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Abstract—Learning classifiers for many visual concepts are im-
portant for image categorization and retrieval. As a classifier tends
to misclassify negative examples which are visually similar to posi-
tive ones, inclusion of such misclassified and thus relevant negatives
should be stressed during learning. User-tagged images are abun-
dant online, but which images are the relevant negatives remains
unclear. Sampling negatives at random is the de facto standard in
the literature. In this paper, we go beyond random sampling by
proposing Negative Bootstrap. Given a visual concept and a few
positive examples, the new algorithm iteratively finds relevant neg-
atives. Per iteration, we learn from a small proportion of many
user-tagged images, yielding an ensemble of meta classifiers. For
efficient classification, we introduce Model Compression such that
the classification time is independent of the ensemble size. Com-
pared with the state of the art, we obtain relative gains of 14% and
18% on two present-day benchmarks in terms of mean average
precision. For concept search in one million images, model com-
pression reduces the search time from over 20 h to approximately
6 min. The effectiveness and efficiency, without the need of manu-
ally labeling any negatives, make negative bootstrap appealing for
learning better visual concept classifiers.

Index Terms—Model compression, negative bootstrap, relevant
negative examples, visual categorization.

I. INTRODUCTION

L ABELED examples are crucial to learn visual concept
classifiers for image categorization and retrieval. To be

more precise, we need positive and negative examples with re-
spect to a specific concept, as shown in Fig. 1. When the number
of concepts is large, obtaining labeled examples in an efficient
way is essential. Traditionally, labeled examples are annotated
by expert annotators. However, expert labeling is labor intensive
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and time consuming, making well-labeled examples expensive
to obtain and consequently their availability is limited.
Much research has been conducted towards inexpensive

solutions to acquire positive examples, e.g., from web image
search results [1]–[3] or socially tagged data [4]–[6], or by
online collaborative annotation [7]–[9]. For instance, Schroff
et al. [1] train a visual classifier on web image search results
of a given concept, and re-rank the search results by the classi-
fier. Though the automated approaches are not comparable to
dedicated manual annotation [4], [5], their output provides a
good starting point for manual labeling. Deng et al. [9] build an
ImageNet wherein positive examples of a WordNet concept are
obtained by labeling web image search results of the concept
using a micro payment service. Compared to traditional expert
labeling, the new labeling mechanism yields positive examples
for many categories with lower cost. In this paper we assume
that positive examples are obtained by (one of) the approaches
described above, and focus on obtaining negative examples.
Since negative examples of a concept belong to many other

concepts, most of expert labeling efforts are dedicated to anno-
tating negatives. One might consider bypassing the negative la-
beling problem by one-class learning, which creates classifiers
using positive examples only [10]. However, because negative
examples also bear valuable information, they are important for
classification. This has been well observed in Tao et al. [11] for
interactive image retrieval. Our empirical study shows that vi-
sual classifiers trained by one-class learning are inferior to clas-
sifiers trained by two-class learning [12]. So labeling negatives
remains essential, but methods which can reduce the manual la-
beling effort are needed.
Obtaining negative examples seems to be trivial, as they are

abundant in large photo repositories such as Flickr and Face-
book. For a specific concept, say ‘whale’, due to the relatively
sparse occurrence of its positive examples against its negatives
in these repositories, sampling a fraction of the data at random
already yields a set of genuine negatives. Indeed, random
sampling is the de facto standard in the literature for obtaining
negative examples [1], [3]–[5], [12], [13]. Given the massive
amount of potential negatives, training on a small proportion
of the data also makes it feasible to learn classifiers on normal
computers. Further, conducting random sampling multiple
times leads to ensemble learning [14]. This methodology trains
multiple meta classifiers on multiple (disjoint) subsets of the
data, and combines the meta classifiers to make final decisions.
Evidence from the machine learning community shows en-
couraging results on learning from large data in an ensemble
[15]. Also, there are good examples in the multimedia commu-
nity, leveraging the methodology for learning an ensemble of
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Fig. 1. A positive set and two negative sets of visual concept ‘whale’. The
negative set (b) is obtained by random sampling from a large set of user-tagged
images, while the negative set (c) is sampled from the same set by the pro-
posed algorithm. Compared to (b), our negatives are visually more similar to
the positive set (a). Hence, they are more relevant, yielding more accurate vi-
sual classifiers for concept search. Note that the relevant negatives are obtained
automatically, without the need of manual verification. (a) Positive examples
of ‘whale’. (b) Negative examples of ‘whale’ obtained by random sampling.
(c) Relevant negatives of ‘whale’ (this paper).

classifiers for visual search [16], [17]. Ensemble learning with
random negative seems attractive for learning visual concepts
from abundant negatives.
A classifier tends to misclassify negative examples which are

visually similar to positive examples. For learning a visual clas-
sifier for the concept ‘whale’, confusing negatives such as im-
ages of birds in water, as illustrated in Fig. 1, should be in-
cluded during learning. As such relevant negatives are in mi-
nority, random sampling alone is not enough for identifying
them. In order to go beyond random sampling, the question
arises which examples are relevant negatives?
In principle, the relevant negatives shall have visual patterns

partially overlapping the positive examples. Following this
thought, one might try to manually add positive examples of
confusing negative classes such as ‘bird’ or ‘ocean’ to the
negative training data. However, the relevance of a negative
example depends on the underlying visual features, kernels,
and classifiers, and is not necessarily consistent with what an
observer may expect. It is therefore difficult to specify relevant
negative classes by hand-crafted rules. One may consider an
active learning system [18], [19], asking an annotator to label
examples the system considers most useful. Active learning
helps reduce human labeling effort as reported for interactive
visual search reranking [20], [21] and interactive image anno-
tation [22]. Nonetheless, human interaction is mandatory in an
active learning process. In contrast, we aim to acquire relevant
negatives in a fully automatic manner.
Although ensemble learning with random negatives exploits

more negative data and therefore may include relevant nega-
tives accidently, its performance is bounded by the lack of rel-
evant negatives. Moreover, the execution of all its individual
meta classifiers requires a classification time proportional to the

size of the ensemble. Recently, Maji et al. [23] found that for
the histogram intersection kernel, the decision function of an
SVM classifier can be well approximated by linear interpolation
on a fixed number of precomputed points. This finding makes
the classification time independent of the number of support
vectors, leading to efficient execution of individual classifiers.
Nonetheless, the execution time of the ensemble classifier re-
mains proportional to the number of meta classifiers.
When extending the number of concepts, there will be a more

dense division of the data space in terms of semantic classes. As
class boundaries need to be better defined, there is a natural need
to increase the number of training examples. When adding new
negative training examples, one has the option to add random
negatives, or to select new relevant negatives. In this paper we
plea to go for relevant negatives. In that case, the confinement
of the class boundary to just the area of the class and nothing
more proves to be as important as the extension of the class
boundary by adding new positives. From the above consider-
ations it is clear that random negatives will not help as they are
far away from the class boundary. When adding new elements,
relevant negatives are indeed superior to random negatives. But
the superiority is achieved only when appropriate care is taken
to balance classes during training. Therefore, for the purpose of
extending concept recognition to many classes, in this paper we
make three contributions to visual categorization.
1) First, we argue that when extending the training set,
one should select relevant negatives as the extension to
be preferred over random negatives for better classifier
performance.

2) Second, for good training under unbalanced classes,
we propose Negative Bootstrap, an iterative negative
ensemble learning strategy, to select relevant negatives
from many user-tagged images, without the need of new
annotation.

3) Third, for computational feasibility, we introduce Model
Compression, which extends [24] from a single classifier
to an ensemble of classifiers, making classification time
independent of the number of meta classifiers.

The rest of the paper is organized as follows. Related work
is reviewed in Section II. We detail the new negative bootstrap
algorithm in Section III. Experiments are set up in Section IV.
Result analysis is given in Section V. We conclude the paper in
Section VI.

II. RELATED WORK

To automatically create a negative training set for a given
concept, the mainstream methods randomly sample a relatively
small subset from a large pool of (user-tagged) examples [1],
[3]–[5], [12], [13], [16]. The pool may consist of web images
with free texts [1], [3] or consumer photos with user provided
tags [4], [13]. Apart from the obvious fact that random sam-
pling is simple and easy to use, we attribute its popularity to two
reasons. First, except for some over frequent concepts such as
‘sky’ and ‘person’, the chance of finding genuine positive exam-
ples in a random fraction of the pool is low. False negatives can
be further reduced by removing images labeled with the given
concept or its semantically related tags [12], [13], [24]. Second,
as the possible negatives substantially outnumber the positive
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training set, downsampling the negatives bypasses class imbal-
ance which is known to affect classifier learning [17], [25], [26].
If the pool is sufficiently large, one might end up with a set of
reliable negatives, but not necessarily the most relevant ones.
When negative examples are selected at random, the perfor-

mance of individual classifiers varies. According to Breiman’s
bagging theory [27], such variance can be reduced by model av-
eraging. Hence, both Natsev et al. [16] and Tao et al. [17] per-
form random sampling multiple times to create multiple classi-
fiers, and combine them uniformly. While the negative exam-
ples vary, the positive examples are fully used because they are
relatively rare. To distinguish such a strategy from classical bag-
ging [27] which conducts re-sampling on both positive and neg-
ative examples, Tao et al. term it asymmetric bagging [17]. Al-
though the robustness of the final classifier is improved by clas-
sifier aggregation, the quality of asymmetric bagging is bounded
by the lack of relevant negatives. Moreover, since all meta clas-
sifiers need to be executed, the classification time is proportional
to the amount of meta classifiers. In sum, the lack of relevant
negative examples and the computational cost for running all
meta classifiers put the effectiveness and efficiency of asym-
metric bagging into question.
Obtaining negative examples with manual annotation for free

has also been studied in the context of text categorization, e.g.,
[28]. There, unlabeled examples are inserted into the negative
set, if they are most dissimilar to the positives, or predicted as
negatives with high confidence by current classifiers. Yan et al.
[29] reported a similar idea in the context of video retrieval.
Though sampling at the bottom probably yields reliable nega-
tives, an intrinsic drawback is that those negatives are already
correctly classified, adding them to the training process is not
so useful by definition. Indeed, Natsev et al. [16] reported that
such conservative sampling is inferior to random sampling.
The algorithm we introduce in this paper bears some concep-

tual resemblance to active learning [18] and AdaBoost [30], as
all of them seek useful examples for learning a new classifier.
But the new algorithm has a number of characteristics which
make it different. There are two notable differences between
negative bootstrap and active learning. First, in contrast to ac-
tive learning which requires human interaction to label exam-
ples selected in each round, negative bootstrap selects relevant
examples without human interaction. Second, different from ac-
tive learning wherein the new input data is supposed to be un-
labeled and comprised of positive and negative examples, our
setting assumes that the new input data contains negatives only.
Hence, in active learning, examples the system is most uncer-
tain about, namely closest to the decision boundary [18], are
considered informative. Negative bootstrap, by contrast, selects
negative examples which are most misclassified, i.e., falling on
the positive side and distant from the boundary. Inclusion of
such negatives in training pushes towards a tight boundary in the
area of the target class, yielding classifiers with better discrim-
ination ability. Compared to AdaBoost which works on fully
labeled data, our algorithm takes user-tagged data as its starting
point. Unlike AdaBoost, we do not have tomaintain the distribu-
tion of weights on the entire training data, and we do not need
manual labeling of negatives. Therefore, negative bootstrap is
more suited for exploiting large datasets.

Our model compression is inspired by Maji et al. [23]. The
authors accelerate histogram intersection kernel SVMs by intro-
ducing a fast kernel computation approximation. The key inno-
vation is that by exploiting the additive property of the histogram
intersection kernel, the computation of the SVM decision func-
tion is re-expressed as the sum of decision functions with respect
to individual feature dimensions. Further, for each dimension, its
decision function can be efficiently computed by linear interpo-
lation on a limited set of precomputed decision scores. As a con-
sequence, the test time becomes independent of the number of
support vectors. While Maji’s algorithm targets at accelerating a
single classifier, we aim to compress an ensemble of classifiers
such that theclassification timewill be independentof theamount
ofmeta classifiers.Whenusing the compressedmodel forfinding
relevant negatives, the training time is also reduced.
Besides [23] as a method for speeding up classification, we

also notice an increasing interest in efficient training of the his-
togram intersection kernel SVMs [31]–[33]. Since these algo-
rithms work on the meta classifier level while our algorithm
works on the ensemble level, they are complementary.We leave
the study of their integration for future exploration.

III. NEGATIVE BOOTSTRAP

Given a set of unlabeled images, we search for images which
contain a specific concept by employing a visual classifier of
the concept [34]. Let be an image. Its content-based represen-
tation is a -dimensional feature vector.Wewill refer to an image
and its corresponding feature vector interchangeably, using
to indicate the -th dimensionof the vector.Weuse to denote
a classifier,which produces a real-valued score of an image being
a positive instance of the target concept. In particular,
means the image is classified as positive, and negative otherwise.
We need classifiers robust to high dimensional features common
in visual classification. To that end, we choose SVMs which can
simultaneously minimize the empirical classification error and
maximize the functional margin, i.e., the largest distance of the
decision boundary to the nearest training data [35]. The max-
imum-margin property makes SVMs a solid choice for building
visual classifiers, as demonstrated by [36]–[39]. The SVM ver-
sion of is defined as

(1)

where is the positive coefficient of support vector , is the
intercept, is a class label, is thenumberof support
vectors, and a kernel function measuring the visual similarity
between twoexamples.Agood,but expensive, choice for is the
kernel [37]–[39]. Recently, both Maji et al. [23] and Uijlings

et al. [40] have shown that the histogram intersection kernel is
close to the kernel in terms of visual classification accuracy,
but it is far more efficient. Moreover, Wu [33] proofs that the
histogram intersection kernel is a positive definite kernel for non-
negative real-valuedhistograms.Given theoretical and empirical
justifications,weprefer thiskernel inourstudy.Giventwoimages
and , the histogram intersection kernel is defined as

(2)
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To obtain , we need both positive and negative training
data. We assume that positive data are obtained for instance by
the approaches described in Section I. As indicated, for negative
training data, we aim to harvest them from user-tagged images
on the web, but with no need of manual verification. Let be
a positive set, a set of user-tagged images independent of ,
and a negative set from .We derive from and :

(3)

Because usually has a limited number of elements, we make
full use of it. The learning process (3) optimizes and such
that hinge loss is minimized, with the following constraints [41]:

(4)

where is the regularization parameter.

A. Iterative Negative Ensemble Learning

Given a target concept and its positive set , we aim to
select a set which contains relevant negatives from . The
relevance of a negative example depends on the classifier. Neg-
ative examples which are most misclassified, that is, predicted
as positive instances with the largest scores, are most relevant
to improve classification. Hence, we shall sort in descending
order by and select the top ranked examples to form ,
formalized as the following condition on :

(5)

In practice (5) is not directly applicable, because the negatives
are not manually verified, meaning an exhaustive search will in-
correctly treat genuine positive examples as relevant negatives.
Moreover, the large-scale property of makes the search com-
putationally challenging. Downsampling is thus necessary. Due
to the random factor in downsampling, negative examples as
well as the classifier obtained in a single trial tend to be subop-
timal. A common solution is to generate an ensemble of meta
classifiers by multiple trials, and average their output, as has
been used by Natsev et al. [16] for video retrieval and Tao et al.
[17] for image retrieval. We also construct an ensemble of clas-
sifiers, but with the notable distinction that our negative exam-
ples are more relevant than the random negatives in [16], [17].
We use to denote the number of iterations, and

to index the iterations. Let be the final classifier obtained
after iterations. In the -th iteration, we conduct a two-stage
adaptive sampling to acquire the most relevant negative exam-
ples according to , the latest classifier obtained in pre-
vious iterations. In the first stage, we randomly sample ex-
amples from to form a candidate set , as expressed by

(6)

To reduce the chance of incorrectly having genuine positives
in , we let . In the second stage, we use
to classify each example in , and obtain in which each

example is associated with a classification score. We express
by

(7)

We sort examples in by their scores in descending order and
select the top ranked examples to form the relevant negative set,
denoted by .

To derive a new classifier given the new negative data , if

we simply add to the existing training data, we will come
face to face with the imbalanced data problem as the negatives
accumulate. Moreover, the training complexity increases per it-
eration. Hence, in each iteration, we train a new classifier on

and . To make the positive and negative classes per-
fectly balanced, we set the number of selected negatives equal
to , i.e.,

(8)

where is the cardinality of a set. Subsequently, a new meta
classifier is learned from and using (3). Because

is composed of negatives most misclassified by the pre-
vious classifier, we can safely assume that the new classifier
is complementary to its ancestors. Following the regular boot-
strap aggregation, we combine the meta classifiers by model
averaging:

(9)

Since no classifier is available in the first iteration, we acquire
by random sampling.

For obtaining relevant negatives in the -th iteration, we have
to compute (7), which involves running meta classifiers.
In total, the number of classifiers to be executed will be

. Since the number of support vectors in a meta classifier
has an order of , the time complexity of scoring an image
would be , meaning an order of
for computing (7). Moreover, because iterations results in
meta classifiers and we have to apply all of them, searching for
one concept has a time complexity proportional to the number
of iterations. Acceleration is thus crucial for both training and
testing.

B. Model Compression

We introduce model compression by generalizing the fast in-
tersection kernel algorithm [23] from a single classifier to an en-
semble of classifiers. Our compact model classifies an image at
a constant time complexity, while simultaneously maintaining
the effectiveness of negative bootstrap.
Notice that although we use uniformweights to combine clas-

sifiers (9), the weights can be optimized when we have access
to extra validation data. To express (9) in a more generic form,
let be a nonnegative weight for a meta classifier . Ac-
cordingly, we express the ensemble classifier as

(10)
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Substituting (1) and (2) in (10) leads to

(11)

As shown in (11), the decision value is the sum of decision
values of each dimension plus the sum of all intercepts from
the meta classifiers. Since the term containing the intercepts
is independent of , it can be easily compressed into a constant.
For a single classifier as defined in (1), Maji et al. con-

struct a function to indicate the decision value computed on
the -th dimension [23]:

(12)

where is a variable. They have proven that for an arbitrary ,
can be computed as a linear interpolation on and
, where and are two specific support vectors of

. We argue that a similar conclusion holds when multiple
classifiers are linearly combined.
To incorporate classifier combination, we first extend (12) to

the following form:

(13)

Notice that (13) is exactly the decision value per dimen-
sion in (11). Given the meta classifiers, we use
to denote the number of support vectors in total, i.e.,

. By putting the -th dimension of these
support vectors together, we have a sequence of elements

. We sort the se-
quence in ascending order, and use to denote the sorted
elements, . For each sorted element, we denote
its corresponding model weight, support vector coefficient,
and class label as , , and , respectively. The sorting and
renaming operations allow us to rewrite (13) as

(14)

Taking into account the relative position of with respect to
the interval , we can accelerate the computation
of (14). With the constraints (4), we have .

Consequently, if , we have
. When , due to the min function in (14), we

have . For any within the interval, there
always exists an integer such that .
We proof that is a linear interpolation on and

as follows:

(15)

TABLE I
THE NEGATIVE BOOTSTRAP ALGORITHM

where . Hence, if we
have precomputed, can be ef-
ficiently computed. Substituting (15) into (11), we obtain the
decision value of the ensemble classifier as the sum of linear in-
terpolations on a set of precomputed functions,

(16)

where

and

For computing , we use the min and the max functions to cope
with oustside the interval .
Thus far, has not been compressed. We still have to

sort elements for each dimension, and conduct binary search
to locate for (15). To compress the ensemble classifier and
to bypass the binary search, we adopt the strategy from Maji et
al. [23] and uniformly divide the interval into
segments. With such an approximation, the linear interpolations
are conducted by looking up a real-valued table with size of

, instead of . It is in this manner that we compute the
decision value for each dimension in constant time, independent
of the number of meta classifiers and their support vectors. As a
consequence, we reduce the complexity of scoring an example
from to . Now, computing (7) has an order
of only.
We summarize the negative bootstrap algorithm in Table I.

The algorithm has a number of desirable properties. By iter-
atively mining relevant negatives, we obtain visual classifiers
with better discrimination ability. With model compression, we
not only speed up the training process, but also make the time
complexity of visual concept search independent of the number
of meta classifiers.
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IV. EXPERIMENTAL SETUP

A. Data Sets

1) Pseudo Negative Examples: As an instantiation of , we
use a set of 3.5M user-tagged images1 randomly sampled from
Flickr in our previous work [6]. Since batched-tagged pictures
are often visually redundant, we remove them beforehand. We
also exclude images whose social tags contain no visual con-
cepts, as determining the negativeness of these examples is dif-
ficult. To that end, we create a vocabulary of 5K visual concepts
by taking the intersection between the ImageNet vocabulary [9]
and social tags used by over a hundred users. By removing im-
ages having no tags corresponding to the vocabulary, we obtain
an consisting of 610K images.
We evaluate negative bootstrap on two present-day bench-

mark sets [42], [43] which provide ground truth annotations for
a diverse set of visual concepts including objects such as ‘bi-
cycle’ and ‘horse’, scenes such as ‘beach’ and ‘cityscape’, and
events such as ‘dancing’ and ‘swimming’. Further, to test the
effectiveness of the new algorithm for visual concept search in
larger data, we create our third test set of one million images.
2) Two Benchmark Sets: VOC08-devel2 [42] and

NUS-WIDE3 [43]. Both sets were collected from Flickr,
with manually verified annotations for 20 and 81 visual con-
cepts, respectively. The VOC08-devel set consists of the
following two distinct subsets: VOC08train with 2,111 images
and VOC08val with 2,221 images. We take the positive set

from VOC08train, and use VOC08val for testing. As the
original NUS-WIDE training and testing sets were divided at
random, they have many batch-tagged images from the same
users, introducing a dependency between the two sets. To
avoid such a dependency, we exclude batch-tagged images and
images whose social tags do not overlap with the 81 concepts,
resulting in a set of 128,097 images. We then divide this set into
two subsets in terms of the Flickr DateUploaded property. Im-
ages in the resulting NUSpast (64,048 images) were uploaded
before NUSfuture (64,049 images). This division improves
generalizations of our findings to unseen data. We use NUSpast
as another source of , and NUSfuture as our second test set.
3) A Test Set of 1M Images: This set consists of one million

images collected from Flickr in a random fashion, independent
of the training data and the other test data. Less than 0.2% of
the 1M set appears in VOC08 and NUS-WIDE and 0.6% in .
Removing the overlapped part does not affect the result.

B. Experiments

1) Experiment 1. Negative Bootstrap vs. State of the Art: We
compare negative bootstrap with the following two state of the
art algorithms, both of which rely on a form of random sam-
pling to obtain negative examples: pure random sampling [1],
[4], [5], [12], [13], and asymmetric bagging [16], [17]. For a
fair comparison, whenever applicable we will make the three
algorithms share the same input and parameters. As the number
of negative examples and the number of iterations are the two
parameters shared by the three algorithms, we let all the algo-

1http://staff.science.uva.nl/~xirong/tagrel/
2http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

rithms sample negative examples from the same pool, use the
same amount of negatives to train a meta classifier, and run the
same number of iterations. This experimental protocol allows us
to conclude which algorithm yields the most relevant negatives.
By choosing from , we compare the al-

gorithms given varying amounts of positive examples available.
For concepts that have positive examples less than required, we
use all the available positive examples.
To study whether adding relevant negatives is as important as

adding new positives, we implement a strategy which keeps the
negative set fixed, but randomly samples positives from the en-
tire positive training data in each iteration to construct newmeta
classifiers. For a fair comparison between this ‘sampling posi-
tives’ strategy, asymmetric bagging, and negative bootstrap, we
let them have the same 20 random positives and 20 random neg-
atives as their starting point, and the same amount of positives
and negatives hereafter.
2) Experiment 2. The Influence of Model Compression: By

comparing negative bootstrap with and without model compres-
sion, we study the influence of model compression on both ef-
fectiveness and efficiency. The amount of positive examples for
each concept is set to be 100. We report training and testing time
in seconds, which are averaged over concepts.
3) Experiment 3. Negative Bootstrap for Concept Search in

Large Data: Given the classifiers trained in Experiment 1 by
negative bootstrap and asymmetric bagging respectively, we
apply them for concept search in the 1M test set. We take the in-
tersection between VOC and NUS-WIDE concepts as the query
concepts: ‘airplane’, ‘bird’, ‘boat’, ‘car’, ‘cat’, ‘cow’, ‘dog’,
‘horse’, ‘person’, and ‘train’. As there is no ground-truth avail-
able for the 1M set, we manually check for genuine positives
in the top ranked images. To reduce the manual annotation ef-
fort and potential labeling bias towards certain runs, we employ
a pooling mechanism similar to the TRECVid benchmark [44].
For each run, we put its top 20 ranked images into a common
pool without indicating their origin. For a given concept, we
label an image as positive if the concept is (partially) visible in
the image. Artificial correspondences such as drawings, toys,
and statues are labeled as negative.
Notice that for image search by visual classifiers, we delib-

erately treat the 1M test set as unlabeled. But because the test
images are already associated with user tags, this allows us to
compare the two algorithms further in a reranking scenario: ap-
plying the classifiers to rerank tag-based image search results.
For the reranking experiment, we construct the initial tag-based
search results using search-by-tag, which sorts images labeled
with a target concept in descending order according to the time
they were uploaded.
4) Experiment 4. Qualitative Analysis of Relevant Negatives:

To gain a more intuitive understanding of negative bootstrap,
we examine negatives which are most misclassified in each it-
eration. Recall that the negatives are associated with user tags.
In order to quickly see which negative classes are most relevant
to a given concept, we employ tag clouds to visualize the distri-
bution of user tags in the selected negatives.

C. Implementations

To train visual classifiers, we use the popular bag of keypoints
plus SVMs pipeline [37], [38], [45]. To extract bag of key-
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points features, we choose dense sampling to locate keypoints
and the SIFT as keypoint descriptors [37]. We create a code-
book of 1,024 bins by running K-means clustering on SIFT de-
scriptors extracted from a holdout set of random Flickr images.
With the descriptors quantized by the codebook, each image is
represented by a 1,024-dimensional -normalized dense-SIFT
histogram. We train two-class SVMs using LIBSVM [41]. For
the parameter , we empirically find that setting it to be 1 is a
good choice.
To study the influence of different parameters on the effec-

tiveness of negative bootstrap, we vary the size of the candidate
set by setting to be fivefold, tenfold, and fifteenfold of

, respectively. We choose the number of segments from
, and set the number of iterations to 50. Our ex-

periments show that the algorithm is robust to the parameter
changes. Hence, unless specified, we use the following setting:

, , and .
For the implementation of asymmetric bagging, we follow

[17] but use the full feature space rather than random subspaces,
as studying random subspaces is beyond the scope of this paper.
In the -th iteration, random sampling selects at random
to train a classifier, while asymmetric bagging uniformly com-
bines the classifier and classifiers generated in the previous
rounds.
To reduce the chance of incorrectly selecting genuine pos-

itives for a given concept , we remove images labeled with
or its semantically related tags [24]. We observe that if an

image is labeled with visual concepts, but not labeled with
or its semantically related tags, the image tends to be a nega-
tive example of . We implement the set of related tags as the
union of childnodes of in WordNet [46] and tags closest to
according to their Normalized Google Distance [47]. Notice

that the tag reasoning is conducted in the tag space, rather than
in the visual feature space where categorization is performed.
Hence we obtain reliable negatives, amongst which we expect
sufficient samples that are relevant for training classifiers.
1) Evaluation Criteria: We adopt Average Precision (AP), a

common choice for evaluating visual search engines [36], [44].
As APmeasures the ranking quality of the entire list while a user
may be interested in the top ranked results, we report precision at
20 (P20) in addition to AP. The overall performance is averaged
over the concepts.

V. RESULTS

A. Experiment 1. Negative Bootstrap Vs. State of the Art

As shown in Fig. 2, negative bootstrap compares favorably
to random sampling and asymmetric bagging. In the first round,
as no classifier is available, all algorithms start with the same
negative set , and consequently produce the same classifier

. Afterwards, while the baselines continue selecting
random negatives, our algorithm starts to search for the most
relevant negatives. The performance of random sampling varies
due to the random factor in sampling. Asymmetric bagging re-
duces such variance by combining meta classifiers. Moreover,
as the meta classifiers are trained on distinct negative sets,
the combined classifier is more suited for test data of diverse
content. Because of this, asymmetric bagging yields larger
improvements on NUSfuture than VOC08val. The random

Fig. 2. Experiment 1. Negative bootstrap vs. state of the art. The number of
positive training examples per concept is 100. Negative bootstrap outperforms
both random sampling and asymmetric bagging. (a) Test set: VOC08val. (b) Test
set: NUSfuture.

sampling runs has an averaged mAP of 0.262 on VOC08val
and 0.131 on NUSfuture. In comparison, asymmetric bagging
obtains a relative improvement of 3% on VOC08val and 10%
on NUSfuture in terms of mAP. Compared to asymmetric
bagging, negative bootstrap obtains a relative gain of 14% on
VOC08val and 18% on NUSfuture. Recall that all the three
algorithms use the same positive data. The results allow us to
conclude that negatives found by negative bootstrap are more
relevant than randomly sampled negatives for learning visual
concepts.
Further, to reveal whether the improvement is merely con-

tributed by very few concepts, we make a concept-by-concept
comparison, as shown in Fig. 3. Given the same amount of pos-
itive training data , negative bootstrap outperforms asym-
metric bagging. More positive training data results in larger
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Fig. 3. Negative bootstrap vs. asymmetric bagging: a concept-by-concept comparison. We report results on the 81 concepts in NUSfuture, measured in terms of
average precision. Falling at the left side of the reference line means asymmetric bagging is better, while falling at the right side means negative bootstrap is
better. Given varying amounts of positive training data, (a) 20 positive training examples, (b) 100 positives, and (c) 500 positives, negative bootstrap outperforms
asymmetric bagging for all settings. Moreover, more positive training data results in larger improvements. (a) 20 positive examples. (b) 100 positive examples.
(c) 500 positive examples.

Fig. 4. Comparing different strategies for adding new training examples. Meta
classifiers in each iteration are trained on 20 positives and 20 negatives. Testset:
NUSfuture. Compared to adding new positive examples by ‘sampling positives’
and adding random negative examples by ‘asymmetric bagging’, adding rele-
vant negatives by ‘negative bootstrap’ is most effective.

improvements. When only 20 positive examples are used for
training, for 55 out of the 81 concepts in NUSfuture, negative
bootstrap beats asymmetric bagging. When increases to
100 and 500, the number of winning concepts increases to 62
and 64, respectively. These results show the viability of nega-
tive bootstrap.
The improvement over asymmetric bagging is obtained at the

price of increasing training time.While it takes asymmetric bag-
ging 18 seconds to train 50 meta classifiers, negative bootstrap
with model compression costs 77 seconds.

Fig. 5. Model compression accelerates negative bootstrap. Training time is
measured throughout the negative bootstrap process, including meta classifier
training, negative example selection, and model compression.

TABLE II
EXPERIMENT 2. THE INFLUENCE OF MODEL COMPRESSION. THE PERFORMANCE
OF NEGATIVE BOOTSTRAP WITH AND WITHOUT MODEL COMPRESSION ON

THE TWO BENCHMARK SETS

To further justify the necessity of classifier ensemble, we pool
the negatives obtained from each iteration to learn just one clas-
sifier. To cope with class imbalance, the positive and negative
classes are assigned with different cost factors according to the
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Fig. 6. Search for visual concepts in one million images by visual classifiers. The top 30 results are shown. Notice that the results are obtained using the visual
classifiers alone, without taking user tags into account. A red border indicates a false positive result. Best viewed in color. (a) Searching for ‘car’ by asymmetric
bagging. (b) Searching for ‘car’ by negative bootstrap. (c) Searching for ‘bird’ by asymmetric bagging. (d) Searching for ‘bird’ by negative bootstrap.

TABLE III
EXPERIMENT 3. NEGATIVE BOOTSTRAP FOR VISUAL CONCEPT SEARCH IN LARGE DATA, MEASURED IN TERMS OF PRECISION AT 20.
IN THE COMPARISON BETWEEN NEGATIVE BOOTSTRAP AND ASYMMETRIC BAGGING, THE WINNER IS INDICATED BY A GRAY CELL

reciprocal of their distribution in the training data. The single
classifier with an mAP of 0.258 on VOC08val and 0.151 on
NUSfuture is less effective than the ensemble.
As shown in Fig. 4, purely expanding the positive data is less

effective than adding relevant negatives for defining a proper
class boundary. As random negatives are often distant from the
boundary, their gain is also relatively limited. It is clear from
Fig. 4 that relevant negatives are the best, and require no new
annotation. Negative bootstrap is thus attractive towards expan-
sion to more and more concepts.

B. Experiment 2. The Influence of Model Compression

As shown in Fig. 5, the training time of negative bootstrap
without model compression grows quadratically with respect
to the number of iterations. In contrast, model compression re-
duces the training time from 1,736 seconds to 77 seconds. Using
the compressed model, we also achieve faster concept search.
As shown in Table II, to search for a specific concept on NUSfu-
ture, applying the 50 meta classifiers takes 5,664 seconds. With
model compression, we finish the search process in 18 seconds
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Fig. 7. The 80 most relevant negative examples for a specific concept, found by negative bootstrap. By visualizing the distribution of user tags in the selected
negatives as a tag cloud, we see which negative classes are most relevant to a given concept. (a) Relevant negatives of ‘bear’. (b) Relevant negatives of ‘car’.
(c) Relevant negatives of ‘window’. (d) Relevant negatives of ‘moon’.

approximately. The advantage becomes more clear when we
deal with larger collections. The result verifies the efficiency of
model compression.
As shown in Table II and Fig. 2, negative bootstrap with

model compression, reaching an mAP of 0.304 on VOC08val
and 0.171 on NUSfuture, is as effective as negative boot-
strap without model compression. For a more comprehensive
comparison, we perform a paired -test on NUSfuture, and
obtain a value of 0.90 for mAP and 0.38 for P20. Since
the value is much larger than the standard 0.05 significance
level, the performance difference between the two runs are
not statistically significant. The results allow us to conclude
that model compression substantially accelerates the negative

bootstrap process, meanwhile the effectiveness of negative
bootstrap is maintained.
Concerning the impact of different parameters on negative

bootstrap, reducing from 100 to 50 has a negligible impact on
the performance. Because the memory footprint of compressed
models is proportional to , this result is attractive whenwewant
to cache many classifiers into memory. The choice of mainly
affects the first few iterations. For instance, the performance
curves with dip at (data not shown). This
is because is derived from , which are the most
misclassified negatives by , and thus very distinct from
generic negatives. Consequently, is less effective for
classifying generic negatives. Nevertheless, as subsequent clas-
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sifiers are designed to be complementary to their ancestors, such
ineffectiveness is tentative and resolved by adaptive sampling.
We observe that the performance curves converge after 20 itera-
tions.We recommend the following parameters: ,

, and .

C. Experiment 3. Negative Bootstrap for Concept Search in
Large Data

As shown in Table III, when user tags are available, the
SearchByTag run has a P20 of 0.745. When reranking the
tag-based search results by visual classifiers, both asymmetric
bagging and negative bootstrap improve the performance,
making P20 close to 1. In such a reranking scenario, negative
bootstrap is slightly better than asymmetric bagging. When no
user tags are given, as in a typical scenario of visual concept
search in unlabeled data, classifiers trained on the relevant neg-
atives are more accurate than classifiers trained by asymmetric
bagging, with an absolute improvement of 0.245. For a more
intuitive comparison, we show some image search results in
Fig. 6. Because we continuously select the most relevant neg-
atives, the ensemble classifier imposes a more tight boundary
around the positive examples. As a consequence, classifiers
trained on relevant negatives are more discriminative. In addi-
tion, with the compressed models on our machine it only takes
approximately 6 minutes to scan 1M images per query, which
would be over 20 hours without model compression.

D. Experiment 4. Qualitative Analysis of Relevant Negatives

As we use the Dense-SIFT feature, negative examples visu-
ally close to the positives in terms of their visual context are rec-
ognized as the most relevant negatives for training (see Fig. 7).
For the concept ‘car’ as shown in Fig. 7(b), one might expect
images of ‘bus’ in the relevant negative set as the two concepts
often appear in a similar visual context, e.g., a street scene. Be-
cause the two concepts have a high co-occurrence in user tag-
ging, ‘bus’ is treated as semantically related to ‘car’ by the tag
reasoning strategy. Consequently, images labeled with ‘bus’ are
automatically excluded by this strategy. As an alternative, neg-
ative bootstrap automatically finds ‘firetruck’ as the most rele-
vant class. Since ‘truck’ and ‘bus’ have similar visual patterns,
the ‘car’ classifier with ‘firetruck’ as negatives can still distin-
guish ‘car’ from ‘bus’. The results show the merit of negative
bootstrap, even when the selected negative classes might not
be the first option in terms of a human’s perception. For some
concepts such as ‘window’, ‘person’, and ‘grass’, we find that
asymmetric bagging performs better. This is largely due to the
fact that these concepts are frequently present in the background
and they are less labeled by user tagging. Because there is no
manual verification in the negative bootstrap process, some gen-
uine positives are incorrectly included in the negative set, as
shown in Fig. 7(c). Nevertheless, for the majority of the con-
cepts in consideration, we observe improvements. In addition,
we have manually checked the error rate of the selected neg-
atives for the 20 VOC concepts as shown in Fig. 8. Reliable
negatives can be obtained at an averaged error rate of 0.042. In
sum, the qualitative and quantitative results further demonstrate
the effectiveness of negative bootstrap in finding relevant neg-
atives for learning visual classifiers.

Fig. 8. Error rate of negative training examples selected by negative bootstrap.
The error rate is the proportion of (manually checked) genuine positives in the
negative training data. Despite the absence of manual verification, for the ma-
jority of concepts, reliable negatives can be obtained at an averaged error rate
of 0.042.

VI. SUMMARY AND CONCLUSIONS

Given widely available user-tagged images online, in this
paper we study which images are relevant negatives for learning
visual concept classifiers. To that end, we propose Negative
Bootstrap. Given a specific concept and a few positive exam-
ples, the new algorithm combines random sampling and adap-
tive selection to iteratively find relevant negatives. To address
the inefficiency in applying ensemble classifiers, we introduce
Model Compression to compress an ensemble of histogram in-
tersection kernel SVMs. Consequently, the prediction time is in-
dependent of the size of the ensemble. To justify our proposals,
we exploit 610K user-tagged images as pseudo negative ex-
amples, and conduct visual concept search experiments on two
popular benchmark sets and a third test set of one million Flickr
images.
The experimental results allow us to draw a number of con-

clusions. First, relevant negatives can be selected from those
negatives which have the highest probability of being misclas-
sified, but with no need of actually labeling any negative ex-
amples. Compared to classifiers trained on randomly sampled
negative examples, classifiers derived from such relevant nega-
tive have better discrimination ability. Compared to asymmetric
bagging, the new algorithm obtains a relative gain of 14% and
18% in terms of mean average precision on the two bench-
marks. Second, the confinement of the class boundary to just the
area of the class and nothing more by adding relevant negatives
proves to be as important as the extension of the class boundary
by adding new positives. Without introducing annotation over-
head, relevant negatives are key to expansion to more classes.
Third, model compression substantially accelerates training and
testing, while at the same time the effectiveness of negative
bootstrap is maintained. For visual concept search in the 1M set,
model compression reduces the search time from tens of hours
to just a few minutes.
As the results suggest, when combined with the latest

achievements in obtaining positive examples, negative boot-
strap brings learning thousands of visual concepts with good
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discrimination ability within reach. What is more, model
compression facilitates learning visual concepts on demand by
classifier ensembles. Negative bootstrap opens up interesting
avenues for future research.
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