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Abstract—We present a novel approach towards web video
classification and recounting that uses video segments to model
an event. This approach overcomes the limitations faced by
the classical video-level models such as modeling semantics,
identifying informative segments in a video and background
segment suppression. We posit that segment-based models are
able to identify both the frequently-occurring and rarer patterns
in an event effectively, despite being trained on only a fraction
of the training data. Our framework employs a discriminative
approach to optimize our models in distributed and data-driven
fashion while maintaining semantic interpretability. We evaluate
the effectiveness of our approach on the challenging TRECVID
MEDTest 2014 dataset. We demonstrate improvements in re-
counting and classification, particularly in events characterized
by inherent intra-class variations.

I. INTRODUCTION

User generated videos have been growing at a rapid rate.
These videos typically do not come with extensive annotations
and metadata; even category level labels may be missing or
noisy. For efficient retrieval and indexing of such videos, it
would be useful to have automated methods that classify a
video into one of the known categories but also to identify
key segments and provide semantic labels for them to enable
rapid perusal and other analyses. Given an input video, our
framework provides a user-defined event label (detection) and
positive evidence for the same with their locations and labels
(recounting).

The tasks of detection and recounting are challenging due
to large intra-class variances in structure, imaging conditions
and possible presence of long segments not directly related
to the event. As shown in Figure 1, a video with caption
”Marriage Proposal” can contain various backgrounds such
as a ”restaurant”, ”basketball court” and ”outdoors”. However,
effectively identifying instances such as ”Getting down on one
knee”, ”Proposal speech” and ”Wearing a ring” can help in
identifying the event despite the variations.

Popular approaches to model events can be divided into
holistic or part-based. Holistic approaches (e.g., [2] [3]),
model an event using distributions of low-level features from
various modalities such as appearance, scene, text, motion
of its constituent videos. It is common to encode features
using Fisher Vectors [4] which are aggregated using differ-
ent type of pooling [5] such as max and average pooling.
While these approaches achieve reasonable performance for

Fig. 1: Exemplars from the event ”Marriage Proposal” in
the TRECVID MED Dataset [1] showcasing the variance
in backgrounds; actions and their order of occurrence in
unconstrained videos.

detection, they do not identify positive segments or provide
semantic interpretation of the results needed for tasks like
recounting. Also, they work well for videos that are trimmed,
i.e., where almost the entire video corresponds to a single event
category. Other methods [6] [7] have tried to use semantic
features by computing concept scores using a dictionary of
object [6] and/or action detectors [8] applied to each frame
and aggregating the scores. While these methods can provide
some semantic interpretation of the video, by emphasizing the
high-scoring concepts [7] [9], their utility for localization and
recounting is still limited. There are also difficulties like the
concept dictionaries may not be well matched to the concepts
in the video and concept detectors may not perform uniformly
across datasets [10], which may be considered as problems of
”transfer learning”.

Part-based approaches use video-segments instead of entire
videos for event models. For example, [11] represents an
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event using a set of models from various temporal scales for
human activity classification. Temporal structure of classifiers
is embedded as a template and the models are learnt by mining
iteratively for positive segments of motion features. While this
approach captures the intra-class variance, it cannot be applied
to web videos due to lack of temporal structure unlike human
activity. [12] splits a video into fixed-length temporal segments
and employs a variable-duration HMM to model the state-
variations in the segments. Latent models are used to infer
the temporal composition of a video. This method performs
well on action datasets but unlikely to handle the variations in
web videos due to rigid temporal constraints. [13] proposed
a joint framework for detection and recounting where the
positive segment locations are treated as latent variables. Their
method uses global video model and part-segment models
based on concept dictionary in conjunction to optimize for
event classification and recounting. While this approach gives
significant improvement over methods using only semantic
features, it is still limited by the concept dictionary.

In our approach, we employ video-segments instead of
entire videos for training event models. While it is impractical
to provide large numbers of positive video exemplars to model
each event, each video exemplar provides tens to thousands
of video segments whose positive instances can be utilized
to model an event. If the positive segments are identified
and clustered, they can be used to discard the significant
amount of ”outliers” or ”non-informative” segments found in
unconstrained videos and structurally highlight the semanti-
cally meaningful parts of video. If the positive segments are
labeled, they can also be used for tasks such as recounting
of the videos. We train ensembles of models to depict the
sub-categories of an event using the positive segments from
video exemplars. We allow for data-sharing while training our
models, enabling them to use segments not just from training
data but from background segments which helps to overcome
limited data which is common in long-tail distributions.

We use knowledge transfer from detectors of external con-
cept dictionary only for initialization and concepts (subcate-
gories) of an event are trained by mining groups of positive
segments from exemplar videos themselves in a weakly su-
pervised fashion. Unlike [11], which uses augmented initial
models from various scales, this form of initialization has more
semantic interpretrability of the models and higher incidence
on positive segments. We also do not attempt to assign label
to each segment of the video or model temporal composition
of the constituent events, unlike [11] [12], and it is more
amenable to unstructured videos.

Our overall framework is represented in Figure 2. Given a
set of exemplar videos for each event, we first divide each
video into fixed-length, non-overlapping segments and use
responses of concept detectors to sample possible positive
segments. We use the sampled segments as initial seeds
and use iterative positive segment mining to group similar
segments. From the resulting groups of segments, we train
an SVM (”candidate” segment-based models) for each group.
The contributions of each of the ”candidate” segment-based

models towards event are evaluated in the next step using a
greedy strategy. The top contributing ”candidate” segment-
based models (”representative segment-based models”) are
chosen to represent the event. For testing, we score all the
segments of test video using the ”representative segment-
based models” of an event and aggregate the scores. Final
video-level score is obtained by averaging the scores from
segments with top responses. Following sections contain a
detailed description of our method.

We show both qualitative and quantitative results on the
challenging MEDTest 2014 [1] dataset provided by NIST for
classification and recounting tasks respectively.

II. SEGMENT-BASED MODELS

A. Seed Initialization

For training efficient segment-based models, we need an
initialization scheme that can identify a subset of representa-
tive positive segments as seed segments. For this, we take
advantage of the observation that highest responses of the
top contributing concepts of an event are highly relevant to
the event [6]. We use a mid-level feature representation to
select concepts that are relevant to the event and then choose
the segments that have high scores for these concepts. Note
that some of the initial seed segments can be noisy and are
pruned in the latter stages of training. Given a set of videos
V = {V1 . . .VN} belonging to an event C , let each video Vi
contain Fi frames. Given K concept detectors {D1 . . .DK},
each concept detector is applied to V. For each video segment
Vi(fi), a K dimensional response vector V s

i (fi) is obtained.
We select top L relevant concepts per event C by computing
the sum of l1 normalized feature response vectors as follows :
β =

∑
ifi∈V(∗) V

s
i (fi). The top L concepts are then selected

as maxL
1<L<K

β(k), k ∈ {1, 2, ...K}. For each concept ck, we

choose positive segments {Vt1(ft1), . . .VtP (ftP )} ∈ V(∗)
that have the P highest responses for ck in V(∗). To obtain
genuine maximal responses without redundancy, we apply
non-maximal suppression.

We choose L and P values to be relatively high, to ensure
that the initial seeds are oversampled. This way, the repre-
sentation of an event can be exhaustive when the models are
pruned in the latter stages. From the L∗P initial segment seeds
chosen, we build candidate segment models Mi, i ∈ C . Each
seed is used as a positive example and hard mined negative
segments from background set are used as negative examples,
to train exemplar SVMs [14].

B. Iterative positive segment mining

The candidate models trained in the previous step tend
to over-fit to the single exemplar they are trained on. To
generalize the models further, we need to retrain the models
with positive segments similar to the exemplar. To avoid the
problems faced by classical clustering models, we choose
to mine the positive segments iteratively in a discriminative
space. In each iteration, we group Np positive examples that
show high response to the current model. We then retrain
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Fig. 2: Outline of the training, iterative positive mining and testing approaches. Training approach (left) selects relevant concepts
for an input query and uses iterative positive mining to select segments and greedy selection to prune them. Iterative positive
mining approach (right-up) trains an exemplar SVM [14] using the initial seed segment and iteratively mines for similar
positive segments to generalize. Testing approach (right-down) generates scores for videos using max responses from the
selected models and final score is generated by averaging the highest local responses.

the current model by including the mined positive examples
in the exemplar set. This form of mining helps in learning
more reliable templates by using the mined samples as a form
of ”regularization” to prevent overfitting and models long-tail
distribution naturally [15]. It is also advantageous in discarding
outliers, since there is no requirement for a sample to be bound
to a cluster. Choice of each group is independent of the other
groups’ choices and can be trained in parallel for efficiency.
The algorithm is iterative and alternates over the following
two steps until it reaches convergence.

(i) Each candidate model Mi scores all the positive segments
for an event and mines the top scoring Np segments

(ii) Each candidate model re-trains to include the Np mined
positives with the existing positive set to improve the gener-
alization of the candidate model.

Convergence of the algorithm is judged based on the
Average Precision (AP) value of the candidate model, on a
held-out validation set. The iteration is terminated when there
is a marginal improvement in AP or when enough positive
examples are mined, whichever happens earlier. Many of the
candidate segment models, Mi, trained in this step are either
noisy or redundant and need to be further pruned to build a
representative set for each event.

C. Model Selection

From the pool of |L| ∗ |P | candidate models for each event,
we need to select a subset S ⊂ {|L|∗|P |}, that is representative
of the event. Many of the candidate models are redundant due
to over-sampling. So, the subset, S is chosen to maximize the

mean Average Precision (mAP) on the training set excluding
the positive segments used for training and their neighbors.
Since the search over the entire subset space has high compu-
tational complexity, we opt for a greedy algorithm to choose
the final representative models, M̃i, which works quite well
in our experiments. We tried both the greedy model selection
and greedy model elimination strategies to select the subset.
We observe that, greedy selection gives similar performance
as greedy elimination while being computationally faster. At
each step, we add a model, m̃∗i that maximizes the AP of the
existing subset S. We use early stopping to prevent over-fitting.

D. Model Testing

Testing the segment-based models is different from video-
level models primarily in two aspects. Firstly, since segment-
based models are trained on the discriminative segments they
are expected to have low responses for non-discriminative and
outlier segments. This results in sparse high detection scores
across the video segments. Averaging across the segments
would result in a very low and noisy final score. Secondly,
since each event C could be represented by more than one
segment-based model,M̃i from representative set, detection
scores of various models for a segment have to be aggregated
to obtain detection score for that segment. However, the
detection scores of the models are not comparable and need
to be calibrated across each other in probabilistic space.

To calibrate the detection scores of representative segment-
based models, M̃i of an event C , we use a held-out validation
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ID Event Name Video-level Models(VM) [6] ELM [13] Segment-based Models(SM) VM+SM

21 Bike trick 0.0653 0.0912 0.0778 0.0696
22 Cleaning an appliance 0.0856 0.0910 0.1028 0.1272
23 Dog show 0.7729 0.6853 0.7840 0.8194
24 Giving direction 0.1093 0.1296 0.1313 0.1244
25 Marriage proposal 0.0208 0.0459 0.0266 0.0371
26 Renovating a home 0.0690 0.0673 0.0593 0.0802
27 Rock climbing 0.0812 0.0889 0.0850 0.0850
28 Town Hall meeting 0.3855 0.3674 0.4447 0.4840
29 Winning a race without a vehicle 0.2543 0.2978 0.2989 0.3041
30 Working on a metal crafts project 0.1032 0.2186 0.1238 0.1237
31 Beekeeping 0.7367 0.7532 0.73855 0.7565
32 Wedding shower 0.2545 0.2790 0.2793 0.2894
33 Non-motorized vehicle repair 0.2712 0.3070 0.2774 0.2841
34 Fixing musical instrument 0.4575 0.4067 0.4124 0.4686
35 Horse-riding competition 0.3534 0.3323 0.2782 0.3842
36 Felling a tree 0.1774 0.1952 0.2141 0.2238
37 Parking a vehicle 0.1719 0.1802 0.2791 0.2678
38 Playing fetch 0.0906 0.0984 0.0749 0.0842
39 Tailgating 0.2066 0.2132 0.1889 0.2001
40 Tuning a musical instrument 0.0781 0.1484 0.2026 0.1938

mAP 0.2373 0.2498 0.2540 0.2704
TABLE I: Comparison of MED performance (AP metric) on the NIST MEDTEST 2014 dataset using Video-level Models,
Segment-based Models and Late Fusion.
set (VS) to mine non-redundant top Ps scores from positive
segments V s

j ,Vj ∈ C and a background set to mine Ns hard-
negative scores. A learned sigmoid (α

M̃i
, β

M̃i
) is then fit to

each model, M̃i and the detection scores xj = Sc(V s
j , M̃i)

are rescaled to be comparable to each other as follows:

f(xj | w(M̃i), αM̃i
, β

M̃i
) =

1

1 + e
−α

M̃i
(w(M̃i)T xj+βM̃i

)

This calibration step also suppresses the responses of models
that do not have high distinction in positive and negative scores
by shifting the decision boundary towards the exemplars [14].
The final detection score, Xj , for each segment V s

j is then
obtained by max-pooling the calibrated scores,f(xj), of all
the representative segment-based models, M̃i of the event C .

Xj = max(f(xj |M̃i)), xj = Sc(V s
j , M̃i)

Once the detection score for each segment is calculated, a
video-level score is obtained by averaging the scores of local
maxima of the video.

Sc(Vj) = avg(maxk(Xj)), Xj = Sc(V s
j )

Non-redundancy of the scores is achieved through non-
maximal suppression while averaging suppresses noisy re-
sponses.

E. Model Recounting
For identifying the positive evidence, we take the segments

with local maxima scores.
Ev(Vj) = {maxk(Xj)}, Xj = Sc(V s

j )
The corresponding labels of the positive evidence are identified
by choosing the labels of the representative models that have
the maximum scores for the segments with local maxima.

III. EXPERIMENTS

In this section, we provide details about the dataset we used,
various choices of parameters and evaluate the performance of
our segment-based models.

A. Dataset

In our experiments, we use TRECVID MED14 [1] test
video corpus and MED 14 event kit data for evaluation. The
dataset contains unconstrained, Youtube-like web videos from
the Internet consisting of high-level events. The MEDTest 14
has around 27,000 videos and the event kit consists of a 100Ex
setting, providing approximately 100 exemplars per event. The
”event kit” consists of 20 complex high-level events differing
in various aspects such as background : outdoor ( bike trick )
vs indoor ( town hall meeting ); frequency : daily ( parking a
vehicle ) vs uncommon ( beekeeping ); sedentary ( tuning a
musical instrument ) vs mobile ( horse-riding competition ).
A complete list of events is provided in table I.

B. Object Bank

For mid-level features, we choose an Object Bank [6]
containing 15k categories of ImageNet. Each category is
trained using a convolution network with eight layers and
error back propagation. The responses for each category are
obtained for each frame and the 15k dimensional vector is
simply averaged across frames to obtain segment level and
video level representations. The 15k objects are noun phrases
that encapsulate a high diversity of concepts such as scenes,
objects, people and activities.

C. Evaluation

1) Training parameters: For training the segment-based
models, the first parameter choice is the number of initial
seed models(K ∗ M ). For the value of (K ), a performance
plateau was reached for K = 50. For M , lower values led to
poor performance due to noisy estimates of the object bank,
while higher values led to high redundancy in the initial seeds.
M = 5 was chosen for our experiments. For discriminative
clustering, Np = 10 was used for collecting positives in each
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Fig. 3: Captions/labels generated by segment-based models for events Bike Trick, Dog Show, Marriage Proposal, Rock Climbing,
Winning a race without a vehicle and Beekeeping (from top to bottom). The first ten out of the twenty positive test videos
of the event are chosen and the middle frame of the segment is chosen for illustration. It can be seen that the captions are
relevant to the segments.

ID Event Name Threshold 1 = 0.5 Threshold 2 = 0.7 Threshold 3 = 0.9 Average

VM SM VM SM VM SM VM SM

23 Dog show 0.9612 0.9668 0.9082 0.8974 0.7619 0.7778 0.8771 0.8806
25 Marriage proposal 0.2801 0.3118 0.2726 0.2944 0.2686 0.2913 0.2737 0.2991
27 Rock climbing 0.7322 0.7506 0.7299 0.7480 0.7153 0.7351 0.7258 0.7381
29 Winning a race without a vehicle 0.6684 0.6841 0.6661 0.6818 0.6004 0.6580 0.6449 0.6746

mAP 0.6604 0.6783 0.6442 0.6554 0.5865 0.6155 0.6304 0.6462
TABLE II: Comparison of Average Precision(AP) of the ranked segments in test videos for Video-level Models(VM) and
Segment-based Models(SM) for various thresholds.
iteration and at this rate most of the models stabilize in 3-
4 iterations (30-40 exemplars). A maximum iteration limit of
20 (∼200 exemplars) is set for the clustering, with most of
the models reaching convergence far before except the highly
noisy ones. For training and validation, we use a split of 67%-
33% on the training videos.

We use less than 1% of the available training segments
to train all the events, showing the efficiency of our training
procedure. Some events such as ”dog show” were efficiently
represented with a single model. This indicates that if the
events have low intra-class variance, representation is possible
with very few models.

2) Multimedia Event Detection: We compare the perfor-
mance of our segment-based models with a standard video-
level model using the object bank features [6] and evidence
localization model (ELM) [13]. For [6], we use a histogram
intersection kernel SVM [16] to model the event and logistic
regression based fusion when combining the two modalities.
For [13], latent svm is used on the object bank that models
both global and part-based models. A summary of the results
per event is provided in Table I. For majority of events,
AP of the segment-based models is better than the AP of
the other methods, while late fusion with video-level models
improves the performance significantly indicating some com-
plementarity of ”modeling-segments” to ”modeling-context”.
Note that AP of segment-based models is similar to that of

ELM which uses both global and part-based models. Hence, a
better comparison is with fusion results which are better than
that of ELM. Also ELM is relatively slow as it uses a latent
SVM for inference. Events such as ”Winning a race without
vehicle”(running, swimming, potato race ) and ”Tuning a
musical instrument”(guitar, key board, snare drum) improve
considerably, indicating that events that contain natural sub-
categories are modeled more accurately using segment-based
models. Sometimes, lack of sufficient data to model events
leads to drop in performance as in the case of event ”horse-
riding competition”, where the segment-based models produce
high scores in the test videos that have strong incidence of
horse, race track or jockey but they perform poorly when the
race occurs in a grassy surface and horses appear in a very
low resolution where incidence is on poorly trained ”paddock”
model.

3) Multimedia Event Recounting: Multimedia Event Re-
counting (MER) generates summary of key evidence for
event of a video, by providing when(event interval) and
what(evidence label) and confidence of the evidence segments.
To evaluate the performance of segment-based models for
MER, we use the annotations provided by NIST for positive
MEDTest videos of 4 events. The annotations provide the
probability that a video segment belongs to the event. We
use various thresholds to categorize the test segments into
positive/negative for the event and report the Average Precision
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Fig. 4: Visualization of frequency of tags generated for events. (Tags are generated using labels of Segment-based Models.)

of the retrieved scores for the segments. We consider any
overlap > 50% as positive. The average precision (AP) for
each event at various thresholds, based on the rank of each
segment are shown in Table II. The AP is consistently better
for segment-based models, indicating that they are able to
better discriminate the positive segments from the outliers.

Segment-based models can also be used to provide labels
to the informative segments without any post-processing due
to the label assigned to each model. Figure 3 contains exam-
ples of labels produced by segment-based models for sample
videos of some events. For events like ”marriage proposal”
and ”rock climbing”, single models like ”sweetheart” and
”rockclimbing” are able to encapsulate majority of videos
with precision. In the absence of specific labels from object
bank, as in the case of ”swimming” and ”potato race” from
event ”Winning a race without a vehicle”, it can be seen that
semantically closer labels like ”sport” and ”broad jumping”
have been assigned. This can be attributed to the inter-model
dependencies in the object bank which are efficiently utilized
by the discriminative clustering algorithm. Figure 4 shows the
frequency distribution of tags that were generated using the
labels for positive MEDTest videos of each category. It can
be seen that the tags are highly relevant to the event categories.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we formulated a novel approach using
segment-based models that can be used to tackle event classi-
fication and recounting tasks simultaneously. Using the noisy
pre-trained concepts, we trained discriminative models that
can diversely represent an event with semantic interpretation
which is useful for higher-level video tasks. The proposed
method has been evaluated on the challenging TRECVID
dataset, achieving promising results in both classification and
recounting. The results are also significant given the small
portion of the exemplar videos that was used to train the event
models while achieving better performance.

In future, the models can be extended to enable data-sharing
across different events or different datasets to overcome the
limited data available for rare patterns of the events.
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