, which were created independently
by manually labeling different subsets of Flickr images. For
within-dataset visual categorization, we adopt the VOC2008
validation set [7]. To test the robustness of the proposed
approach in a cross-dataset setting, we choose the NUS-
OBJECT test set [4]. We present in Table 2 data statistics
of the training and test sets.

4.2 Implementation

Image representation. Since vector-quantized keypoint
descriptors are effective features for visual categorization,
we follow this convention. In particular, we adopt dense
sampling for keypoint localization and SURF [1] for keypoint
description, using a fast implementation of dense-SURF [24].



Table 2: Statistics of the training and test sets used
in our experiments. For each category w, we train
classifiers on a small number of positive set B, and
a large amount of social-tagged negative set S, _.

Training set  Positives in test sets (%)

Category w |Buw+| |Sw—| VOC08-val NUS-OBJECT

aeroplane 50 521,010 5.3 4.8
bicycle 50 484,144 4.5 -
bird 50 395,079 6.3 5.8
boat 50 438,637 4.3 7.1
bottle 50 390,601 5.2 -
bus 48 511,708 2.3 -
car 50 383,319 10.1 3.5
cat 50 482,091 7.6 3.5
chair 50 327,967 8.0 -
cow 37 521,429 1.7 1.3
diningtable 50 484,960 2.4 -
dog 50 489,730 9.1 4.0
horse 50 525,110 4.6 2.6
motorbike 50 513,191 4.6

person 50 190,541 48.9 -
pottedplant 50 520,920 4.3 -
sheep 32 508,885 1.4 -
sofa 50 401,056 3.0 -
train 50 515,572 3.3 2.1
tv/monitor 50 228,876 4.9 -

With the SURF descriptors quantized by a codebook of 4000
bins, an image is represented by a 4000-dimensional feature
which describes dominant structural patterns of that image.

Base classifiers. The proposed approach does not rely
on specific classification models. Here we instantiate g:(x, w)
using Support Vector Machine (SVM) for its good perfor-
mance [26]. Since we do not aim for the best possible per-
formance, but rather focus on the performance gain, we train
two-class SVM classifiers using LIBSVM’s default cost pa-
rameter [3], and the x? kernel.

Parameters of social negative bootstrapping. To
create the social-tagged negative pool for a given category
w, we compute the Normalized Google Distance (NGD) [5]
between tags and w on the 10 million set. Tags whose dis-
tance to w is smaller than 1 are considered as semantically
correlated to w. Notice that the tag ‘face’ is strongly corre-
lated to ‘person’ related concepts, but it tends to be under-
used in social tagging. Thus, if an image has faces detected
by the Viola-Jones detector [27], we add ‘face’ to the tags of
that image. We combine the correlated tags and childnodes
of w in WordNet to form the correlated tag set,

Vw = {w' € VINGD(w,w') <1 or ()
w’ is a WordNet childnode of w}.

For the size of the candidate set in each learning round,
namely n, in Eq. 2, we strike a balance between effective-
ness and efficiency, with n,, = 1000 as our choice. We ob-
serve that the overall performance becomes stable after 50
learning rounds, therefore we set T' = 50.

Parameters of the two negative sampling baselines.
We use the same negative pool Sy, as used in the proposed
approach for the two baseline approaches. In each learning
round ¢, “random sampling” randomly selects |By,+| neg-
ative examples from S, — to train a classifier, while “ran-
dom+aggregation” uniformly aggregates this classifier and
the previous ¢-1 classifiers.

Given the parameter setting above, we train up to 20 X
50 x 2=2,000 base classifiers in total.

Evaluation criteria. For each visual category, we pre-
dict the presence of that category in a test image with a
real-valued confidence score. Images in a test set are ranked
according to their scores in descending order. To evaluate
the performance, we adopt Precision at 20 (P20) to compare
the top ranked results, and Average Precision (AP) for the
whole ranked list.

S. RESULTS

5.1 Comparing Different Approaches

As shown in Fig. 4(a), the proposed approach compares
favorably to the baselines for ranking positive results at
the top. In the first round, as no classifier is available,
all approaches start with the same negative set Bfull, and
consequently produce the same classifier Gy (z,w). After-
wards, while the baseline approaches keep selecting ran-
dom negatives, our approach starts seeking the most in-
formative negatives. The “random sampling” approach is
affected by the random factor in sampling, so its perfor-
mance varies. The “random+aggregation” approach reduces
such variance by combining classifiers. However, as the per-
formance curves show, “random+-aggregation”, with a P20
score of 0.380 at 7'=>50, can hardly go beyond the best per-
formance of “random sampling”, which is 0.383. The results
clearly show the limitation of obtaining negatives by random
sampling. In contrast, our approach reaches a P20 score
of 0.513, which is 34.1% better than the best performance
of “random sampling”, and a 35.0% relative improvement
over “random+-aggregation”. By adaptively and iteratively
sampling the most informative negatives, we obtain visual
classifiers with higher accuracy.

As shown in Fig. 4(b), for 10 out of the 20 categories,
we obtain a relative improvement of at least 50% on “ran-
dom+aggregation”. Note that for four categories, i.e., ‘bus’,
‘sheep’, ‘dog’, and ‘tv/monitor’, our approach does not im-
prove the baseline. For the category ‘dog’, we find that close-
ups of flowers are frequently selected as the most informative
negatives, and consequently, examples of other good nega-
tive classes, e.g., ‘horse’, are outnumbered. Probably be-
cause of such bias, the performance degenerates. For the cat-
egory ‘tv/monitor’, images of rectangular objects are contin-
uously selected. Classifiers trained on such negatives seem
to be less powerful to separate the category from ‘person’,
the most frequent category in the VOCO08-val set. These
results suggest that for certain categories, the diversity of
negative training examples might be reduced to some ex-
tent. Nevertheless, our approach indeed correctly ranks the
first result of the four categories, while the baseline fails.
In general, when compared to random sampling, adaptive
sampling results in more accurate visual classifiers.

The proposed approach is also effective for ranking an
entire set, as shown in Fig. 5. Notice that our perfor-
mance curve dips at 7=2. This is because g2(z,w) is de-
rived from vall, which are the most misclassified negatives
by g1(x,w), and thus much distinct from generic negatives.
Consequently, g2 (z, w) is less effective for classifying generic
negatives. Nevertheless, as subsequent classifiers are de-
signed to be complementary to their ancestors, such ineffec-
tiveness is tentative and will be resolved by adaptive sam-
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Figure 4: Within-dataset visual categorization. Test
set VOCO08-val. For 10 out of the 20 categories, clas-
sifiers trained by the proposed approach is at least
50% better in terms of Precision at 20. The consid-
erable improvement is achieved without manually
labeling any negative examples.

pling. When compared to “random+aggregation” with an
AP score of 0.117, our approach reaches an AP score of 0.178
on NUS-OBJECT. The cross-dataset experiment shows the
robustness of the proposed approach.

5.2 Examples

We show in Fig. 6 the most informative negative exam-
ples found by our approach. As we use the dense-SURF
feature, negative examples visually close to the positives in
terms of their structural patterns are predicted as informa-
tive for classifier training. See the categories ‘cow’, ‘train’,
and ‘bus’ for instance. Because the examples are selected
without manual verification, genuine positives may be in-
cluded occasionally, see Fig. 6(c). Nevertheless, as they are
in the minority, their impact on the bootstrapping process
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Figure 5: Cross-dataset visual categorization. The
proposed approach is not only superior to the base-
lines for ranking an entire set, but also effective in
the cross-dataset setting.

is minimal. Further, by visualizing the distribution of user
tags in the selected negatives with a tag cloud, we see which
negative classes are most informative to a certain category.
We conjecture that such a relationship is feature-dependent,
i.e., different features result in different informative nega-
tives for the same category. Moreover, we observe that the
informativeness relationship between categories seems to be
asymmetric. For instance, while ‘bus’ and ‘car’ are most
informative to ‘train’, the most informative negative class
for ‘bus’ and ‘car’ is ‘firetruck’, rather than ‘train’. A plau-
sible explanation is that ‘firetruck’ bears more resemblance
to the former two categories in terms of properties of the
object, e.g., rectangular curves, and visual context, in casu,
street. In sum, the qualitative results in Fig. 6 further illus-
trate the effectiveness of the proposed approach in finding
negative examples informative for learning visual classifiers.
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Figure 6: The 80 most informative negative examples, found by the proposed approach, for specific visual
categories. By visualizing the distribution of user tags in the selected negatives as a tag cloud, we see which
negative classes are most informative to a given category.



6. CONCLUSIONS

In this paper we study how to sample informative nega-
tive examples from widely available social-tagged images for
visual categorization. To that end, we propose the social
negative bootstrapping approach. Our major findings are as
follows. Negative examples can be obtained, with no hu-
man interaction, by the designed virtual labeling procedure
which exploits tag statistics and semantics. Virtual label-
ing, in combination with adaptive sampling, allows us to
harvest informative negatives from those negatives having
the highest probability of being misclassified. When com-
pared to classifiers trained on randomly sampled negatives,
classifiers derived from such informative negatives have bet-
ter discrimination ability. The proposed approach is thus
strategically better than random negative bootstrapping.

Experiments on two image benchmarks and 650K virtu-
ally labeled negative examples verify our proposal. For the
majority of visual categories, we obtain a relative improve-
ment of at least 50%, in terms of precision at 20. Moreover,
cross-dataset visual categorization shows the robustness of
the proposed approach. Notice that the substantial progress
is achieved without the need of labeling any negative exam-
ples. As the promising results suggest, social negative boot-
strapping opens up interesting avenues for future research.
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