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ABSTRACT

Annotating the increasing amounts of user-contributed im-
ages in a personalized manner is in great demand. However,
this demand is largely ignored by the mainstream of au-
tomated image annotation research. In this paper we aim
for personalizing automated image annotation by jointly ex-
ploiting personalized tag statistics and content-based image
annotation. We propose a cross-entropy based learning al-
gorithm which personalizes a generic annotation model by
learning from a user’s multimedia tagging history. Using
cross-entropy-minimization based Monte Carlo sampling, the
proposed algorithm optimizes the personalization process in
terms of a performance measurement which can be flexi-
bly chosen. Automatic image annotation experiments with
5,315 realistic users in the social web show that the proposed
method compares favorably to a generic image annotation
method and a method using personalized tag statistics only.
For 4,442 users the performance improves, where for 1,088
users the absolute performance gain is at least 0.05 in terms
of average precision. The results show the value of the pro-
posed method.
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1. INTRODUCTION

Annotating large personal collections of pictures on smart
phones, personal computers, and the web is of great social
importance. With the size of such collections growing so
rapidly, full manual annotation is unfeasible. Thus, auto-
matic image annotation is crucial, but this is challenging
due to the well-known semantic gap: “the lack of coinci-
dence between the information that one can extract from
the visual data and the interpretation that the same data
have for a user in a given situation” [24]. Much work has
been conducted to (partially) bridge the gap by learning
a mapping between visual features and objective seman-
tics [6,9,20,22,26,27]. However, in the above efforts the user
factor in the semantic gap is completely ignored. Clearly,
users have personal preferences for image subjects. For in-
stance, some users collect pictures of flowers, while others
may favor images of cars. This real-world phenomenon sug-
gests that an off-the-shelf image annotation system is un-
likely to be universally applicable to the large variations in
personal albums. The absence of personal information in
devising image annotation models results in unsatisfactory
annotations.

Some research has been conducted towards personalizing
automated image annotation [4,5,14,21]. Sawant et al. were
among the first to leverage user tagging preferences, with
their novel observation that “a user’s previously used tags
can be the best determinants of her future uploads” [21].
Interestingly, their study revealed that simply annotating a
user’s new images with tags most frequently used by the
same user in the past yields a much higher accuracy than
several automated methods. This result leads the authors
to conclude that prediction by personal tag statistics is a
reasonable upper bound on personalized image annotation
performance.

In this paper we study the problem of personalizing auto-
mated image annotation in a social web context. We tackle
the problem by proposing a generic framework which jointly
exploits generic content-based image annotation and per-
sonal multimedia tagging history. We present a learning
algorithm which optimizes the personalization process in
terms of a performance measurement which can be arbitrar-
ily chosen. Due to this technical advantage, we go beyond
the performance upper bound of personalized image anno-
tation established in [21].



2. RELATED WORK

Instead of proposing a new generic image annotation model,
this paper studies the personalization of automated image
annotation. We first review recent progress in generic im-
age annotation, and then we discuss related work on image
annotation personalization.

2.1 Generic Image Annotation

A considerable amount of papers have been published for
generic image annotation [6,9,13,15,22,23,25,26]. We di-
vide existing work into content-based methods and content-
context-based methods.

The content-based methods predict tags purely based on
image content analysis [6,9,13,22,25,26]. Li and Wang [9]
train a multivariate Gaussian mixture model for each tag,
while Support Vector Machines are used in [22]. Liu et
al. [13] annotate images by maximizing the joint probabil-
ity of images and tags. The authors in [26] perform image
annotation by learning a mapping into a common feature
space where both images and tags are represented. They
rank tags in terms of their distance to a test image in the
common space. In contrast to per-tag modeling, k-nearest-
neighbors based methods make predictions by propagating
tags to the unlabeled image from its visual neighbors [16].
Weighted nearest neighbors are considered in [6]. Sparse
reconstructions are employed in [25] to reduce the chance
of incorrectly including neighbors which are semantically ir-
relevant to the unlabeled image. To enhance content-based
image annotation, contextual information on the creation of
an unlabeled image has been investigated [15,23]. In [15],
GPS data, indicating where the image was captured, is em-
ployed, whereas in [23], camera metadata such as shutter
speed and focal length describing how the image was cap-
tured is studied. In both content-based and content-context-
based methods, all users are treated equally, without taking
personal preferences into account.

Work such as [3,12,29] studies learning image annotation
models from social-tagged images. Datta et al. [3] treat user
tags as positive feedback to incrementally update an existing
model. Liu et al. [12] and Zhu et al. [29] measure both image-
wise visual similarity and tag-wise semantic similarity to
refine existing annotations. These methods learn from the
social community but do not consider personalized image
annotation.

2.2 Personalized Image Annotation

Recently some papers have appeared towards automated
approaches to personalized image annotation [4, 5, 14, 21].
According to whether user interaction is needed, we divide
existing work into two types of methods, automatic methods
and semi-automatic methods.

The automatic methods achieve personalization by infer-
ring from personal digital calendars [5] or multimedia tag-
ging history [21], or training a generic model on personal
collections [4]. In [5], Gallagher et al. explore the possibility
of using personal calendar event annotations to label im-
ages. The rationale for the idea is based on the coincidence
between the calendar event and image capture time. Calen-
dar annotations are not always available. More importantly,
tagging a calendar event is different from tagging an image.
Therefore, personalizing image annotation based on the cal-
endar tagging history seems questionable. Assuming that
context-constrained images such as those captured at the

same location have a similar visual style, Duan et al. [4] pro-
pose a probabilistic model where styles are viewed as latent
variables. While learning from visual features of high dimen-
sionality requires many labeled examples, the number of per-
sonal images for a specific user is relatively small and many
of them are unlabeled. Hence, learning models using per-
sonal collections alone seems problematic. To overcome the
problem, Liu et al. [14] propose a semi-automatic method, by
first learning a generic model for each tag using images from
a professional photo forum. They then solicit user feedback
to adapt the learned model to personal collections. The dif-
ficulty in obtaining user feedback for thousands of tags puts
the scalability of the semi-automatic method into question.
Moreover, in [4,5,14], personal tagging history, a strong clue
for building personalized annotation models, is untouched.

In [21], Sawant et al. propose to combine personal tagging
history, in the form of tag frequency, and predictions made
by a content-based image annotation system [9] in a Naive
Bayes formulation. They conclude that combining tagging
history and content analysis is inferior to using the history
alone. We argue that their conclusion is true but for their
Naive Bayes model only. In that model the performance of
the individual pieces of evidence is not considered. In con-
trast, we propose a personalization model which is directly
optimized in terms of the prior annotation performance. As
a consequence, we reach the novel conclusion that combin-
ing the personal tagging history and content analysis yields
better personalized image annotation.

The rest of the paper is organized as follows. We formu-
late the personalization problem and elaborate the proposed
personalization model in Section 3. We setup experiments in
Section 4, with results analyzed in Section 5. We conclude
the paper in Section 6.

3. PERSONALIZED IMAGE ANNOTATION

3.1 Problem Formalization

Let u be a user for whom we want to provide personalized
image annotation. Let Xy past be a set of images the user
has already labeled, and X, future @ set of unlabeled images
the user wants to have tags for. We use w to denote a tag
and V = {wi,...,wn} for a large vocabulary. For each
image x € Xy, future, We aim to annotate it with tags from
the vocabulary such that the annotations are relevant with
respect to the image from the user’s standpoint. To do so, we
use both information from the user as well as the social web
community. So let X¢omm indicate images in the community,
and Xy past 18 a subset of Xcomm. We define G (z,w) as a
personalized image annotation function whose output is a
confidence score of the tag w being relevant to the image x.
This allows us to rank tags by Gu(z,w) in descending order
and preserve the top ranked tags as annotations of unlabeled
images for this particular user.

Personalized image annotation is a complex task. It is
unlikely that an image annotation function based on a sin-
gle modality can capture all relevant characteristics. We
therefore need to look at the problem from multiple perspec-
tives. Ideally, we exploit varying evidence such as content-
based image annotation driven by diverse features [6, 11],
tag statistics in personal collections and networks [21], per-
sonal daily activities [5], geographic context [15], or camera
metadata [23]. In this study, we focus on combining content-
based annotation and personal tag statistics, as they are
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Figure 1: The proposed framework for personalizing automated image annotation.

For a given user, we

deliver a personalized image annotation model, by jointly exploiting content-based image annotation and the

user’s multimedia tagging history.

two fundamental elements related to the problem and are
often more accessible than other elements. Nevertheless, to
make our discussion general, we consider combining anno-
tation functions driven by multiple sources of evidence. To
that end, let {g1(z,w),...,g:(z,w)}, with g;(z,w) € [0,1],
j=1,...,t, be aset of such image annotation functions. As
combining these functions can be viewed as a multi-modal
fusion problem, we choose to use a linear weighted sum, an
effective strategy for multi-modal fusion according to [1].
The importance of individual tags varies per user, so tag-
dependent weights are necessary. To formalize the above
notion, for each tag w;, i = 1,...,m, we express a parame-
terized version of G (z,w) as

GuA 1’ wl

ZA 195 (2, wi) (1)

where {)\;;} are non-negative weighting parameters, and
A = [N j]mxt is the parameter matrix. While A;; indi-
cates the importance of g¢;(z,w;) for predicting w;, their
summation, namely Z;Zl Ai,j, reflects the importance of w;
for annotating the personal collection. By optimizing the
weights per user, we obtain personalized image annotation
models.

To find the optimal weights for a given user, we need in-
formation about what tags the user is likely to use for tag-
ging her/his personal collections. We assume that a user’s
tagging preference is relatively consistent within a certain
period. Therefore, the images the user has already labeled
Xu,past are the prime candidates. To make the above notion
operational, we need to formulate an optimization goal per

user. Let rank(V]z,Gy,a) be a ranking of the vocabulary
V for an image x € Xy past, Obtained by sorting tags in
descending order by Gy a(z,w). Let w, be the set of tags
assigned to z by its user, serving as ground truth to assess
rank(V|z, Gu,a). We define

E(rank(V|z,Gu,a), Ws)

as a performance measure function which produces a real-
valued score indicating ranking quality. As we learn from a
set of images, rather than from a single image, we define a
set-level performance measure as

S(X Z (rank(V|z,Gu,n), Ws), (2)

reX

\X |
where | - | is the cardinality of a set. Putting everything
together, we formulate the problem of personalizing auto-

mated image annotation for a given user as solving the fol-
lowing optimization problem:

A" = argmax S( Xy past, A), (3)
A

subject to

0<\i; <1 (4)
Solving Eq. 3 yields the optimal parameters for the per-
sonalized model defined in Eq. 1, which are then used to

annotate new, yet unlabeled, images of the user. We illus-
trate the proposed framework in Fig. 1.

3.2 Personalization using Cross-Entropy

Finding a solution for the optimization problem in Eq.
3 is nontrivial. As the performance measure function F is



often not differentiable, a standard gradient-ascent based
algorithm is inapplicable. A common approach to such a
problem is Monte Carlo simulation. But, when the param-
eter space is large, as in our case, finding A* or its good
approximation by random sampling is a rare event. A crude
Monte Carlo approach would imply an unfeasibly large sim-
ulation effort. A solution for rare event search is offered by
the cross-entropy method [19], which iteratively optimizes
an arbitrary function by importance sampling. We first de-
scribe the cross-entropy method in general, and then present
a cross-entropy based learning algorithm for solving Eq. 3.

3.2.1 The Cross-Entropy Method

Imagine that our goal is to maximize an objective function
S(A), and its maximum is found at A*. The cross-entropy
method [19] assumes that A is a random variable following
a parametric distribution p(A; ©) which is specified by an
(unknown) hyper parameter ©. In a nutshell, the method
consists of the following two steps executed iteratively:

Step 1. Randomly generate n samples using p(A; ©); We
use {AM) ... A} to denote the n samples.

Step 2. Select the top s samples {/A\m, e ,K(S)} by sort-
ing the n samples in descending order by S(A), where the
selected samples are called elite samples. Re-estimate © by
maximum likelihood estimation on the s elite samples.

From the second step we see that the hyper parameter © is
updated in terms of the elite samples. As a consequence, the
probability of generating good samples is progressively in-
creased, making A converge towards its optimal value. The
procedure repeats until it hits certain stop criteria. For in-
stance, the performance does not improve or the number of
iterations exceed a given threshold. We compute A* as the
expectation of p(A; ©).

The theoretical foundation of the two-step procedure is
that, the original optimization problem can be tackled by
iteratively solving the following problem,

O —agmax [ 1(S() = p(AsO)aA, ()
© A

where [ is an indicator function, and v is a given level. The
rationale for Eq. 5 is that a good choice of © shall generate
more elite A with I(S(A > r)) = 1. We use T to indicate
the number of iterations in total and ¢ = 1,...,7T to index
a specific iteration. For a given level v(9, let ©@ be the
solution to Eq. 5. By constructing an increasing sequence
of levels {’y(q)}7 and correspondingly finding a sequence of
hyper parameters {(9(")} by solving Eq. 5, the optimal so-
lution is progressively approached. When fy<T> is close to
S(A¥), the expectation of p(A; ™) will be close to A*.

So in each iteration, our goal is to find © such that the
cross entropy between p(A; ©@) and p(A; ©) is minimized.
According to [19], minimizing the cross entropy turns out
to be maximum likelihood estimation on those elite sam-
ples with S(A) > +?. To see how this conclusion re-
sults in the second step of the cross-entropy method, let
{K(l"”, R K(S’q)} be the s elite samples found in the ¢-th
iteration. By setting 4(? = S(K(S’q)), 0@ is the result of
maximum likelihood estimation on {A®® . A9},

3.2.2  The Cross-Entropy based Learning Algorithm

We now present an algorithm for image annotation per-

sonalization, on the basis of the cross-entropy method. For
reasons of simplicity, we assume that the weighting param-
eters {\;,;} are independent of each other. Each parameter
Ai,; follows a distribution p(Aij;6:,;), and © = [0; ;]mxt
is the hyper parameter matrix. Moreover, we choose bino-
mial distributions to be the distribution family, because the
parameter of a binomial distribution, namely 6; ;, directly
measures the impact of A; ; on the personalization process.
If a larger (smaller) value of \; ; contributes more to the ob-
jective function S(Xu,past, A) in the current learning round,
0;,; increases (decreases) such that a larger (smaller) value
is more likely to be assigned to A;; in next rounds. Con-
cretely, in the ¢-th iteration, we first randomly generate a
sequence of n samples, {Au’q), cee A("’q)}, where

/\Ef;‘n — %Binomial(N, 957[1)), forl=1,...,n. (6)
Note that to satisfy the constraints that 0 < A;; < 1, we
divide the output of the Binomial function by the number of
trials. Subsequently, we find s elite samples from the n sam-
ples by sorting them in descending order according to our
objective function S(Xy past,A). As we have mentioned in
Section 3.2.1, the optimal ©@ is found by maximum like-
lihood estimation on the s elite samples. For a Binomial
distribution, this amounts to averaging over the elite sam-
ples, namely

@ _ 15500
-3 o

=1

Since the expectation of + Binomial(N, ) is 6, the optimal
set of weights A* found by the proposed algorithm is ©(™).
We summarize our algorithm in Table 1. As there is no
need to compute gradients for the objective function, the
proposed algorithm can optimize the personalization process
in terms of a performance measure which can be arbitrarily
chosen. Moreover, its convergence is theoretically guaran-
teed by the underlying cross-entropy method [19].
Concerning the complexity of our algorithm, the main
computational effort is spent on evaluating S(Xu, past, ).
We assume that the generic annotation functions {g;(z, w)}
are precomputed. For a given A, the complexity of con-
structing a tag rank for an image is O(m -t +m?), and con-

Table 1: The proposed cross-entropy based learning
algorithm for optimizing automated image annota-
tion per user.

INPUT: A user’s multimedia tagging history X past,
base image annotation functions {g1,...,g:},

OUTPUT: optimized weights A* for the personalized
image annotation function Gy a(z,w).

1. Initialize ©®
2. forqg=1,...,T
3. Randomly generate {A(l"D, e A(""”} using Eq. 6

4. Evaluate the generated samples using Eq. 2,
and select the s elite samples

5. Obtain ©@ by maximum likelihood estimation
on the s samples using Eq. 7
6. A"+ 0™




sequently O(|Xu past| - (m -t + m?)) for the entire training
set. Notice that the evaluations of the n parameters { A9}
are independent of each other. The computation associated
with each image is also independent of other training images.
Therefore, the algorithm can be easily parallelized.

4. EXPERIMENTAL SETUP

To verify our proposal of personalized image annotation,
we conduct a series of experiments on realistic personal im-
age sets collected from the social web.

4.1 Data Sets

Community Image Set X .o for building a content-
based image annotation system. We use a set of 3.5 mil-
lion images randomly sampled from Flickr by our earlier
work [10]. Because batch-tagged images are often (nearly)
duplicate and of low tagging accuracy, such images are not
helpful for content-based image annotation. Also, we want
tags to be meaningful. With these two considerations, we
remove batch-tagged images and tags not defined in Word-
Net [17]. We use the remaining 800K images as Xcomm.
Since tags with very low frequency are unlikely to be well
predicted, we preserve tags assigned to at least 100 images,
and thus obtain a vocabulary V with m = 5,073 tags.

Personal Image Sets X, for testing personalized im-
age annotation. As this work studies how to personalize
automated image annotation, the personal image sets for
evaluation should be independent of the 800K community
image set. To that end, we choose NUS-WIDE [2], which
consists of 20K Flickr images after the same preprocess as
we used for the community set. We aim to learn from a
user’s multimedia tagging history. Therefore, for each user,
instead of splitting her/his image set at random, we divide
the set into two distinct subsets, namely Past and Future,
such that images from Past were uploaded before images
from Future. The Past and Future sets are instantiations of
Xupast and Xy, ruture defined in Section 3.1. To reveal how
much personal tagging history is required for the history in-
formation to be useful, we conduct a study on 5,315 users
with varying amounts of personal tagging history, as shown
in Table 2. The number of images in the Past sets ranges
from 1 to 205, with an average value of 7.9. The Future
set has similar statistics. For each user, we use Xy past for
training and Xy, future for evaluation. Note that we treat
each test image as unlabeled. Its user tags are merely used
for ground-truth purposes.

4.2 Base Image Annotation Functions

We choose two state-of-the-art models, PersonalPrefer-
ence [21] and Visual [11], which predict tags using tag statis-
tics and visual content, respectively.

PersonalPreference. We choose this function for its
good performance for personalized image annotation, as sug-
gested in [21]. Given an unlabeled image z from a user u, the
PersonalPreference model simply annotates z with the most
frequent tags in Xy past- Let P(w]X) be the tag distribution
in a social-tagged image set X, computed as

freq(w|X) + €
oL freq(wglx) +e-m’

P(w]X) ~ (8)

where freq(w|X) is the number of images labeled with w in
X, and € is a small positive constant for smoothing. We

Table 2: We build personalized image annotation
models for 5,315 users with varying amounts of per-
sonal tagging history. The amount of tagging history
per user is measured by | X past|.

| Xu,past| Number of users
1 1,422

2~9 2,554
10 ~ 49 1,221
> 50 118

express the PersonalPreference version of g(z,w) as
Ipp (7, w) = P(w|Xu past)- )

Visual. This model as introduced in our previous work
[11] predicts tags purely based on image content. Our ex-
periments show that it outperforms ALIPR [9], the content-
based model used in [21]. Given an image x represented
by a visual feature f, the Visual model first finds & neigh-
bor images visually close to x from the community image
set Xcomm, and then selects the most frequent tags in the
neighbor set as annotations of x. To overcome the limitation
of single features in describing image content, predictions
made based on individual features are uniformly combined.
We express the Visual version of g(z,w) as

1 freq w Xm, , freq w Xcomm
ey = L (3 R0 Xeg) el Xeomn)

BN Keomml

(10)
where F' is a set of features, and X, s are the k visual
neighbors of = with the visual similarity defined by f.

To implement Eq. 10, we choose three decent visual fea-
tures as follows: COLOR, CSLBP, and GIST. The COLOR
feature is a 64-d global feature, combining the 44-d color
correlogram [8], the 14-d texture moments [28], and the 6-d
RGB color comments. The CSLBP feature is a 80-d center-
symmetric local binary pattern histogram [7], capturing lo-
cal texture distributions. The GIST feature is a 960-d fea-
ture describing dominant spatial structures of a scene by a
set of perceptual measures such as naturalness, openness,
and roughness [18]. The parameter k is set to 500.

By incorporating the two complementary base functions,
gpp(z,w) and g, (z,w), into our unified framework, we aim
for good personalized image annotation.

4.3 Implementation

Parameters of the Proposed Model. There are m =
5,073 tags and t = 2 base image annotation functions. We
empirically set the parameters of the algorithm described
in Table 1 as follows: n = 10, s = 2, and T" = 200. The
computational time of the algorithm is linearly proportional
to the size of the training data. For a user with 50 tagged
images for training, each learning round costs approximately
42 seconds in our prototype system.

Evaluation Criteria. We use precision at top 1 (P@1)
and precision at top 5 (P@5) to evaluate the accuracy of the
top predicted tags. To evaluate entire tag rankings, we use
average precision (AP), a good combination of precision and
recall. The personalization process is optimized in terms of
AP. The performance for a given user is averaged over all
test images of this user.



4.4 Experiments

Experiment 1: User Tagging Consistency. We aim
to verify to what extent our conjecture about user tagging
consistency made in Section 3.1 is valid. Due to the lack
of golden criteria for judging consistency, we compare the
divergence between tag distribution of the same user and
from different users. Given two users u; and u;, we com-
pute the Jensen-Shannon divergence between P(w|Xu; past)
and P(w\Xuj,fumm), where the probability masses are com-
puted using Eq. 8. So i = j indicates intra-user divergences,
while 7 # j indicates inter-user divergences.

Experiment 2: Comparing Models. We compare
the proposed model with the following three baselines: two
generic models, namely CommunityPreference and Visual,
and one personalized model, PersonalPreference. Commu-
nityPreference annotates an image by simply predicting the
most frequent tags within the community set. Visual and
PersonalPreference, as mentioned in Section 4.2, are two in-
gredients in the proposed model.

5. RESULTS
5.1 Experiment 1: User Tagging Consistency

The intra-user and inter-user divergence matrix is shown
in Fig. 2, where the diagonal line denotes the intra-user
divergences. For a better view of the four user groups in
Table 2, we randomly select 100 users from each group, and
arrange the matrix in ascending order in terms of | Xy past|.
For users with a very short tagging history as shown in
the top left corner of Fig. 2, the intra-user divergences are
smaller than their inter-user counterparts within the same
group. But the difference is relatively small, largely due to
the fact that the lack of tagging history makes the estimated
tag distributions less distinguishable. As the amount of the
tagging history increases, we observe a more clear difference
between intra-user divergences and inter-user divergences.
See for instance | Xy past| > 50 as shown in the bottom right
corner of Fig. 2. Viewing the inter-user divergences as a
baseline, we conclude that the tagging preferences of the
same user is relatively consistent.

5.2 Experiment 2: Comparing Models

Personalized Models versus Generic Models. As
shown in Table 3, when a user’s personal tagging prefer-
ence is unknown, content-based prediction, i.e, the Visual
model, with an AP score of 0.091, is much better than
CommumnityPreference with an AP score of 0.044. Once a
user’s tagging history is available, the simple PersonalPref-
erence model, with an AP score of 0.232, clearly outper-
forms content-based prediction. The statement is valid even
for | Xu past| = 1. The result is consistent with the obser-
vation made by [21] that a user’s previously used tags are
important for predicting her/his future uploads.

Comparing Two Personalized Models. As shown in
Table 3, the proposed model compares favorably to Person-
alPreference under all evaluation criteria. In contrast to [21]
where PersonalPreference is considered as an upper bound
on image annotation performance, our model surpasses the
“upper bound”.

We compare the two personalized models, given users with
varying amounts of personal tagging history. In the extreme
case, there are 1,422 users, each having only one tagged
images available for training. For 67% of the 1,422 users, we
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Figure 2: Experiment 1. User tagging consistency.
The axes represent the Past and Future sets of 400
users with | X, pest| ranging from 1 to 168. Each en-
try in the matrix is the Jensen-Shannon divergence
between the tag distribution in a Past set and in
a Future set. The matrix is asymmetrical due to
inter-user tagging divergences. The diagonal line in-
dicates intra-user divergences. Best viewed in color.

observe improvements, with a relative gain of 8% in terms
of AP. Richer tagging history results in better personalized
models in general.

For a comprehensive study, we make a per-user compari-
son between our model and PersonalPreference. The abso-
lute improvement in terms of AP is shown in Fig. 3. For
4,442 out of the 5,315 users in our experiments, the proposed
model is better than PersonalPreference. For 1,088 users, we
obtain an absolute improvement of at least 0.05 in terms of
AP. We provide in Table 4 a close-up view of the two ex-
tremes of the performance curve. In the worst case (Bottom
1), the two ground truth tags ‘peninsula’ and ‘winchester’
correspond to abstract notions with rare frequency in the
community set. As a consequence, the Visual model fails
to predict these two tags, resulting in a worse personalized
model compared to PersonalPreference. In the best case
(Top 1), our model, by ranking ‘balloon’ at the top, im-
proves AP from 0.333 to 1. Overall the proposed algorithm
strikes a proper balance when combining PersonalPreference
and Visual in the process of model personalization.

We also look into the scenario when richer personal tag-
ging history is available. For 94.9% of the 118 users with
Xupast| > 50, we observe improvements when compared
to PersonalPreference. While in the worse case there is a
relative loss of 4%, in a successful case we reach a rela-
tive improvement of 60%. For a better understanding of
(un)successful cases, we illustrate two of them in Fig. 4.
For both cases, due to the divergence between the tag dis-
tribution in Past and in Future, PersonalPreference yields
relatively lower performance, with AP scores of 0.285 and
0.195, respectively. For the successful case, however, pic-
tures of flowers can be well annotated by the Visual model,
with an average precision of 0.343. By cross-entropy based



Table 3: Experiment 2. Comparing the overall performance of generic and personalized image annotation

models. The amount of personal tagging history is reflected by | X past|-

gray cell indicates the top performer.

Scores are averaged over users. A

[ Xupast| =1 [Xupast| =2~9

| X past| = 10 ~ 49 | X past| > 50 MEAN

Annotation models pPa@1 Pa@s AP P@1 Pas AP
CommunityPreference 0.033  0.046 0.036 0.044 0.058 0.043
Visual [11] 0.175 0.108 0.079 0.198 0.128  0.090
PersonalPreference [21]  0.271  0.233  0.194  0.403  0.273  0.219
This paper 0.307 0.244 0.209 0.439 0.293 0.245

Pai pas AP Pai pas AP Pai pas AP
0.058 0.088 0.053 0.077 0.106 0.061 0.045 0.063 0.044
0.249 0.164 0.105 0.304 0.200 0.118 0.206 0.132  0.091
0.571  0.398 0.302 0.610 0.437 0.328 0.411 0.295 0.232
0.597 0.419 0.328 0.655 0.469 0.356 0.445 0.313 0.257
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Figure 3: Experiment 2. Comparing two person-
alized models: The proposed model versus Person-
alPreference. The performance measure is average
precision. For the majority of users in considera-
tion, we obtain personalized image annotation with
a higher accuracy.

learning, our model reaches an AP of 0.455. Since images
in the worst case are heavily edited, making image content
analysis more difficult, Visual performs badly, with an av-
erage precision of 0.073. We conclude that unless both base
image annotation functions fail, the combined model in gen-
eral yields better or at least comparable performance, com-
pared to the base functions.

Finally, we present some qualitative results in Table 5.
The proposed algorithm emphasizes tags which are less fre-
quent, yet more meaningful than the most frequent tags
which tend to be general. To summarize, both quantita-
tive and qualitative results verify the effectiveness of the
proposed algorithm for personalizing automated image an-
notation.

6. DISCUSSION AND CONCLUSIONS

Automated image annotation is an important yet chal-
lenging research problem. In this paper, we study a novel as-
pect of the problem: personalization — personalizing generic
image annotation models with respect to a given user.

We confirm the observation from previous work [21] that

personal tagging preference is a strong source of evidence
for predicting a user’s future annotation. Similar to [21],
our experiments also show that a model simply using per-
sonal tagging statistics clearly outperforms a content-based
model [11] which exploits multi-feature visual content anal-
ysis. This nontrivial phenomenon implies that the land-
scape of personalized image annotation is much different
from generic image annotation. Let us now look back at
the fundamental challenge in image annotation, namely the
semantic gap [24]. The objective aspect of the gap might be
ultimately surmounted by machine vision, which aims for an
understanding of the visual content independent of the user.
Since the human interpretation of the content depends on
the specific user in a given situation [24], personalization is
essential for solving the subjective aspect of the gap. Thus,
to fully bridge the semantic gap, personal information such
as tagging history is a factor of major importance. Never-
theless, we challenge the conclusion of [21] that annotating
images using personal tagging statistics is a performance up-
per bound for personalized image annotation.

To personalize generic image annotation models, we pro-
pose a linear fusion framework which jointly exploits a user’s
personal multimedia tagging history and content-based im-
age annotation. The proposed cross-entropy based model
enables the personalization process to be optimized in terms
of an (arbitrarily) chosen performance measure. It is due to
this technical innovation that we can go beyond the perfor-
mance upper bound defined in [21].

We have conducted an extensive evaluation on 5,315 re-
alistic users with varying amounts of personal tagging his-
tory. For the majority of users in consideration, the pro-
posed personalization model surpasses the “upper bound”.
In an extreme scenario, where a user has only one tagged
image available for training, we observe improvements for
67% of these one-training-image users, with a relative gain
of 8% in terms of average precision. In general, richer per-
sonal tagging history leads to better personalized annotation
models. These results clearly verify the effectiveness of the
proposed framework for personalized image annotation.

Thus far, we have successfully exploited two heteroge-
nous image annotation functions in the proposed framework.
Since our framework is general, other annotation functions
driven by varied evidence could be easily added in the future.
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Table 4: A close-up of the two extremes in Fig. 3. Images ranging from Top 1 to Top 6 (Bottom 1 to Bottom
6) have the largest (least) absolute improvements, when comparing our model to the PersonalPreference
model. In the context of personalization image annotation, we consider user tags as the ground truth. The
function g,(z,w) indicates the Visual model [11], g,,(z,w) for the PersonalPreference model [21], and G, (z,w)
for the proposed model. For each model, the top ranked tags are shown. Correct annotations are marked by
an italic font.

Annotation results

Annotation results

Top 1 Truth o (z,w) pp (T, W) Gz, w) Truth o (z,w) pp (2, W) Gu(z,w)
balloon flower mickey balloon market beach vendor market
pink school gym water indian indian
macro balloon high car market vendor
cat high school street bw
girl gym mickey food two
rabbit dog cute animal toy flower duke toy
sit cat coaster pet anniversary food toy anniversary
sitting pet summer portrait nature anniversary  ho
pose animal color bunny garden ho lady
portrait cute sweet young dog lady duke
navy boat usa ship beach cloud panorama beach
ship bus navy navy coast sky canon storm
harbour ship usa water sunset rip weather
water alabama museum storm beach ocean rock
river museum alabama weather water weather rip
Bottom 1
peninsula bridge peninsula fountain nj animal nj manhattan
winchester  building winchester — water squirrel 700 squirrel ny
house water square explore night halloween dog
city square navy mountain  dog parade
river fountain pier building ny nj
Bottom 4
microphone bw microphone  music | \\ | J elephant tree elephant dog
blackandwhite music microphone | animal dog elephant
street smile nature mutt mutt
people vienna green collar collar
portrait subway bird plant
Bottom 5
m—]  tolcdO sky windmill sky pottery food pottery disaster
windmill night holland holland ceramic flower wheel big
cloud sky landscape wheel dog disaster bowl
bridge landscape cloud me macro big wheel
blue cloud windmill cat ceramic pottery
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