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Harvesting Social Images for Bi-Concept Search
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Abstract—Searching for the co-occurrence of two visual con-
cepts in unlabeled images is an important step towards answering
complex user queries. Traditional visual search methods use com-
binations of the confidence scores of individual concept detectors
to tackle such queries. In this paper we introduce the notion of
bi-concepts, a new concept-based retrieval method that is directly
learned from social-tagged images. As the number of potential
bi-concepts is gigantic, manually collecting training examples
is infeasible. Instead, we propose a multimedia framework to
collect de-noised positive as well as informative negative training
examples from the social web, to learn bi-concept detectors from
these examples, and to apply them in a search engine for retrieving
bi-concepts in unlabeled images. We study the behavior of our
bi-concept search engine using 1.2 M social-tagged images as a
data source. Our experiments indicate that harvesting examples
for bi-concepts differs from traditional single-concept methods,
yet the examples can be collected with high accuracy using a
multi-modal approach. We find that directly learning bi-concepts
is better than oracle linear fusion of single-concept detectors, with
a relative improvement of 100%. This study reveals the potential
of learning high-order semantics from social images, for free,
suggesting promising new lines of research.

Index Terms—Bi-concept, semantic index, visual search.

I. INTRODUCTION

S EARCHING pictures on smart phones, PCs, and the
Internet for specific visual concepts, such as objects and

scenes, is of great importance for users with all sorts of infor-
mation needs. As the number of images is growing so rapidly,
full manual annotation is unfeasible. Therefore, automatically
determining the occurrence of visual concepts in the visual
content is crucial. Compared to low-level visual features such
as color and local descriptors used in traditional content-based
image retrieval, the concepts provide direct access to the se-
mantics of the visual content. Thanks to continuous progress
in generic visual concept detection [1]–[4], followed by novel
exploitation of the individual detection results [5]–[8], an
effective approach to unlabeled image search is dawning.
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Fig. 1. Searching for two visual concepts co-occurring in unlabeled images. A
(green) tick indicates a positive result. Given two single concept detectors with
reasonable accuracy, a combination using their individual confidence scores
yields a bad retrieval result (c). We propose to answer the complex query
using a bi-concept detector optimized in terms of mutual training examples
(d). (a) Searching for “car” by a “car” detector. (b) Searching for “horse” by
a “horse” detector. (c) Searching for “car horse” by combining the results
of (a) and (b). (d) Searching for “car horse” using the proposed bi-concept
search engine.

In reality, however, a user’s query is often more complex
than a single concept can represent [9]. For instance consider
the query: “an image showing a horse next to a car”. To an-
swer this query, one might expect to employ a “car” detector
and a “horse” detector, and combine their predictions, which
is indeed the mainstream approach in the literature [6]–[8],
[10]–[12]. But is this approach effective? We observe that the
single concept detectors are trained on typical examples of
the corresponding concept, e.g., cars on a street for the “car”
detector, and horses on grass for the “horse” detector. We
hypothesize that images with horses and cars co-occurring also
have a characteristic visual appearance, while the individual
concepts might not be present in their common form. Hence,
combining two reasonably accurate single concept detectors
is mostly ineffective for finding images with both concepts
visible, as illustrated in Fig. 1.
Ideally, we treat the combination of the concepts as a new

concept, which we term bi-concept. To be precise, we define
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a bi-concept as the co-occurrence of two distinct visual con-
cepts, where its full meaning cannot be inferred from one of its
component concepts alone. According to this definition, not all
combinations of two concepts are bi-concepts. For instance, a
combination of a concept and its superclass such as “horse
animal” is not a bi-concept, because “horse animal” bears
no more information than “horse”. Besides, specialized single
concepts consisting of multiple tags such as “white horse” [13],
[14] and “car driver” are not bi-concepts as the two tags refer
to the same visual concept. The same holds for events such as
“airplane landing” where the tag landing is not a distinct visual
concept by itself.
Although not all semantic combinations are bi-concepts, the

number of possible bi-concepts is still quadratic in the number
of single concepts. Even when we assume that a set of only 5000
concepts is enough for general purpose search [6], finding suf-
ficient labeled examples for each possible bi-concept already
becomes a problem of big proportion. The amount of labeling
effort is so considerable that it puts the scalability of expert an-
notation and the recent Amazon Mechanical Turk service into
question. We consider obtaining bi-concept examples without
expert labeling as a key problem for bi-concept search in unla-
beled images.
A novel source of labeled images for concept detection are

user-tagged images on the social web such as those on Flickr
and Facebook. However, due to the subjectiveness of social
tagging, social tags often do not reflect the actual content of
the image. It has been shown in previous studies that directly
training on social-tagged images results in suboptimal single
concepts detectors [15]–[17]. Learning bi-concept detectors
from social-tagged images is, to the best of our knowledge,
non-existing in the literature. By definition, the number of
images labeled with a bi-concept is less than the number of
images labeled with a single concept, meaning bi-concepts
have a worse starting point for obtaining examples. In addi-
tion, a scene with two concepts present tends to be visually
more complex, requiring multi-modal analysis. Given these
difficulties, effective bi-concept search demands an approach
to harvesting appropriate examples from social-tagged images
for learning bi-concept detectors.
In this paper, we introduce the notion of bi-concepts, and pro-

pose a multimedia search engine to study their instantiation,
development, and applicability. We present a multi-modal ap-
proach to collect de-noised positive as well as informative neg-
ative training examples from the social web. We learn bi-con-
cept detectors from these examples, and later apply them for re-
trieving bi-concepts in unlabeled images. A conceptual diagram
of the proposed search engine is illustrated in Fig. 2.

II. RELATED WORK

We first review related work on combining single concept de-
tectors for visual search, and then discuss recent progress on har-
vesting training examples from the (social) web. For the ease
of consistent description, we use to represent an image,
for a single concept, and for a bi-concept comprised of
two single concepts and . We use to represent a
concept detector which produces a posterior probability of ob-

Fig. 2. Conceptual diagram of the proposed bi-concept image search engine.

serving given the image. In a similar fashion, we define a
bi-concept detector .

A. Visual Search by Combining Single Concepts

Given hundreds of single concept detectors trained on
well-labeled examples [18], a considerable amount of papers
have been published on how to combine the detectors for visual
search. We refer to the review paper by Snoek and Worring [19]
for a comprehensive discussion. Here we discuss two effective,
simple and popular combination methods: the product rule [12]
and linear fusion [7], [8], [11], [20]–[22].
If the assumption would hold that individual concepts are

conditionally independent given the image content [12], a
bi-concept detector can be approximated by the product of its
component concepts, namely

(1)

The linear fusion version of the bi-concept detector is com-
monly expressed as

(2)

where is a weighting parameter. To automatically
determine the weight, many have used a heuristic approach.
Natsev et al. [21] suggest average fusion with . Chang et
al. [22] weight the individual single concept detectors in terms
of their training performance. However, Snoek et al. [7] argue
that the best performing individual detectors such as “person”
and “outdoor” are often the least informative for retrieval. So
Li et al. [11] set to be proportional to the informativeness of
the concepts. How to determine the proper combination of the
single concept detectors remains a open question [19]. It is the
reason why many not only show real results but also resort to an
oracle combination using the best possible weights [6], [7], [21].
One may also consider utilizing an object localization system

which relies on region-based image analysis to pinpoint regions
of the single concepts [23]. Such a system involves image seg-
mentation, a challenging problem in computer vision. More-
over, training the system requires learning examples labeled at
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the region level, which are more expensive to obtain than global
level annotations. In contrast, we are interested in searching for
bi-concepts by holistic analysis, based on the hypothesis that
examples with two concepts co-occurring are likely to have a
characteristic holistic scene. Moreover, we obtain training data
without the need of manual annotation other than using social
tags.

B. Harvesting Training Data From the (Social) Web

Obtaining training examples from the web with expert anno-
tation for free is receiving much attention recently, with sources
ranging from generic web images [24]–[28], professional photo
forums [29], to social-tagged images [15], [16], [30]–[32].
Training data consists of positive and negative image examples
for a given concept. Therefore, we discuss work on positive
examples and on negative examples, respectively.
Harvesting Positive Examples: Given a single concept as a

textual query, Yanai and Barnard [24] and Li and Fei-Fei [26]
collect positive examples by re-ranking web image retrieval re-
sults using probabilistic models derived from the initial search
results. Since the amount of returned examples is limited by
the image search engine used, Schroff et al. [27] propose to di-
rectly extract images from web search results. As the images
vary in quality and come with noisy annotations, dedicated pre-
processing such as filtering of drawings and symbolic images is
required. The remaining top ranked images are treated as posi-
tive examples together with randomly sampled images as neg-
ative examples. Based on these examples an SVM classifier is
trained and then applied for image re-ranking. As an alternative,
Liu et al. [29] rely on a professional photo forum for harvesting
training examples, where image quality is considered higher and
the annotations are better [33].
In contrast to web images loosely connected with free text,

images on the social web are described by user-contributed tags.
Moreover, one has access to social-tagged images without any
constraint on the amount, making social-tagged images an ap-
pealing source for harvesting positive examples. Kennedy et al.
[15] and Ulges et al. [16] consider images labeled with a certain
concept as positive examples. However, due to the subjective-
ness of social tagging, the accuracy of such social positive ex-
amples varies per concept [15]. To improve the social tagging
accuracy, a number of methods have been proposed, ranging
from semantic analysis [17], visual analysis [34] to multi-modal
analysis [35], [36]. Zhu et al. in [17] estimate the relevance of
a given single concept with respect to an image by measuring
the semantic consistency between the concept and the image’s
social tags. In our previous work [34], we proposed Uniform-
Tagger, which estimates image tag relevance by a uniform fu-
sion of neighbor voting results driven by diverse visual features.
As determining the relevance for a bi-concept is more difficult
than its single concept counterpart, combining textual and vi-
sual analysis seems important for obtaining bi-concept exam-
ples. Multi-modal analysis by jointly exploiting image-wise vi-
sual similarity and tag-wise semantic similarity is considered by
Zhu et al. [35] and Liu et al. [36]. As these methods require ma-
trix analysis on the entire image collection and the whole tag
vocabulary, their scalability for exploiting a large amount of so-
cial-tagged images is questionable.

Harvesting Negative Examples: Surprisingly, in contrast to
extensive research on positive examples, the importance of neg-
ative examples is often overlooked. The mainstream approach
is to randomly sample a relatively small subset from a large pool
of images [15]–[17], [27]. For instance, Kennedy et al. [15] and
Ulges et al. [16] construct a negative set of fixed size for a given
single concept, by randomly sampling from examples not la-
beledwith the concept. If the pool is sufficiently large, onemight
end up with a set of reliable negatives, but not necessarily the
most informative ones.
For bi-concepts, negative examples are even more important

as one not only has to distinguish the bi-concept from “normal”
negative classes, but also from its component single concepts.
In a labeled image re-ranking context, Allan and Verbeek [37]
suggest to insert examples of the component concepts into the
negative set, from which they train an image re-ranking model.
In our previous work [32], we proposed a social negative boot-
strapping approach to adaptively and iteratively sample infor-
mative examples for single concepts, with the prerequisite that
manually labeled positive examples are available. However, the
prerequisite is unlikely to exist for the bi-concept case.
Given the related work, we consider the absence of the no-

tion of bi-concepts as a major problem for multi-concept search
in unlabeled data. For learning bi-concept detectors, the lack
of bi-concept training examples is a bottleneck. Previous work
on harvesting single-concept examples from social images in-
cluding our earlier work [32], [34] yields a partial solution, but
needs to be reconsidered for bi-concept learning.

III. BI-CONCEPT IMAGE SEARCH ENGINE

To make the new notion of bi-concept explicit, we study its
characteristics in a bi-concept image search engine for unla-
beled data. To search for a specific bi-concept in the un-
labeled data, we first harvest bi-concept examples from social-
tagged images, namely positive examples in Section III-A and
negative examples in Section III-B. Our choice of the bi-con-
cept detector is explained in Section III-C. Finally,
we obtain image search results by sorting the unlabeled collec-
tion in descending order by .

A. Harvesting Bi-Concept Positive Examples

In order to obtain accurate positive examples for a bi-concept
, we need a large set of social-tagged images and a means to

estimate the relevance of a bi-concept with respect to an image.
Let indicate such a large set, and let be images
in which are simultaneously labeled with and .
To simplify our notation, we also use the symbol to denote a
social tag. We define as a single-concept relevance es-
timator, and as an estimator for bi-concepts. Finally,
we denote as the set of social tags assigned to an image.
We choose two state-of-the-art methods originally designed

for the single-concept problem. One method uses semantic anal-
ysis [17], and the other method is our previous work, using
multi-feature visual analysis [34]. We adapt them to the bi-con-
cept problem: estimating the co-relevance of two single con-
cepts with respect to an image.
Semantic Method: Under the assumption that the true se-

mantic interpretation of an image is reflected best by themajority
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of its social tags, a tag that is semantically more consistent with
the majority is more likely to be relevant to the image [17].
We express the semantic-based relevance estimator for single
concepts as

(3)

where denotes semantic similarity between two
tags, and is the cardinality of a set. Zhu et al. [17] interpret

as the likelihood of observing given . To cope
with variation in tag-wise semantic divergence, we use

(4)

where measures a semantic divergence between two
tags, and the variable is the standard derivation of the diver-
gence. Note that (3) is not directly applicable for bi-concepts.
To address the issue, we adopt a similarity measure intended
for two short text snippets [38], and derive our semantic-based
relevance estimator as

(5)

where is themaximum value of
and , and is the inverse image frequency of
, reflecting the tag’ informativeness.
Visual Method: Given an image represented by visual

feature , we first find nearest neighbors of the image from
, and estimate the relevance of every single concept

to in terms of the concept’s occurrence frequency in the
neighbor set. To overcome the limitation of single features in
describing the visual content, tag relevance estimates based on
multiple features are uniformly combined [34]. We express the
visual-based single-concept relevance estimator as

(6)

where is a set of features, is the number of images
labeled with in an image set , and is the neighbor
set of , with visual similarity measured by .
A straightforward solution to compute (6) for a bi-concept
is to view the bi-concept as a new tag. This solution

boils down to counting the number of images labeled with
both and in the neighbor set . These images
are relatively sparse when compared to images labeled with
either of and . The estimator is accurate, but unreliable
because is often zero or very small. Combining
relevance estimates of the two single concepts by linear fusion
as described in Section II-A is also problematic, because deter-
mining a proper weight is difficult. Simply averaging
and is reliable, yet less accurate. Hence, we need
an estimator which accurately reflects the co-relevance of a
bi-concept, and can be computed in a more reliable manner than
the straightforward solution. Note the following inequality:

(7)

In practice the inequality is mostly strict. This means that if
we compute as the minimum value of
and , the value will be larger than the output of the
straightforward solution, and smaller than the output of aver-
aging and . Moreover, the genuine occur-
rence of a bi-concept is always lower than any of the two con-
cepts making up the bi-concept. Based on the above discussion,
we choose the min function to balance the reliability and the
accuracy for bi-concept relevance estimation. Consequently we
define our visual-based bi-concept relevance estimator as

(8)

An advantage of (8) is that once we have single-concept
relevance pre-computed, bi-concept relevance can be rapidly
calculated.
Multi-Modal: Semantics Visual: As the Semantic method

and the Visual method are orthogonal to each other, it is sen-
sible to combine the two methods for obtaining bi-concept ex-
amples with higher accuracy. As the outputs of and

reside at different scales, normalization is neces-
sary before combining the two functions. Since the Borda count
is well recognized as a solid choice for combining rankings gen-
erated by multiple sources of evidence [39], [40], we adopt this
method for our bi-concept search engine. Given a bi-concept

, we first sort in descending order by
and , respectively. We then aggregate the two rank-
ings by the Borda method to obtain a final ranking. We pre-
serve the top ranked images as positive training examples for
the bi-concept detector, denoted as .
Next, we will use in combination with adaptive

sampling to harvest informative negative examples from so-
cial-tagged images.

B. Harvesting Bi-Concept Negative Examples

Due to the relatively sparse occurrence of a bi-concept,
random sampling already yields a set of accurate negatives.
Harvesting negative examples for bi-concepts seems trivial.
However, to create an accurate bi-concept detector, we need
informative negatives which give the detector better dis-
crimination ability than the random negatives can contribute.
We hypothesize that for a given bi-concept, its informative
negatives have visual patterns overlapping the patterns of its
positive instances. Following this thought, one might consider
positive examples of the individual concepts informative.
However, how a bi-concept detector actually works in visual
feature spaces with thousands of dimensions is not necessarily
consistent with what a human might expect. Given the consid-
erable amount of bi-concepts, it is also impossible to prescribe
proper informative negative classes for each bi-concept, say
by intensive domain knowledge. Therefore, we leverage the
Social Negative Bootstrapping approach proposed in our earlier
work [32], and adapt it to the bi-concept search problem. The
approach, as detailed next, selects informative negatives from
the viewpoint of a detector, but without the need of any human
interaction.
Creating Reliable Negative Examples: For a given bi-con-

cept , we first create a set of reliable negative examples,
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Fig. 3. Harvesting bi-concept training examples from social-tagged images: A zoom-in view of the “Harvesting bi-concept examples” component in Fig. 2. We
exploit multi-modal analysis to harvest accurate positive examples (Section III-A), and adaptive sampling for informative negative examples (Section III-B). Other
than widely available social-tagged images, the process requires no manual annotation.

denoted as , by simple tag reasoning. To describe the
procedure, let be a tag set comprised of synonyms and child
nodes of in WordNet [41]. For each image in , if the
image is not labeled with any tags from , we add it to

.
Adaptive Sampling: Informative negatives are iteratively

selected from by a multiple-round adaptive sam-
pling strategy. Let be the number of sampling rounds, and

the index of a specific round. We denote with
a bi-concept detector obtained after rounds. In

round , we first randomly sample samples from to
form a candidate set

(9)

Then, we use to score each example in , and
obtain in which each example is associated with a confidence
score of being positive to the bi-concept

(10)

We consider examples which are most misclassified, i.e.,
wrongly predicted as positive with the largest confidence
scores, the most informative negatives. So we rank examples
in by their scores in descending order and preserve the
top ranked examples as the informative negative set found
in round . We denote this new negative set as . By
repeating the adaptive sampling procedure, we incrementally
select informative negatives from social-tagged images in an
adaptive manner.
Learning a New Bi-Concept Detector: In each round , we

learn a new detector from and . To
prevent class imbalance which often hampers classifier learning
[42], we enforce the size of to be equal to .

Detector Aggregation: As is composed of negatives
which are most misclassified by the previous classifier, we con-
sider the new detector to be complementary to

. Therefore, we use model average to aggregate
the two detectors to obtain the final detector:

(11)

We illustrate the proposed framework for harvesting
bi-concept training data in Fig. 3. We first collect positive
examples, and then start the social negative bootstrapping
process for obtaining informative negative examples. To
trigger the bootstrapping process, we train an initial detector

on and , which consists of ex-
amples randomly sampled from . We cache bi-concept
detectors trained in the bootstrapping process so that we do not
have to re-train a detector after training data is collected. We
use the aggregated detector as the input detector
for the “Image search” component in Fig. 2. Given a collection
of unlabeled images, our search engine sorts the collection in
descending order by , and returns the top-ranked
results.

C. Learning Bi-Concept Detectors

To learn a concept detector using the positive
set and the informative negative set , we follow
the standard procedure from the literature, namely bag-of-key-
points features [43] plus SVM classifiers [44]. We extract
Dense-SIFT features, i.e., dense sampling to localize keypoints
and SIFT as a keypoint descriptor, using the state-of-the-art
[43]. With the SIFT descriptors quantized by a precomputed
codebook, each image is represented by a histogram with
its length equal to the size of the codebook. Each bin of the
histogram corresponds to a certain code, and its value is the
-normalized frequency of the code extracted from the image.
Let be an SVM decision function trained on
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TABLE I
EXPERIMENT 1. COMPARING METHODS FOR HARVESTING POSITIVE TRAINING EXAMPLES OF SINGLE CONCEPTS, MEASURED IN TERMS OF PRECISION AT 100.

WE SORT THE CONCEPTS BY THEIR FREQUENCY IN THE 1.2 MILLION SET IN DESCENDING ORDER. A GRAY CELL INDICATES THE TOP PERFORMER

and . To convert SVM decision values into
posterior probabilities, we adopt a sigmoid function

(12)

where and are two real-valued parameters optimized by
solving a regularizedmaximum likelihood problem as described
in [45].

IV. EXPERIMENTAL SETUP

A. Dataset Construction

Bi-Concepts: In order to evaluate the proposed bi-concept
image search engine, we need to specify a list of bi-concepts
for our experiments. Since searching for single concepts in
unlabeled images remains challenging, the single concepts
in a prospective bi-concept shall be detected with reasonable
accuracy, otherwise searching for the bi-concept is very likely
to be futile. Also, there shall be a reasonable amount of so-
cial-tagged training images, say thousands, labeled with the
bi-concept. Bearing these considerations in mind, we choose
three daily concepts commonly used in the literature [18], [19],
[46]–[48], namely: “beach”, “car”, and “flower”. We obtain
bi-concepts by combining the concepts with other objects and
scenes, resulting in the following 15 bi-concepts: “beach
bird”, “beach boat”, “beach car”, “beach girl”, “beach
horse”, “bird flower”, “bird snow”, “car flower”, “car
horse”, “car showroom”, “car street”, “car snow”,

“cat flower”, “cat snow”, and “girl horse”. While the
list of potential bi-concepts is exhaustive, the selection serves
as a nontrivial illustration of bi-concept possibilities.
Social Source for Harvesting Training Examples: We use the

15 bi-concepts as well as the 11 single concepts fromwhich they
are composed as queries to randomly sample images uploaded
on Flickr between 2006 and 2010. We remove batch-tagged im-
ages due to their low tagging accuracy, and obtain 300 K images

in total. To harness a large data set for multi-modal analysis,
we further gather 900 K social-tagged images from Flickr in a
random fashion. Our total training collection thus contains 1.2
million images. We list the single concept and bi-concept statis-
tics in Tables I and II.
Test Data: For each bi-concept, we create a ground truth pos-

itive set by manually checking images labeled with the bi-con-
cept in the 1.2 M set, and randomly selecting 50 positively la-
beled examples. Although the test images are associated with
social tags, we ignore the tags and treat the images as unla-
beled. Note that these selected examples are held-out from the
training process. We supplement the collection of bi-concept
images with distracter images from the publicly available NUS-
WIDE set [46], which is also from Flickr but independent of our
training data. Since this set was constructed by single-concept
queries, it rarely contains genuine positives of the 15 bi-con-
cepts. For reasons of efficiency, we randomly sample a subset
of 10 K images from NUS-WIDE as our negative test data. For
each bi-concept, we examine how its 50 positive examples are
ranked within the 10 K negative set.

B. Experiments

In order to provide a step-by-step analysis on the entire
bi-concept search framework, we evaluate in the following
two experiments: the accuracy of harvested positive training
examples and the various mechanisms for bi-concept search.
Experiment 1. Harvesting Bi-Concept Positive Examples:

For each concept, we take all images labeled with the concept
in our 1.2 M set as candidate positives. We sort the candidate set
by each of the three methods described in Section III, namely
Semantics, Visual, and Multi-modal Borda. In addition to the
Borda method, we also consider multi-kernel learning plus
SVM [49], which directly combines multi-modal similarities.
For each bi-concept, we train a multi-kernel SVM on images
labeled with the bi-concept, and then use the SVM to predict
the positive training examples. For a more comprehensive
comparison, we also report the performance of image ranking
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TABLE II
EXPERIMENT 1. COMPARING METHODS FOR HARVESTING POSITIVE TRAINING EXAMPLES OF BI-CONCEPTS, MEASURED IN TERMS

OF PRECISION AT 100. WE SORT THE BI-CONCEPTS BY THEIR FREQUENCY IN THE 1.2 MILLION SET IN DESCENDING ORDER

using three simple metadata features: DateUploaded, TagNum,
and Views. Given an image, TagNum is the number of tags
contributed by its user, while Views indicates how many times
the image has been viewed.
As there is no ground-truth available for the 1.2 M set, we

manually check for genuine positives in the top ranked images.
To reduce the manual annotation effort and (possible) labeling
bias towards certain methods, we employ a pooling mechanism
similar to the TRECVid benchmark [47]. For each method, we
put its top 100 ranked images into a common pool without indi-
cating their origin. For a given query of a single or bi-concept,
we label an image as positive if the (bi-)concept is (partially)
visible in the image. Artificial correspondences of the (bi-)con-
cepts such as drawings, toys, and statues are labeled as negative.
Notice that as the chance of including genuine positives in the
negative sets is very small, we do not assess the accuracy of the
negatives.
Experiment 2. Bi-Concept Search in Unlabeled Images: To

configure a bi-concept search engine, we have to specify the
following three choices:
1) detector: building a bi-concept detector versus combining
the confidence scores of two single-concept detectors;

2) positive: random sampling versus the multi-modal Borda
fusion of Semantic and Visual selection;

3) negative: random sampling versus adaptive sampling.
In order to study the impact of the individual choices on

bi-concept search, we design three setups for a head-to-head
comparison, namely Social, Borda, and Full, as listed in
Table III. The optimal choice of the amount of positive ex-
amples may vary over bi-concepts. For bi-concepts whose
positive data can be collected at a higher accuracy, it is sensible
to preserve more top ranked examples for training. Note that
this study does not aim for the best possible performance, but

TABLE III
EXPERIMENT 2. CONFIGURING OUR BI-CONCEPT IMAGE

SEARCH ENGINE USING THREE SETUPS

rather focuses on revealing the advantages of bi-concepts as
a retrieval method, in the context of the existing works using
single-concept detectors. Hence, for each setup, we simply set
the number of positive examples per bi-concept to 100. For
harvesting informative negative examples, we set the number
of iterations to 10. Consequently, we also create 10 sets of
randomly sampled negatives for the reason of fair comparisons.
By comparing Borda and Social, we study the impact of posi-
tive training data. By comparing Full and Borda, we assess the
effectiveness of informative negatives.
For combining single-concept detectors, we investigate the

most common methods from the retrieval literature: the product
rule and linear fusion. While the product rule helps to make
a combined detector more discriminative, averaging the indi-
vidual detectors helps to improve the robustness of the com-
bined detector. Linear fusion is often used to establish a per-
formance upper bound [6], [7]. We follow this idea, and estab-
lish a performance upper bound of linear fusion for bi-concept
search by grid search with a step size of 0.05 on . We use av-
erage precision, a common choice for evaluating visual search
engines [47].
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Fig. 4. Positive training examples of “car horse” automatically obtained from social-tagged images by different methods. The top 30 results of each method
are shown. A red border indicates a false positive example. (a) Views. (b) Semantics. (c) Visual. (d) Multi-modal Borda.

C. Implementation

Parameters for Training (Bi-)Concept Detectors: We create
a codebook with a size of 1024 by K-means clustering on a
held-out set of random Flickr images. So each image is repre-
sented by a vector quantized Dense-SIFT histogram of 1024 di-
mensions. For a fair comparison between detectors trained using
different setups, we train a two-class SVM using the kernel,
setting the cost parameter to 1.
Parameters for the Semantic Method: As an instantiation of

in (4), we choose the Normalized Google Distance
[50], which measures semantic divergence between two tags
based on their (co-)occurrence frequency in a large collection of
social-tagged images. As our 1.2M set might be relatively small
for computing this distance, we use the full list of LSCOM con-
cepts [18] as queries, and collect up to 10 million Flickr images
with social tags. The values in (5) are also computed on the
10 M set.
Parameters for the Visual Method: We choose the following

four visual features which describes image content from dif-
ferent perspectives: COLOR, CSLBP, GIST, and Dense-SIFT.
COLOR is a 64-d global feature, combining the 44-d color cor-
relogram [51], the 14-d texture moments [52], and the 6-d RGB
color moments. CSLBP is a 80-d center-symmetric local bi-
nary pattern histogram [53], capturing local texture distribu-
tions. GIST is a 960-d feature describing dominant spatial struc-
tures of a scene by a set of perceptual measures such as nat-

uralness, openness, and roughness [54] (using software from
[55]). Dense-SIFT [43] is the same bag-of-keypoints feature as
we have used for concept detection. We compute (6) with the
feature set on
the 1.2 M set. We set , a good choice for the neighbor
voting algorithm [34].
Parameters for the Multi-Kernel SVM: We construct mul-

tiple kernels as follows. For each of the four visual features, we
use the kernel. To measure the semantic similarity between
two images, we adopt the choice of Guillaumin et al. [56], and
define a tag kernel which returns the number of tags shared by
two images. To train a multi-kernel SVM, we take the top 100
examples ranked by TagNum as positive training data and 100
examples sampled at random as negative training data. We use
the Shogun software [49], with the l2 normalization on the com-
bination weights.

V. RESULTS

A. Experiment 1. Harvesting Bi-Concept Positive Examples

Social Tagging Baselines: Comparing single concept har-
vesting results in Table I and bi-concepts harvesting results in
Table II, we observe that the social tagging accuracy of bi-con-
cepts (P@ ) is much lower than its single-concept
counterpart (P@ ). Recall that we already removed
batch-tagged images beforehand. So a possible explanation
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Fig. 5. Positive training examples of “cat snow” automatically obtained from social-tagged images by different methods. The top 30 results of each method
are shown. A red border indicates a false positive example. (a) Views. (b) Semantics. (c) Visual. (d) Multi-modal Borda.

could be that when users label images with multiple tags,
they tend to add more tags irrelevant to the actual content to
improve the retrievability of their images. This explanation
is confirmed to some extent by the behavior of the TagNum
feature. While TagNum is slightly better than random sampling
for single concepts, it clearly outperforms random sampling
for bi-concepts. Simply ranking images by DateUploaded does
not improve the accuracy at all, indicating that freshness has
no impact on relevance. The result of Views (P@
for single concepts and P@ for bi-concepts) shows
popularity has a limited positive impact on relevance.
Bi-Concept Search Engine versus Social Tagging Baselines:

As shown in Table II, for bi-concepts, our search engine with
multi-modal Borda doubles the accuracy, with P@ ,
when compared to random sampling from the social web with
P@ . The results show the effectiveness of the pro-
posed search engine for harvesting positive training examples
from social-tagged images. We demonstrate some harvested
bi-concept training examples in Figs. 4 and 5. Compared to the
Random run, the performance of the Visual run improves for
all bi-concepts except for “beach boat”. For that bi-concept,
Visual incorrectly ranks images of “boats in sea” at the top
due to visual ambiguity between sea and beach. Although the
multi-kernel method performs well for some bi-concepts such
as “bird snow”, it is not as effective as the Borda method in
general.

Multi-Modal versus Uni-Modal: For single concepts, Visual
reaches the best performance, on average, having 98 genuine
positive examples in its top 100 retrieved results. We attribute
the success of Visual to two reasons. First, while visual appear-
ance of a single concept, e.g., “bird”, may vary significantly,
the typical visual context where the concept is observed is rel-
atively consistent, e.g., “water” and “sky” for “bird”. The Vi-
sual method, empowered by diverse visual features, thus esti-
mates single concept relevance accurately. Second, rather than
re-ranking a small number of image search results [27], [37],
we analyze all images labeled with a given single concept. The
large candidate pool allows the search engine to find the im-
ages for which it is most confident. The results for bi-concepts
are different. Neither of the two uni-modal methods is a clear
winner. For bi-concepts with “flower” as a component concept,
Semantics tend to outperform Visual. Recall that the features
used in our experiments are global, meaning they are better at
describing visual context than capturing insignificant objects
within an image. As a flower is often small in an example of
“car flower”, retrieving a number of flower images in the
neighbor set becomes difficult. Region-level analysis could be
helpful in this case. As Semantics and Visual are complemen-
tary, combining them with the Borda count method results in a
relative improvement of 18%.
In sum, our main findings after experiment 1 are as fol-

lows. Since the social tagging accuracy of bi-concepts is
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TABLE IV
EXPERIMENT 2. COMPARING METHODS FOR BI-CONCEPT SEARCH IN TERMS OF AVERAGE PRECISION. WE COMPARE OUR PROPOSED BI-CONCEPT SEARCH
ENGINE WITH APPROACHES COMBINING SINGLE CONCEPTS USING PRODUCT RULE, LINEAR FUSION WITH , AND LINEAR FUSION WITH AN ORACLE

ESTIMATOR FOR . FOR BORDA AND FULL, THEIR POSITIVE TRAINING DATA ARE OBTAINED BY THE BORDA COUNT METHOD REPORTED IN TABLE II

much lower than that of single-concepts, harvesting positive
bi-concept examples is more difficult than harvesting positive
single-concept examples. While visual analysis seems ade-
quate for single-concepts, multi-modal analysis is crucial for
bi-concepts. When compared to selecting bi-concept labeled
images from the social web in a random fashion, our proposed
bi-concept search engine harvests bi-concept examples with
doubled accuracy.

B. Experiment 2. Bi-Concept Search in Unlabeled Images

Comparing Methods for Combining Single Concepts: For
single concept search, unsurprisingly, single concepts trained
using the Full setup, with an MAP of 0.120, is better than single
concepts trained using the Social setup, with an MAP of 0.080.
As shown in Fig. 6, compared to single concepts trained on
random samples, single concepts learned from informative neg-
atives are more discriminative, favoring precision over recall.
As shown in Table IV, the product rule works slightly better
than average fusion for combining single concepts. This result
implies that searching for bi-concepts demands detectors with
better discrimination ability.
Bi-Concept Search Engine versus Combining Single Con-

cepts: As shown in Table IV, our bi-concept search engine,
using the Full setup, performs best, with an MAP of 0.106.
For single concept detectors trained using the Full setup, the
upper bound on the performance of linear fusion with an oracle
is 0.053, which is unlikely to be approached in practice. Even
with this upper bound, we still outperform linear fusion for most
bi-concepts, and overall with a relative improvement of 100%.
Impact of Positive Training Data: Concerning positive

training data for learning bi-concept detectors, the Borda setup
improves the MAP of the search engine from 0.042 to 0.080

Fig. 6. Comparing predicted scores of single concept detectors trained using
different setups. social(beach): a “beach” detector trained using the Social setup.
full(beach): a “beach” detector trained using the Full setup. social(boat) and
full(boat) are defined in a similar fashion. Each curve is obtained by running a
detector on 50 positive examples of “beach boat”, and sorting by predicted
scores in descending order. Steeper slopes indicate that detectors trained using
the Full setup are more discriminative, favoring precision over recall.

when compared to Social. The bi-concept comparison shows
that for most bi-concepts Borda is better than Social. Because
Borda and Social use the same negative training data, the result
allows us to conclude that positive examples harvested by our
system are better than the original social-tagged positives.
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Fig. 7. The 80 most informative negative examples for specific bi-concepts, harvested from social-tagged images by the proposed bi-concept image search engine.
By visualizing tag frequency in the selected negatives as a tag cloud, we see which negative classes are most informative to a given bi-concept. (a) Informative
negative training examples of “car showroom”. (b) Informative negative training examples of “beach girl”. (c) Informative negative training examples of
“bird flower”. (d) Informative negative training examples of “car horse”.

Impact of Negative Training Data: Comparing the Full setup
with the Borda setup, we observe from Table IV that for most
bi-concepts Full surpasses Borda, with a relative improvement
of 32.5%, in terms of MAP. Since the two setups use the
same positive training data, the results show the importance of
informative negatives for accurate bi-concept search. To see
what negative classes are recognized as informative for a given
bi-concept, we show in Fig. 7 the most informative negative
examples harvested from the 1.2 M set by the proposed search

engine. Note that negative examples which are visually close to
bi-concept examples are automatically identified as informative
for optimizing bi-concept detectors. Consider “car show-
room” for instance. As shown in Fig. 7(a), indoor scenes such
as offices and restaurants and outdoor scenes such as streets are
selected by our system. Images such as close-ups of electronic
devices, as one often see in a showrooms, are also found by
our system. These negative examples are helpful for the search
engine to distinguish genuine examples of “car showroom”
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Fig. 8. Finding unlabeled images with three visual concepts co-occurring.
Compared to average fusion of single concepts, the proposed search engine
obtains better search results for tri-concept “beach girl horse”. (a)
Searching for “beach girl horse” by average fusion of beach, girl, and
horse detectors. (b) Searching for “beach girl horse” by the proposed
search engine.

from examples where only one of the two single concepts is
present, resulting in an absolute improvement of 0.086. Further,
by visualizing social tag frequency in the informative negative
set with a tag cloud, we see which negative classes are most
informative with respect to a specific bi-concept. Both the
quantitative and qualitative results demonstrate the viability of
the proposed bi-concept image search engine.
Concerning generalization of the proposed method for more

complex queries such as “finding an image showing a girl and
a horse on a beach”, a straightforward extension is to harvest
examples for the tri-concept “beach girl horse”. Though
images with the three tags are relatively sparse, positive exam-
ples of the tri-concept may have a more characteristic visual ap-
pearance. Hence less training data is required. Using the same
protocol as used for the bi-concepts, we have conducted an ad-
ditional experiment for searching for “beach girl horse”.
Compared to average fusion of the three single concepts with an
AP of 0.058, the proposed search engine obtains a much better
performance with an AP of 0.290. Fig. 8 shows the top 20 search
results by different methods. The results demonstrate the poten-
tial of our method for tri-concept search.

VI. DISCUSSION AND CONCLUSIONS

This paper establishes bi-concepts as a new method for
searching for the co-occurrence of two visual concepts in unla-
beled images. To materialize, we propose a bi-concept image
search engine. This engine is equipped with bi-concept detec-
tors directly, rather than artificial combinations of individual
single-concept detectors. Since the cost of manually labeling
bi-concept training examples is prohibitive, harvesting social
images is one—if not the—main enabler to learn bi-concept
semantics.
The core of the new search engine is a multimedia data-driven

framework which collects from the social web 1) de-noised pos-
itive training examples by multi-modal analysis and 2) informa-
tive negative training examples by adaptive sampling. We study
the behavior of the search engine using 1.2 M social-tagged im-
ages as a data source.

Obtaining positive training examples for bi-concepts is more
difficult than for single concepts, as the social tagging accuracy
of bi-concepts is much lower. For single concepts, uni-modal
(visual) analysis is often sufficient for de-noising. For bi-con-
cepts, multi-modal analysis is crucial, gaining a relative im-
provement of 18% over uni-modal. When compared to the so-
cial tagging baseline, we obtain positive examples of bi-con-
cepts with doubled accuracy.
The training examples, obtained without the need of any

manual annotation other than social tags, are used to train
bi-concept detectors. These detectors are applied to 10 K
unlabeled images. Using the de-noised positive data allows
us to lift the performance of the social baseline from 0.042
to 0.080, in terms of MAP. Substituting informative negative
examples for randomly sampled negatives further improves
the performance, reaching an MAP of 0.106. Our system even
compares favorably to the oracle linear fusion of single concept
detectors, with an upper bound MAP of 0.053. The results
allow us to conclude that compared to existing methods which
combine single concept detectors, the proposed method is more
effective for bi-concept search in unlabeled data.
One concern of the paper might be that the number of

bi-concepts in our current evaluation is relatively small, when
compared to single concept benchmarks [46]–[48]. Though
our framework needs no manual verification for exploiting
bi-concept examples, we actually require manually verified
ground truth for a head-to-head comparison. Therefore, a
novel benchmark dedicated to bi-concepts or even higher-order
semantics is urged for.
Our study is orthogonal to work which aims to detail a single

concept by describing its visual attributes [13], [14], e.g., auto-
matically adding the tag “red” to “car” to generate a more spe-
cific single concept “red car”. These methods might be incorpo-
rated into the new search engine to answer bi-concept queries
with two specified single concepts such as “red car white
horse”. This would lead to a search engine capable of answering
very precise queries.
The proposed methodology is a first step in deriving se-

mantics from images which goes beyond relatively simple
single-concept detectors. We believe that for specific pre-de-
fined bi-concepts, they already have great potential for use in
advanced search engines. Moving to on-the-fly trained queries
based on bi-concepts opens up promising avenues for future
research.
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