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ABSTRACT
Image tag relevance estimation aims to automatically deter -
mine what people label about images is factually present in
the pictorial content. Di�erent from previous works, which
either use only positive examples of a given tag or use pos-
itive and random negative examples, we argue the impor-
tance of relevant positive and relevant negative examples
for tag relevance estimation. We propose a system that se-
lects positive and negative examples, deemed most relevant
with respect to the given tag from crowd-annotated images.
While applying models for many tags could be cumbersome,
our system trains e�cient ensembles of Support Vector Ma-
chines per tag, enabling fast classi�cation. Experiments on
two benchmark sets show that the proposed system com-
pares favorably against �ve present day methods. Given
extracted visual features, for each image our system can pro-
cess up to 3,787 tags per second. The new system is both
e�ective and e�cient for tag relevance estimation.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision ]: Scene
Analysis| Object recognition
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Image tag relevance, relevant examples, fast classi�cation

1. INTRODUCTION
We consider the problem of estimating the relevance of a

user-provided image tag, as exempli�ed in Fig. 1. Although
all the three images are labeled with the tag `sheep', only
image (a) is genuinely a picture of sheep. Since image (b)
is clearly dissimilar to a typical scene wherein a sheep is
present, using a few positive examples of sheep as a refer-
ence for visual similarity will help separate (a) and (b), as
is commonly done in the literature, e.g., [3,5,6,8,10]. How-
ever, as image (a) and image (c) are similar in terms of their
visual appearance as well, using the positive examples alone
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Figure 1: Examples of user-labeled images. Al-
though all the three images are labeled with the tag
`sheep', only image (a) is truly a picture of sheep.
While a few positive examples with respect to the
tag will help separate (a) and (b), negative examples
which are visually close to the positives are required
to distinguish (a) from (c).

is limited for distinguishing between the two images. To re-
solve the issue, negative examples, which are visually close
to the positives, have to be taken into account. Exploiting
both positives and negatives with respect to a speci�c tag,
as we propose, is important for tag relevance estimation.

There are good e�orts on selecting relevant positives [12]
and relevant negatives [7] from crowd-annotated images in
the context of visual categorization. However, what positive
and negative examples to use for tag relevance estimation re-
mains open. In fact, per-tag modeling has been challenged
by [6], due to its quest for many well labeled training exam-
ples and the ine�ciency in applying models for many tags.
Recently, Chen et al. [3] propose to train Support Vector Ma-
chines per tag, and they adopt the linear kernel for reasons
of e�ciency. In their work, user-labeled images are directly
used as positive examples, while negative examples are ob-
tained by random sampling. Hence, the impact of relevant
positives and relevant negatives on tag relevance estimation
remains unclear.

In this paper we propose a classi�cation system for tag
relevance that takes into account both relevant positive an d
relevant negative examples. We build on the rich heritage
from tag relevance estimation for positive example selec-
tion [6, 12]. We draw inspiration from recent advancements
in visual categorization for negative example selection [7]
and their e�cient classi�cation [7, 9]. Using the system we
perform an empirical study to assess the value of relevant
positive and negative examples for tag relevance estimation.

2. CLASSIFYING TAG RELEVANCE
Our goal is to build e�ective tag relevance estimators per

tag, by exploiting the large amounts of crowd-annotated im-
ages on the Internet. For learning from large data, combin-



ing many classi�ers built on small subsets of the data is a
promising approach [2]. We thus follow this ensemble learn-
ing approach. To make our discussion more formal, we use
! to denote a tag of interest. Let x be an image. Its content-
based representation is ad-dimensional feature vector. We
refer to an image and its feature vector interchangeably, us-
ing x(i ) to indicate the i -th dimension of the vector. Let
G(x) be a tag relevance estimator for ! . We express G(x)
as an ensemble ofT meta classi�ers:

G(x) =
1
T

TX

t =1

gt (x); (1)

where gt (x) indicates the decision function of a meta classi-
�er. We instantiate the meta classi�ers using SVMs, for its
well recognized performance on two-class learning:

gt (x) = bt +
n tX

j =1

� t;j � yt;j � K (x; x t;j ); (2)

where bt is the intercept, n t the number of support vectors,
� t;j the positive coe�cient of support vector x t;j , yt;j 2
f 1; � 1g a class label ofx t;j with respect to ! , and K a kernel
function.

Obtaining optimal gt (x) requires proper positive and neg-
ative training data. The relevance of negative examples with
respect to ! depends on positive examples of the tag. In
that regard, we �rst describe how to select relevant positiv e
examples in Section 2.1, and then depict negative example
selection in Section 2.2. While the selected positives and
negatives lead to an e�ective ensemble of SVMs, the com-
putational complexity of G(x) is proportional to the size of
the ensemble. We describe in Section 2.3 acceleration tech-
niques which will make the complexity independent of the
ensemble size. The proposed system is illustrated in Fig. 2.

2.1 Selecting Relevant Positive Examples
We choose to combine two state-of-the-art methods: se-

mantic �eld [12] and neighbor voting [6]. As the two meth-
ods exploit textual and visual information respectively, they
are orthogonal to each other. Combining them makes sense.

Given a speci�c tag ! , the semantic �eld method deter-
mines the positiveness of an image in light of the averaged
semantic similarity between ! and the tags assigned to that
image [12]. The semantic similarity between two tags is
computed by combining the Flickr context similarity and
the WordNet Wu-Palmer similarity. The Flickr similarity
is based on the Normalized Google Distance, but with tag
statistics acquired from Flickr image collections instead of
Google indexed web pages. The WordNet similarity exploits
path length in WordNet hierarchy to infer tag relatedness.

The neighbor voting method determines the positiveness
of an image with respect to ! by exploiting tagging redun-
dancies among multiple users [6]. The method retrieves k
nearest neighbors from a large set of user-labeled images by
content-based search. The number of neighbors labeled with
! is used as the positiveness score.

From the above discussion we see that the output scores
of the two methods are of di�erent scales. Hence, we use
CombSUM with rank-based score normalization, a robust
choice for multimedia fusion. Given images labeled with ! ,
we sort the images in descending order by their scores, and
preserve the top l ranked results as relevant positives.
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Figure 2: The proposed classi�cation system for im-
age tag relevance estimation. For each given tag, the
system automatically selects a set of relevant posi-
tive examples from crowd-annotated images. Sub-
sequently, relevant negative examples are selected
via Negative Bootstrap [7], yielding an ensemble of
SVMs. By compressing the ensemble to make the
test complexity independent of the ensemble size,
the system is both e�ective and e�cient.

2.2 Selecting Relevant Negative Examples
While negative examples can be easily acquired by random

sampling, see [3], such random negatives are inadequate for
attacking challenging cases, like image (c) shown in Fig. 1.
To separate (a) and (c), one might want to manually add
positive examples of tags which resembles visual context of
`sheep', say `grass' or `hill'. However, the relevance of a neg-
ative example depends on the underlying visual features and
classi�ers, and is not necessarily consistent with what an ob-
server may expect. It is thus di�cult to specify relevant neg-
atives by hand-crafted rules. In order to automatically sel ect
relevant negatives, we extend the Negative Bootstrap algo-
rithm [7] to the tag relevance estimation problem. Di�erent
from [7] that departs from a few expert-labeled examples,
we use purely crow-annotated examples.

Given the l positives selected in Section 2.1, Negative
Bootstrap �nds relevant negatives in an iterative manner.
In the �rst iteration an initial classi�er g1(x) is derived from
the positives and l random negatives. In the t-th iteration,
the algorithm randomly samples m examples to form a can-
didate set, and uses the ensemble oft � 1 classi�ers previously
obtained to classify each candidate element. The top l most
misclassi�ed elements are selected and used together with
the positives to derive a new meta classi�er gt (x). Negative
Bootstrap with T iterations produces an ensemble ofT meta
classi�ers, which will be the tag relevance estimator for ! .

2.3 Compressing Ensembles of SVMs
As noted earlier, despite the e�ectiveness of ensemble learn-

ing, the intensive computation associated with applying all
meta classi�ers puts the practical use of per-tag modeling
into question. To overcome the di�culty, we study how to



accelerate ensembles of SVMs. In particular, we consider
linear SVMs (used in [3], but they do not consider ensem-
bles), and histogram intersection kernel SVMs (HIKSVMs)
for which there are works on fast classi�cation of a single
classi�er [9] and an ensemble [7].

For linear SVMs, we sum over the i -th dimension of sup-
port vectors of the meta classi�ers, i.e.,

Ci =
TX

t =1

n tX

j =1

� t;j � yt;j � x t;j (i ): (3)

Combining Eq. (2) and Eq. (3), we can rewrite G(x) as

1
T

(b0 +
dX

i =1

x(i ) � Ci ); (4)

where b0 =
P T

t =1 bt . As both Ci and b0 are constant with
respect to x, computing Eq. (4) has an order of O(d) only.

For HIKSVMs, the nonlinear kernel does not allow us to
compress each dimension using Eq. (3). Instead, we follow
[7], constructing the decision function per dimension as

H i (z) =
TX

t =1

n tX

j =1

� t;j � yt;j � min( z; x t;j (i )) ; (5)

where z is a variable. The paper [7] shows that for any z,
there exists a speci�c pair of ordered points zi;r and zi;r +1

such that H i (z) can be computed by linear interpolation on
H i (zi;r ) and H i (zi;r +1 ). Further, by uniformly quantizing
the value range of each dimension into q segments, and hav-
ing H i (z) of the q+1 points precomputed, computing Eq. (1)
boils down to doing a linear interpolation operation for eac h
dimension, followed by summing over d + 1 values. Hence,
the time complexity of executing the compressed ensemble
of HIKSVMs is now reduced to O(d) also.

In sum, for a given tag, the proposed system automati-
cally selects relevant positive and relevant negative examples
from crowd-annotated images with no need of extra manual
annotation. Such relevant examples result in ensembles of
classi�ers with better discrimination ability than their c oun-
terparts derived from random examples. Compressing the
ensembles ensures fast classi�cation, with a time complex-
ity independent of the number of meta classi�ers and the
number of support vectors.

3. EMPIRICAL STUDY

3.1 Experimental Setup
Training data . To collect crowd-annotated images for

training, we use over 25,000 WordNet tags as queries to
uniformly sample Flickr images uploaded between 2005 and
2010. After removing batch-tagged images and those failed
to extract visual features, we obtain 964,849 images.

Two test sets. We use two public test sets: Social20 [6]
and NUSWIDE [4]. The Social20 set1 consists of 19,971
Flickr images, with ground truth available for 20 tags cor-
responding to visual objects and scenes such as `airplane',
`sheep', and `street'. The NUSWIDE test set 2 contains
103,688 Flickr images, with ground truth available for 81
1mediamill.nl
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm .
While the NUSWIDE test set originally contains 107,859
images, 4171 images are no longer available on Flickr.

Table 1: The training set and the two test sets.
Training Social20 [6] NUSWIDE [4]

No. images 964,849 19,971 103,688
No. users 145,029 10,972 32,415
No. test tags N.A. 20 81

tags covering a range of objects, scenes, and events. The
training and test sets were collected independently (data
statistics shown in Table 1).

Evaluation criteria . For each test tag, we sort images la-
beled with this tag in descending order by their relevance
scores, and compute Average Precision on the entire ranked
list. For overall comparison, we report mean Average Pre-
cision (mAP).

We extract a 1,024-dimensional bag of visual codes fea-
ture, by quantizing densely sampled SIFT descriptors [11].
For each test tag, we empirically preserve the top 500 ranked
examples from the training set as its relevant positives. We
then seek relevant negatives by running negative bootstrap
with 10 iterations. Meta classi�ers are trained using LIB-
SVM [1] with its default cost parameter because the positive
and negative examples are perfectly balanced.

Baselines. We compare with the following �ve present
day methods: tag position [10], tag ranking [8], neighbor
voting [6], semantic �eld [12], and linear SVMs [3]. For a
fair comparison, all methods use the same training data.

3.2 Experiments
Experiment 1. The Impact of Relevant Examples. In order

to justify the need of relevant examples, we compare the
following four strategies: 1) random positives with random
negatives; 2) relevant positives with random negatives; 3)
random positives with relevant negatives, and 4) relevant
positives with relevant negatives. For a fair comparison,
whenever applicable we will make the four strategies share
the same input and parameters.

As shown in Table 2, for both linear SVMs and HIKSVMs,
relevant positives in combination with relevant negatives
perform best. Substituting relevant positives for random
positives is useful, improving mAP of HIKSVMs from 0.781
to 0.794 on Social20 and from 0.624 to 0.633 on NUSWIDE.
Since the relevance of negative examples depends on positive
examples, unreliable positives could confuse negative boot-
strap. Consequently, we observe that given random posi-
tives, substituting relevant negatives for random negativ es
is useless in general. We conclude from the results that both
relevant positives and relevant negatives are important fo r
tag relevance estimation, and they have to be used together.

Experiment 2. E�ciency Analysis . Having visual features
extracted, running the compressed ensemble of HIKSVMs
for a given tag costs merely 0.264 millisecond per image,
on average, on our machine with 2.4 GHz multi-core cpu
and 24 GB memory. The corresponding number for linear
SVMs is 0.221 millisecond. This means, for each image,
the proposed system (with fast ensembles of HIKSVMs) can
process 3,787 tags per second. Noticing that the averaged
number of distinct user tags per image is around 6 [6], our
per-tag modeling approach is practical.

Experiment 3. Comparison with Present Day Methods. As
shown in Table 3, the proposed system compares favorably
over all �ve baselines. Compared to the best baseline, i.e.,



Table 2: The impact of relevant examples on tag
relevance estimation. Combining relevant positive
examples (RelPos) and relevant negative examples
(RelNeg) works best.

SVMs RelPos RelNeg Social20 NUSWIDE

Linear

No No 0.680 0.572
Yes No 0.694 0.582
No Yes 0.667 0.569
Yes Yes 0.734 0.604

Histogram No No 0.781 0.624
intersection Yes No 0.794 0.633
kernel No Yes 0.781 0.636

Yes Yes 0.817 0.655

Table 3: Comparing di�erent methods for tag rele-
vance estimation on the two test sets.

Method Social20 NUSWIDE

tag position [10] 0.565 0.560
tag ranking [8] 0.643 0.575
neighbor voting [6] 0.772 0.617
semantic �eld [12] 0.647 0.577
linear SVMs [3] 0.680 0.572
This work 0.817 0.655

Positive examples only [6]

HIKSVMs(Random positives, Random negatives)

HIKSVMs(Relevant positives, Random negatives)

HIKSVMs(Relevant positives, Relevant negatives)

Figure 3: The top 5 results of `sheep' sorted by tag
relevance scores produced by di�erent estimators.

neighbor voting which scores an mAP of 0.772 on Social20
and 0.617 on NUSWIDE, our system reaches an mAP of
0.817 and 0.655 on the two test sets. Concerning the choice
of SVMs, HIKSVMs clearly outperform linear SVMs. In
addition, since the positive selection method presented in
Section 2.1 can also be used for tag relevance estimation, we
compare that method, and �nd that our system beats it as
well. Fig. 3 shows a qualitative result. These results justif y
the e�ectiveness of the proposed system for tag relevance
estimation.

4. CONCLUSIONS
This paper presents a per-tag classi�cation approach to

image tag relevance estimation. We build a system which ex-
ploits both relevant positive and relevant negative example s
with respect to individual tags. Experiments on two bench-
mark sets support the following conclusions. As the main
contribution of this work, we empirically show that relevant
positives and relevant negatives are important for constru ct-
ing e�ective tag relevance estimators, and such relevant ex-
amples can be automatically selected from crowd-annotated
images with no need of extra manual annotation. We �nd
that relevant positives and relevant negatives have to be
used simultaneously. Replacing relevant positives (or nega-
tives) by random positives (or negatives) would yield sub-
optimal performance. Concerning the choices of classi�ers,
histogram intersection kernel SVMs (HIKSVMs) are supe-
rior to linear SVMs. Equipped with ensembles of HIKSVMs
trained on relevant positives and relevant negatives, the sys-
tem beats �ve present day methods. Moreover, with fast
classi�cation of the ensembles, our system can process up to
3,787 tags per second. The e�ectiveness and e�ciency make
the proposed tag relevance estimation system promising for
real-world deployment.
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