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Abstract Learning video concept detectors from social media sources, such as Flickr images
and YouTube videos, has the potential to address a wide variety of concept queries for video
search. While the potential has been recognized by many, and progress on the topic has been
impressive, we argue that key questions crucial to know how to learn effective video concept
detectors from social media examples? remain open. As an initial attempt to answer these
questions, we conduct an experimental study using a video search engine which is capable of
learning concept detectors from social media examples, be it socially tagged videos or socially
tagged images. Within the video search engine we investigate three strategies for positive
example selection, three negative example selection strategies and three learning strategies.
The performance is evaluated on the challenging TRECVID 2012 benchmark consisting of
600 h of Internet video. From the experiments we derive four best practices: (1) tagged images
are a better source for learning video concepts than tagged videos, (2) selecting tag relevant
positive training examples is always beneficial, (3) selecting relevant negative examples is
advantageous and should be treated differently for video and image sources, and (4) learning
concept detectors with selected relevant training data before learning is better then incorpo-
rating the relevance during the learning process. The best practices within our video search
engine lead to state-of-the-art performance in the TRECVID 2013 benchmark for concept
detection without manually provided annotations.
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1 Introduction

Many videos are produced every day. Consider for example the amount of frames that are
contained in the 100 h of Internet videos that are being uploaded to YouTube every minute. In
order to pinpoint a specific query to arbitrary fragments of a video, semantic labels at a shot or
even frame level are required. This leaves us no other choice but to devise machine tagging
mechanisms that can detect visual concepts such as animal, building, and snow at the frame
level [2, 32]. The state-of-the-art in video concept detection is to learn SVM classifiers from
manually labeled frames represented by visual code features [9, 38]. However, the expense of
manual labeling results in training examples with limited availability. As a consequence, the
performance of concept detection is bounded to a narrow application domain where a limited
array of concepts can be reliably detected [43].

The potential of automatically obtaining training data from the web for all possible video
concepts one can think of is recognized by many [3, 17, 19, 27, 29, 32, 35, 41, 45]. To promote
progress in this field of research, the well known benchmark for video retrieval TRECVID
[32], even started a dedicated task for learning video concepts without manually provided
annotations in 2012. To reach this goal, one promising line of research is to automatically
acquire training examples from social media, where many socially tagged videos and images
exist. Ulges et al. were among the first to learn video concepts from YouTube [35]. In their
system, if social tags of a video match a given concept, all frames of the video are considered
as positive examples of that concept. Setz and Snoek [29] conducted a pilot study on learning
video concepts from Flickr images, directly treating images labeled with the concept as
positives. However, social tags are known to be unreliable and often irrelevant with respect
to the visual content they are describing [15, 18, 20, 36, 41, 45]. Hence, for learning
meaningful concept detectors from social media, selecting appropriate examples from a proper
data source is crucial.

As noted by Yang et al. [43], the performance of a concept detector could degenerate
severely if the training and the test videos are from different genres, e.g., broadcast news and
documentaries. However whether this will also hold true in a cross-source scenario, say
applying image classifiers on video data, has not been investigated yet in the literature. We
observe prevailing usage of socially tagged videos as the training source of choice [19, 34-36,
41, 44], even though selecting positive training examples from videos is more difficult than
selecting positive examples from images. This is not only because video tags are noisy, but
also the question of how to propagate tags to the frame level is still open [1, 19]. In fact, the
question whether using tagged videos are more beneficial then simply using tagged images has
not been addressed in the literature.

The vast collections of images and videos in social media offer many possibilities for
learning visual detectors. Some researchers have focused on selecting relevant positive
examples [18, 33, 36, 45], where others focus on selecting negative examples [15, 42]. The
authors of [6, 19] incorporated the relevance in the learning methods. Among all these
possibilities, one may wonder How to learn effective video concept detectors from social
media examples?.

To acquire accurate positive examples from social media, a common approach is
through a retrieval process, where socially tagged examples are first ranked in terms of
their estimated relevance scores with respect to a given concept [18, 33, 36, 45]. Then, the
top ranked proportion of the examples is preserved. In [18, 45], for instance, a fixed
number of examples are selected for every concept, while [36] just tried a varying amount
of frame fractions. Some even ignored the unreliability of the social labels, and directly
used tagged videos [35] or tagged images [29] as positive examples. However, what
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strategy is the best for selecting positive examples to learn video concept detectors is
unsettled.

For selecting negative training examples, a common strategy is to randomly sample images
not tagged with the concept name [11, 19, 29, 35, 36, 45]. The classifiers usually misclassify
negative examples which are visually similar to the positives. Therefore, inclusion of such
misclassified and thus relevant negatives could lead to better concept detectors. Li et al. [17]
select relevant negatives with an iterative bootstrap approach, where the top misclassified
images are selected as relevant negatives. Yan et al. [42] select the bottom ranked examples
based on some similarity metric to the positives as reliable negatives. Notice that both methods
use expert-labeled positive training examples. To the best of our knowledge, learning video
concept detectors with relevant negatives, relying fully on social tagged data, has not been
investigated in the literature.

Instead of focusing on selecting relevant positive or negative examples [17, 19, 36, 42],
some cope with the noisy social data by machine learning strategies that address the relevance
during the detector training phase [5, 6, 19]. For example, the authors of [19] use multiple
instance learning, where tagged videos are treated as bags, and the frames as instances. Hu
et al. [5] learn an image ranking model from tagged image pairs with preference relations.
Grauman et al. [6] learn relative tags on images with RankSVM [10], where ordered pairs are
created from a ranked list of examples for the learning procedure. However, whether selecting
relevant positive and negative examples a priori is better then relying on a learning strategy
that optimizes the selection during training is unknown.

In this paper, we aim to identify best practices for learning video concept detectors from
social media examples. We structure our paper as an experimental study with a complete
system that learns visual concepts from socially labeled media examples, see Fig. 1. In an
initial version of this work [13], we investigated positive example selection strategies only. In
this paper we present a more comprehensive study by evaluating three negative example
selection strategies and three learning strategies on a larger set of Internet videos. These new
elements allow us to identify a set of best practices, and consequently lead to the winning
system in the TRECVID 2013 benchmark for concept detection without annotations. Before
describing our experimental study we first review related work.

2 Related work

We structure our literature review in terms of the choices one has to make for learning video
concept detectors from social media examples. In Section 1 we briefly consider the data
sources used. In Section 2 we review strategies for the selection of positive training examples.

Download Videos

— Positive Example
—— Selection
Harvest tagged — —_— —
media per concept Download Images
Negative Example
ﬁ Selection
-

Fig. 1 In this paper we perform an experimental study with a video search engine to arrive at best practices for
learning video concept detectors from social media examples

Extract Features

| — Learning strategy
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We consider the strategies for selecting negative training examples in Section 3. Learning
strategies are summarized in Section 4.

2.1 Data sources

When harvesting visual training examples from social media, two sources have been used in
the literature, namely tagged videos [19, 34-36, 44] and tagged images [3, 11, 17, 29, 45].
Ulges et al. [35] learn video concept detectors using YouTube videos by directly treating social
tags as relevant labels for all video frames. Wang et al. [41] follow a similar approach, but
require a set of manually labeled videos to bootstrap the learning process. Multiple instance
learning was investigated in [19] treating socially tagged videos as bags, and frames as
instances. Setz and Snoek [29] investigate whether Flickr images can be exploited as a direct
training source for learning video concepts. Li et al. [15, 17] harvest relevant tagged images as
positive and as negative training examples. Notice that none of the above works considers
which source is a better choice. Therefore we raise the first research question:

Research Question 1:
What visual tagging source is most suited for selecting
training examples for learning video concept detectors?

This study covers two representative approaches as baselines i.e., Ulges et al. [35] and Setz
and Snoek [29], naming them as the ALL-FRAME and the ALL-IMAGE respectively.

2.2 Positive examples

For video it is easy to observe that even when tags are relevant at the video level, it does not
imply that the tags are relevant for all shots and frames as well. Ulges et al. [36] model the
relevance of video (key)frames with density estimation in the feature space. Since the density
estimation is tag independent, for a video labeled with multiple tags, the method [36] cannot
tell which tag is relevant w.r.t. which frame. Also, the prior information is unknown, so
multiple fractions of the top ranked frames are used and the best fraction is selected on the
expense of a manually labeled validation set. Since manual annotation is required for validat-
ing the prior values, this approach is unscalable for many concepts. Zhao et al. [44] suggest
new tags on a video level by propagating tags from similar videos, ignoring the fact that not all
frames of the video are relevant to the tag [19, 32, 36]. In order to select the relevant frames,
we need to estimate tag relevance on a frame level. Given that a video is a composition of
continuous frames, some have used the temporal dimension either as a feature to describe the
video [26, 31], or to refine the end results of the positive examples with the scores of the
temporal neighboring frames [19]. Since temporal features such as motion [40] and audio [8]
are not applicable on images, we do not consider temporal information to ensure a fair
comparison between the two sources at the image/frame level.

Positive example selection of tagged images has been addressed by many. For instance, the
semantic field method [45] determines tag relevance in terms of tag-wise similarity. However
if applied on videos, this approach may identify relevant tags for a video, but not for individual
frames, since the semantic field works only on a video level. The authors of [3] detect spam,
polysemous and synonym tags to filter out noisy tagged images. Their method relies on the
assumption that users provide multiple tags per image. However the statistics presented in [30]
show that in a large sampled Flickr collection 2/3 of the images have one to three tags at most.
Thus relying on methods with tag co-occurrence may result in poor conclusions. Li et al. [15]
learn the relevance of tags accompanying an image using a neighbor voting algorithm, by
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finding neighbors in the visual feature space. They exploit the observation that similar tags
issued for similar images are reliable, by accumulating tag votes over visually similar images.
Including a diverse set of visual features in the neighbor voting algorithm further improves the
effectiveness of tag relevance [16]. An alternative to tag relevance is proposed by Liu et al.
[20]. Their method is also founded on neighbor voting, but the neighbors are weighted with a
Gaussian function. Notice that [20] restricts the neighbors to be images labeled with the tag,
while [15] exploits the entire collection.

Since there are many possible choices one can make for selecting positive examples from
tagged sources when learning video concept detectors, we raise the second question:

Research Question 2:
What strategy should be used for selecting positive examples
from tagged sources when learning video concept detectors?

In this paper we choose the neighbor voting algorithm [15] as the tag relevance measure
because of its reported leading performance [37]. We evaluate three strategies for positive
example selection, two based on tag relevance and one with random sampling.

2.3 Negative examples

While the problem of selecting positive examples from social media has been well investigat-
ed, the importance of negative examples has mostly been overlooked in the literature. Most
concept detectors rely on simple random selection of images [11, 21, 29, 45] or videos [19, 35,
36] not tagged with the concept name.

The authors of [42] propose a pseudo negative selection of negative examples for video
retrieval. The pseudo negative performs an iterative learning procedure by selecting reliable
negatives from the worst matching examples identified by the classifier. Although sampling at
the lower ranks probably yields reliable negatives, the classifier already ranked them correctly
at the bottom, thus adding them to the training process can only yield minor improvements.
Therefore, using other ranking measures for the examples, like tag relevance, and then
selecting the bottom ranked examples is interesting to investigate.

Lietal. [17] propose a negative bootstrap approach, where relevant negatives are harvested
from a large amount of social-tagged images. Since classifiers tend to misclassify negative
examples which are visually similar to positive examples, including these relevant negatives
boosts the performance. To that end, the negative bootstrap approach samples relevant
negatives in an iterative manner. The misclassified negative examples are considered as
relevant and thus leveraged in the consequent learning iteration. Using relevant negative sets
result in visual classifiers with higher accuracy. While negative bootstrap is intended and
shown to be effective for building image classifiers, its effectiveness for video concept
detection is unknown. Moreover, the algorithm uses expert-labeled positive examples. To
the best of our knowledge, a joint adventure of selecting relevant positive and relevant negative
examples for video concept detection is non-existing. Therefore we raise the third research
question:

Research Question 3:
What strategy should be used for selecting negative examples
from tagged sources when learning video concept detectors?

In this paper we evaluate three strategies for negative example selection, the negative
bootstrap, the pseudo negative and random sampling from both tagged image and tagged
videos.
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2.4 Learning strategies

Since social tags can be ambiguous and subjective, tagged images and videos should be treated
carefully when used as training data for learning video concept detectors. Many have focused
on selecting relevant positive and negative examples before learning. Li et al. [19] bypass the
selection problem by using Multiple Instance Learning (MIL) [28] to estimate the relevance of
a video tag at the shot level. In a MIL setting, instances are organized into bags and it is the
bags, instead of individual instances that are labeled for training. In [19] the tagged videos are
considered as labeled bags, and the frames are the instances. If a video is labeled with a
concept, all its frames are considered as positive, and if not, all its frames are considered as
negative. However, the base MIL model [28] will hurt if videos are miss-labelled, and it is
known that the social tags are imperfect and ambiguous. To overcome this obstacle, the
authors of [19] calculate a tag correctness score and use it as a weight in the optimization
function of the MI logistic regression. The tag correctness score is calculated by averaging the
cosine similarity between the video tags and text snippets retrieved from a search engine with
the target tag as a query. For a test frame, its predicted score is further smoothed using scores of
its temporal neighbors. It is worth noting that for content based image retrieval, standard
supervised learning is superior to MIL [25].

When learning a concept detector with multiple instance learning or Support Vector
Machines [39], every positive and negative example used for training contributes equally in
the optimization process. Dealing with noisy socially tagged data, it is potentially more robust
to rely on a relative degree of relevance for each example. The initial idea of using relevant
information of examples while learning by RankSVM, was originally proposed by Joachims
[10] for web page ranking. Later the idea has been used together with multiple instance
learning for finding regions of interest in the image [5]. The authors of [6, 12] use RankSVM
to add relative information to tags, like more then or less then. Click data of image search
engine is used with RankSVM to re-rank images [7].

Although different learning strategies have been investigated in many other tasks, we have
not seen a comparative evaluation on what strategy is most suited for learning video concept
detectors from social media examples. Therefore the forth question arises:

Research Question 4:
What learning strategy should be used for learning
video concept detectors from socially tagged data?

This study evaluates three learning strategies. We name the multiple instance learning
approach of [19] as Packed examples learning, since frames are packed into bags. As Paired
examples learning we refer to models learned from example pairs with preference relations [6].
We generate the ordered pairs based on the tag relevance scores of the examples. Moreover, we
investigate whether bypassing the selection problem of relevant examples, as done in Packed
examples and Paired examples leaming is a better strategy than Refined examples learning,
where relevant training examples are selected a priory and then used to train a one-versus-rest
Support Vector Machines [39].

To answer the four research questions and obtain best practices, we structure our paper as
an experimental study with a complete video search engine that learns concept detectors from
social media examples. We identify four key components of such a system, 1) harvesting
social media sources, 2) selection of positive training examples, 3) selection of negative
training examples and 4) learning strategies to obtain concept detectors. The key components
of our video search engine are highlighted in Fig. 1 and detailed next. Conceptual diagrams of
the individual components are given in Figs. 2, 3 and 4, in sequence.
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3 Experimental video search engine
3.1 Harvesting social media sources

We harvest two type of media sources, tagged videos and tagged images. The tagged videos
are collected from YouTube, which is one of the most popular service for video sharing. The
tagged images are selected from Flickr as one of the most popular sharing service for images.
In this study, we consider 20 video concepts, covering objects like Car, Plant and scenes like
Outdoor, Landscape. The set of 20 concepts was chosen to consist of single-word concepts
only, for more precise tag relevance estimation, and restricted to those concepts with the most
frequent number of positive examples in the data sets considered [15, 32].

Tagged videos In order to construct a diverse set, we collect videos retrieved by four distinct
ranking criteria provided by YouTube, i.e., view count, relevance, date published and user
rating. Consequently, we obtain for each of the 20 concepts four lists of retrieved videos and
their metadata, containing videos id, tags, author, video duration etc. The date published
ensures that new instances of concepts like Car and Building models are covered. We include
in our dataset the top 50 retrieved videos from each of the four ordering criteria. Hence, for
each concept we download the most viewed, most relevant, most recently uploaded and best
rated videos. We shot segment each video and define the middle frame of each shot as its
keyframe. Since we want to show the influence of frame selection, we maintain only those
videos that have at least two shots. This process resulted in 200 h of web video and 130 K
keyframes.

Tagged images We adopt the Flickr image collection from [15]. The images are of medium
size with width or height fixed to 500 pixels. A subset is generated such that the number of
images for each concept is maintained the same as the number of frames from the Tagged
Videos dataset. In total, the Tagged Images collection has 130 K images.

Table 1 shows the number of videos and images labeled with a given concept in the two
sources.

3.2 Positive example selection strategies

We investigate three selection strategies, see Fig. 2. Given a specific concept w, we select
positive training examples from the two sources described in Section 1. Let x be such an
example in consideration. Depending on the source of training data, x is either an image
labeled with w or a frame extracted from a video labeled with w. Let L, be the set of n
examples labeled with w.

Positive Example Selection

Strategy 1: Random Strategy 2: Relevant ad-hoc Strategy 3: Relevant cut-off
Select
B o, s=30.650 B o, s30650
= Calculate E= =1, 5=21.042 Ad-hoc Calculate E re1, $=21.082 ﬂ
— — selection of Tag — —;, Geloulate; =
m Tag B =2, s-13.022 6 g B r2, s-13.022 cut-off

| & Relevance - top ranked Relevance D =

) rn1, s=0.078 B o, 0078 B
N | ywm ﬂ

ﬂ Rank r, tag relevance score s Rank r, tag relevance score s

Fig. 2 Three strategies for positive training example selection for learning video concept detectors from social
media: random, relevant ad-hoc and relevant cut-off
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1. Random selection. One straightforward selection strategy is to rely on the social tags and
to randomly select & labeled examples with the concept w. The set of randomly selected
positive examples P, is

Pw:{VxeC‘C:{xl,xz,...,xk}ch}. (1)

2. Relevant ad-hoc selection. As aforementioned, simply treating x as a positive example is
problematic. Therefore another strategy is to calculate tag relevance per example, and then
select the top ranked examples. For every example x labeled with concept w, we use the
multi-feature variant of the neighbor voting algorithm [16] to compute tag relevance
scores. The tag relevance scores allow us to rank the examples such that the most relevant
examples are deemed to be placed at the top. Therefore we can select the k top ranked
examples as positives:

P, = {VxeLw

rank(x)€0, 1, ..., k-1 } (2)

3. Relevant cut-off selection. Strategy 2. does not answer how many of the k£ examples
should be selected from the ranked list. Validating the selection size comes with the
expense of manual annotation for the validation set, making this approach unscalable for
many concepts. Instead of setting an ad hoc threshold & [18, 45], or validating it with
multiple runs [36] with the expense of manual annotation, in this work we consider a
simple strategy to determine a cut-off automatically. To this end, we calculate which
example x should be selected based on a Bayesian decision rule. For each example, we use
s to denote its tag relevance score and  to denote the corresponding rank, where r=0,...,n
—1. We observe that the first ranked image after tag relevance is very often a positive
response. Hence, we assume this first-hit example to be a correct reference point for
estimating the probability of the other examples being positive. In that regard, we
introduce a binary random variable y, where y=1 means x is positive, and 0 otherwise.
The problem of positive example selection can then be simplified to estimating the
conditional probability p(y=1Jx). With the Bayesian decision theorem, we define the

selection rule simply as:
if —+

x is selected, i > 1,
rly= O‘X) G)

unselected , otherwise .

For computing p(y=1|x), we have access to two observations with respect to x, i.e.,
the relevance score s, and the corresponding rank r. Using a single observation is
limited, since the scores are discriminative but less robust, while the quantized ranks
tend to be more robust but less discriminative. Hence, we consider their combination,
which should result in a better estimation of p(y=1|x). Using probability algebra, we

have p(y[x)=p(vls,r)=p(s,y)p()/p(s,7).
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For p(s,ry), we make a practical simplification by estimating it through p(s|y)-p(rly). We
also expand p(s|y) and p(r]y) using Bayes’ theorem. Accordingly, we rewrite

Np(ﬂy)p(ﬂy)pOO p(y%)p(yk)pﬂﬂp(ﬂ
e T X

For the unknown prior p(y), we assume an uniform prior, and the decision function

o=t o1l 1) 9
o=ok) o=0blr=01

With the intuition that examples with larger tag relevance scores and higher ranks are more
likely to be positive, we approximate p(y=1|s) as

p@=1Mz3?, (6)

Smax

where s,,,, 1s the score of the top ranked example, and we compute p(y=1|r) as

r)e1- (7)

n

p@zl

Accordingly, for concept w we create a positive examples set P, as

(o1}
o)

In contrast to [18, 36, 45], the selection rule defined in Eq. (8) sets the cut-off automatically,
without the need to tune £.
We visualize the three positive example selection strategies in Fig. 2.

P, = { VxeL, > 1. (8)

3.3 Negative example selection strategies

We investigate three strategies for selecting negative examples for a specific concept w, see
Fig. 3. We notate the set of examples x not tagged with the concept w as L,

Negative Example Selection

Strategy 1: Random Strategy 2: Pseudo Negative Strategy 3: Negative Bootstrap

0, s=30.654 =) Jrsin A modal

Rank - Select — B a0t on random -
bytag @Ml =3 50062 __ bottom ] m - i examples -
relevance B r-n.2, s=0.069 ranked = VAT

B —
score | N o1, 0078 examples P @ Select top false positives [

as relevant negatives |

Fig. 3 Three strategies for negative training example selection for learning video concept detectors from social
media: random, negative bootstrap and pseudo negative
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1. Random selection. The negative example selection strategy most commonly used in
the literature is random sampling. We define the set of randomly selected ¢ negative
examples as

N, = {VxeC‘C = {xl,xz, ...,xq}cﬁ}. 9)

2. Pseudo negative. In order to acquire negatives which are more informative than the
random negatives, we consider examples labeled with the concept name, but having
low tag relevance scores. The basic idea is that images/videos tagged with the concept
have low tag relevance because they differ from the other images tagged with the same
concept, i.e. most of their visual neighbors do not have the same tag associated. However,
the examples with low tag relevance score can still be informative since they are tagged
with the concept name. Therefore it is interesting to investigate whether examples
with low tag relevance if used as relevant negative examples will improve the
performance of the concept detectors. The pseudo negative approach is inspired by
to [42], in terms of selecting the bottom ranked examples, but with a difference in the
ranking procedure. In [42] the bottom ranked images from a classification score are
selected as negatives, in an iterative procedure. We select the negatives only in one
step, using the tag relevance score to rank the examples tagged with the concept name,
thus avoiding the expensive iterative learning. Using the decision rule calculated as in
Eq. 5, we create the pseudo negative set as

M< 1y (10)
o)

3. Negative bootstrap. As mentioned in Section 3, using relevant negatives can improve
the retrieval performance. Therefore as another selection strategy we evaluate the
negative bootstrap [17] into our video search engine, for both tagged images and
tagged videos. We keep the positive examples P fixed. The negatives are selected in an
iterative learning procedure. In iteration ¢ we denote the learned model as M,, and a
randomly sampled collection from L, with v examples as C,. In each step ¢, the set of
negative examples is

N, = < Vxel,

Ny = {Vxetopmisclassiﬁed(ct,M,_hq))C, = {xl,xz, ...,xw}cz}. (11)

Where topmisclassified(C,,M,-1,q) are the top g elements from a random subset C, with
~ elements of L, classified by the previous learned model M, | as positives. Moreover, in
each step of the negative bootstrap process, relevant negatives are selected.

We visualize the three negative example selection strategies in Fig. 3.
3.4 Learning strategies
In order to answer the research question what learning strategy should be used for learning

video concept detectors from socially tagged data? We consider three learning strategies, see
Fig. 4. We investigate whether selection of relevant positive and negative examples before
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Learning Strategies

Packed Examples Learning Paired Examples Learning Refined Examples Learning
Multiple Instance Learning: video bags + frame instances RankSVM: paired examples based on tag relevance Relevant Positive and Negative examples + SVM

Learn with ordered

Ba r=0, s=30.654 N
9 ﬁ pairs of examples

r=1, s=21.042

r=2, s=13.022 R (ﬂ :E)
ﬂ (B2 ,=) (E '55) Relevant positive Relevant negative
r=n-1, s=0.078 -

examples examples

Instance

Fig. 4 Three leaming strategies for video concept detectors with training data collected from socially tagged
media: packed examples, paired examples and refined examples learning

learning concept detectors is more beneficial than using learning strategies that incorporate the
relevance in the optimization function of the classifier.

1. Packed examples. Multiple instance learning bypasses the selection problem of positive
and negative examples when learning video concept detectors from tagged videos. The
tagged videos are considered as labeled bags, and the frames are the instances. If a video is
labeled with a concept, all its frames are considered as positive, and packed into a positive
bag. If a video is not labeled with a concept, it is considered as a negative bag, and its
frames as negative instances. We employ the implementation of [28] into our video search
engine, with the additional weight for video tag relevance as in [19].

Table 1 Number of positive examples for 20 concepts in both the Tagged Videos and Tagged Images datasets

Concept YouTube videos Video frames Flickr images
Animal 191 7,506 7,506
Beach 185 6,554 6,554
Building 197 5,207 5,207
Car 192 8,508 8,508
Child 174 6,938 6,938
City 169 8,326 8,326
Face 169 7,210 7,210
Hand 179 5,835 5,835
Landscape 181 4,005 4,005
Mountain 181 6,445 6,445
Oceans 150 5,755 5,755
Outdoor 184 6,103 6,103
Plant 151 5,139 5,139
Road 170 8,047 8,047
Sky 154 6,261 6,261
Snow 177 7,467 7,467
Sports 196 6,685 6,685
Streets 141 7,493 7,493
Trees 158 5,805 5,805
Vehicle 184 4,621 4,621
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2. Paired examples. RankSVM 1is a pairwise learning to rank approach that learns the
ranking function from ordered pairs of examples. To train concept detectors for each
concept, we derive a set of ordered visual examples:

R, = {‘v’(xi,xf)e(Lw,Lw)

tagrelevance(x;) > tagrelevance(x;) } (12)

Each pair (x;x;) denotes that x; is more relevant than x; since it has a higher tag
relevance score. We use the implementation of [10] to learn video concept detectors both
from tagged images and tagged videos.

3. Refined examples. We select relevant positive and relevant negative examples to learn a
video concept detector. As classifier we employ a one-vs-all Support Vector Machines
[39] with the fast histogram intersection kernel [23] for its high efficiency. The SVM
models are optimized by 3-fold cross validation.

We visualize the three learning strategies in Fig. 4.

4 Experiments

In order to arrive at best practices for the four key components described in Section 3, we
conduct the following four experiments.

4.1 Experiment 1: what source?

In this experiment we address the research question what visual tagging source is most suited
for selecting positive training examples to learn video concepts?. We use the Tagged Videos
and the Tagged Images datasets described in Section 1 as instantiations of two distinct visual
tagging sources. We learn concept detectors using the ALL-FRAME [21] and the ALL-
IMAGE [14] scenarios separately, and compare their performance.

4.2 Experiment 2: what positive examples?

Besides the ALL-FRAME and the ALL-IMAGE baselines, we evaluate the three positive
example selection strategies described in Section 2 to answer the question what strategy should
be used for selecting positive examples from tagged sources when learning video concept
detectors?. We employ the strategies for both the Tagged Videos and the Taugged Images datasets.

1.  Random. We randomly sample positive frames from the socially tagged sources for each
concept. The set of positive examples is formalized in Eq. (1). We vary the number & of
sampled positive frames to investigate their influence.

2. Relevant ad-hoc. We rank the candidate positive examples by their tag relevance scores in
descending order. For each concept, an ad-hoc fractions of the top ranked examples are
selected as positive training examples. The set of positive frames is formalized in Eq. (2). We
vary the fraction £=0.1, 0.2,...,0.9 to investigate the importance of making a proper cut-off.

3. Relevant cut-off. We rely on the same ranking of the examples as in strategy 2, but here
we automate the selection with the simple Bayes approach given in Section 2. The set of
positive frames is defined in Eq. (8). Due to the large variance of the tag relevance scores
for tagged images, we smooth the scores using the common logarithm.
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Since we evaluate the positive selection strategies in this experiment, we choose the most
simple and commonly used strategy for negatives, and keep it fixed. The same set of random
sampled negatives, described in Section 3, were used for all strategies and the AIl-FRAME and
ALL-IMAGE baselines, sampled form the Taugged Images and Tagged Videos sources respec-
tively. Following the common procedure in the literature [17, 42] we set the size of the
negative set to be the same as the number of positive examples. We refer to Table 1 for the
number of positive examples per concept.

4.3 Experiment 3: what negative examples?

To answer what strategy is most suited for selecting negative examples from social media? we
investigate the following three strategies for negative examples selection, detailed in Section 3.
We employ the strategies on both the Tagged Videos and the Taugged Images datasets.

1.  Random. We randomly sample negative frames from the Tagged Videos for each concept.
We vary the number of sampled negative frames to investigate their influence. The set of
negative frames is formalized in Eq. (9).

2. Pseudo Negative. We calculate a tag relevance score for each keyframe before ranking. A
fraction of the bottom ranked frames per concept are selected as the negative training
examples. The set of negative frames is formalized in Eq. (10).

3. Negative Bootstrap. We employ an iterative procedure for selecting relevant negatives
[17]. The set of negative frames is formalized in Eq. (11).

The same set of positives was used for all negative strategies, sampled from the corre-
sponding tagged sources. The automatic cut-off strategy described in Section 2 was used.
Thus, the relevant positive examples are selected once in a probabilistic manner, instead of
setting an add-hoc threshold.

4.4 Experiment 4: what learning strategy?

We compare the performance of three learning strategies described in Section 4 to answer
the question what learning strategy should be used for learning video concept detectors
from socially tagged data?. We investigate whether Refined examples learning of select-
ed relevant positive and negative training examples is better than methods that avoid
prior selection of relevant examples. In Packed examples learning videos tagged with the
concept name are considered as positive bags, and all its frames as positive instances. In
Paired examples learning, like RankSVM, ordered pairs of examples are generated prior
to learning. In both these methods the selection of relevant training data is ignored. In
this experiment we compare the performance of Paired examples and Packed examples
with Refined examples learning.

4.5 Test set

As test data we adopt the challenging internet video collection from the TRECVID 2012
benchmark [32]. We use the development dataset provided for the Semantic Indexing task,
which consists of 600 h of Internet Archive videos, having 400,682 shots. Each shot is
represented with a single keyframe. The dataset comes with ground truth annotations on a
keyframe level, including the 20 concepts identified in our experiments. We evaluate and
report all experiments on this test set.
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4.6 Implementation details

Concept detection features. We employ a standard bag of visual codes pipeline to train video
concept detectors [38]. We compute SIFT descriptors [22] at dense sampled points, at every
6 pixels for two scales. As visual features we employ a spatial pyramid of 1x1 and 1x3. The
codebook size is 4,096, constructed with k-means clustering.

Tag relevance features. We follow the implementation from [16] and use three visual features:
Color64, CSLBP and GIST. Color64 is a 64-d global feature, combining the 44-d color
correlogram, the 14-d texture moments, and the 6-d RGB color moments [14]. CSLBP is a
80-d center-symmetric local binary pattern histogram [4], capturing local texture distributions.
GIST is a 960-d feature describing dominant spatial structures of a scene by a set of perceptual
measures such as naturalness, openness, and roughness [24].

Evaluation criteria. We adopt average precision to report individual concept detection accu-

racy, a common approach in the video retrieval literature [32]. We report mean average
precision to evaluate the overall detection performance for all concepts.

Table 2 Experiment 1: what source?

Concept Tagged videos Tagged images
Animal 0.078 0.122
Beach 0.158 0.359
Building 0.334 0.500
Car 0.157 0.230
Child 0.069 0.118
City 0.064 0.131
Face 0.496 0.606
Hand 0.114 0.175
Landscape 0.207 0.567
Mountain 0.048 0.516
Oceans 0.129 0.481
Outdoor 0.816 0.722
Plant 0.188 0.270
Road 0.186 0.427
Sky 0.258 0.621
Snow 0.063 0.273
Sports 0.129 0.149
Streets 0.099 0.183
Trees 0.470 0.693
Vehicle 0.221 0.351
mAP 0214 0.375

As first research question we investigate what visual tagging source, tagged images or tagged videos, is most
suited for selecting training examples for leaming video concept detectors. It leads to our first best practice: To
learn video concept detectors from socially tagged media, tagged images should be used

Data in bold indicates the top performers for individual concepts
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5 Results
5.1 Experiment 1: what source?

We summarize the results of Experiment 1 in Table 2. We observe that better concept detectors are
obtained from tagged images than from the tagged videos. When simply using all available
tagged images for training, we obtain an mAP of 0.375, while the video alternative obtains an
mAP of 0.214. In terms of an absolute difference tagged videos have a significant 16.1 % lower
mAP over tagged images. We explain the difference by the observation that the user tagging
accuracy of images is more accurate when compared to videos. Moreover, when a tag is assigned
to a video, often only a small fraction of the video content is relevant with respect to the tag.
Consequently, given the same number of positive training examples, the positive set selected with
our relevant selection from the image source contains more genuine positives than the positive set
from the video source, as exemplified in Fig. 2. As our first best practice, we conclude that tagged
images are a better source than tagged videos for learning video concept detectors.

5.2 Experiment 2: what positive examples?

Figure 5 shows the performance curve of concept detectors derived after positive example selection
by the three strategies, for tagged videos and tagged images. In line with the results of Experiment
1, using images as training source is better than video for all strategies. Relevance selection is a
better strategy than randomly selecting frames or images for all cut-offs in both sources. For the
best possible relevant image selection (fraction=0.6), we gain a 5.4 % relative improvement over
the same amount of randomly selected images. For the video alternative the difference is even more
convincing. In that case we obtain the best possible result for a fraction of 0.1, with a 58.9 %
relative improvement over random selection. There is a clear decrease in performance as we select
larger fractions of frames, see 2. Relevant ad-hoc Frames in Fig. 5. Since larger fractions contain
more noisy data, i.e. frames that also have low tag relevance score, the classifier learns less accurate
models. In the case of tagged images there is less noise compared to tagged videos, since the tag is

0.4
> P 3
>
5 > . ¢ ¢ -
@ 035F ¢ ¢ O ALL-FRAME Baseline
8 ¢ ¢ 1. Random Frames
% > > 2. Relevant ad—hoc Frames
& 03— ==~ P - > 3. Relevant cut-off Frames
o > = ALL-IMAGE Baseline
2 > > ¢ 1. Random Images
=
© 025 > » 2. Relevant ad-hoc Images
S > 3. Relevant cut—off Images
o [ o o ¢ ¢ o O 0
02r o
0 0.2 0.4 0.6 0.8 1

Fraction selected
Fig. 5 Experiment 2: What positive examples? Training concept detectors after tag relevance selection, with

either video frames or images is always beneficial. The simple cut-off selection is a good approximation of the
best possible selected fraction for both video frames and images
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Table 3 Experiment 2: what positive examples?

Concept  Strategies using tagged videos Strategies using tagged images

1. Random 2. Add-hoc 2. Add- 3. Cut-off 1. Random 2. Add-hoc 2. Add-hoc 3. Cut-off

least hoc best least best
Animal 0.060 0.083 0.106 0.102 0.116 0.122 0.140 0.140
Beach 0.208 0.146 0.256 0.245 0.324 0.306 0.340 0.324
Building  0.254 0.347 0.406 0.401 0.486 0.495 0.544 0.541
Car 0.128 0.168 0.249 0.237 0.234 0.322 0.293 0.308
Child 0.062 0.075 0.107 0.093 0.117 0.140 0.130 0.131
City 0.046 0.071 0.153 0.106 0.147 0.277 0.195 0.196
Face 0.400 0.503 0.562 0.536 0.594 0.594 0.619 0.602
Hand 0.125 0.112 0.116 0.117 0.177 0.152 0.163 0.159
Landscape 0.208 0.222 0.410 0.341 0.561 0.554 0.580 0.574
Mountain ~ 0.043 0.057 0.255 0.214 0.490 0.468 0.515 0.506
Oceans 0.100 0.220 0.410 0.398 0.479 0.474 0.516 0.483
Outdoor  0.723 0.821 0.825 0.831 0.719 0.769 0.753 0.754
Plant 0.171 0.184 0.286 0.283 0.254 0.230 0.259 0.255
Road 0.242 0.235 0.327 0.358 0.408 0.372 0.418 0.416
Sky 0.258 0.277 0.371 0.391 0.623 0412 0.601 0.629
Snow 0.050 0.077 0.138 0.127 0.262 0.198 0.259 0.242
Sports 0.122 0.137 0.204 0.184 0.145 0.258 0.215 0.225
Streets 0.111 0.102 0.169 0.124 0.192 0.191 0.184 0.184
Trees 0.458 0.490 0.580 0.578 0.688 0.609 0.660 0.648
Vehicle 0.183 0.227 0.339 0.329 0.348 0.381 0.381 0.386
mAP 0.197 0.228 0.313 0.300 0.368 0.366 0.388 0.385

With the second research question we investigate what strategy should be used for selecting positive examples
from social media. We show results per concepts for three strategies, 1. Random, 2. Relevant ad-hoc selection
with the best and least performance, and 3 Relevant cut-off selection. It leads to our second best practice: for
learning video concept detectors, as positive examples use relevant cut-off selection of tagged images

Data in bold indicates the top performers for individual concepts

directly appointed to the visual content of the image. Consequently, for images larger fractions
show better performance, see 2. Relevant ad-hoc Images in Fig. 5. In this case, selection of smaller
fractions also ignores relevant images, which results in less accurate classifiers. Apart from the gain
in performance, it is also important to note that by selecting relevant subsets from the collection we
reduce the number of training examples, which speeds up concept detector training.

The simple cut-off approach for automatic selection of positive examples, approximates the
best selection quite closely (see the solid and dashed lines in Fig. 5). In case of image selection
it outperforms the best possible ad-hoc relevant image selection for 9 concepts even, and the
worst performing ad-hoc selection in 14 concepts (see Table 3). We conclude that selecting
relevant positive images and video frames is needed when learning concepts from the web.
The selection cut off can be estimated automatically. We employed a simple Bayes approach,
although more extensive sampling methods can be incorporated in the future. For now, as
second best practice we suggest to rely on the relevant cut-off selection strategy described in
Section 2 for selecting relevant examples from socially tagged media.

Figure 6 shows some relevant positive examples automatically selected from social media.
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Fig. 6 Relevant positive training examples selected from social media. Leff columns show the selected images
and frames, while the right columns show images and videos labeled with a given concept but discarded by the
relevant positive selection strategy
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Fig. 7 Experiment 3: What Negative Examples? Selecting relevant negative examples from tagged images with
the negative bootstrap improves over random sampling. The result converges after only five iterations. For tagged
videos random sampling is the best choice because it suffers less from selecting false negatives than the pseudo
negative and the negative bootstrap
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5.3 Experiment 3: what negative examples?

In Fig. 7 we show the performance for the three negative example selection strategies for both
tagged sources, images and videos. When using tagged images, our results confirm the finding
of [17]. Compared to random sampling the negative bootstrap wins in 14 out of 20 concepts,
with a 6 % relative improvement in mAP over random sampling. The pseudo negative strategy
shows lower performance compared to random sampling, with 12.6 % relative decrease. By
examining the selected negatives we find that the pseudo negative tends to select some positive
examples as negatives, as shown in Fig. 8. Obviously, such false negative examples hurt the
learning process.

In the case of tagged videos the situation is different. Random sampling is better then both
negative bootstrap and pseudo negative. Since videos can have very diverse visual content,
even if some video is not tagged with a concept name, it may contain some frames relevant to
the concept. The negative bootstrap and the pseudo negative tend to select positive frames as
negatives, see Fig. 8, which in terms of mAP result in less accurate performance over random
sampling. However, the negative bootstrap wins over random sampling for 4 concepts, and the
pseudo negative for 9 out of 20 concepts, as shown in Table 4. Therefore, selecting the most
appropriate strategy for the concepts separately is interesting to be investigated for tagged
videos.

Since selecting relevant negative examples from tagged images shows much better perfor-
mance, our third best practice is to use negative bootstrap of tagged images to select negative
training examples for learning video concept detectors.

Positive Images Pseudo Negative Images Negative Bootstrap Images

Pseudo Negative Frames Negative Bootstrap Frames

'y m&l faf o
. Eo=mem

bl Q|
W e EETEEES S

Fig. 8 Training examples selected from tagged images and tagged videos. Left column shows selected positive
examples, the middle column shows selected examples with the pseudo negative, and the right column shows
negative examples selected with the negative bootstrap. For the concept beach with the negative bootstrap we see
selected images of snow or a landscape, i.e. images which are most likely to be mistaken by the concept detector.
Relevant frames are also selected from videos, but also some false negatives. The pseudo negative method tends
to select false negative examples of beach for both images and videos. For the sky concept, since many outdoor
images or videos contain sky, but are not explicitly tagged with sky, both pseudo negative and negative bootstrap
have a tendency to select false negatives
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5.4 Experiment 4: what learning strategy?

In Table 5 we compare the three learning strategies described in Section 4 together with the
ALL-FRAME [35] and ALL-IMAGE [29] baselines. When we follow the ALL-FRAME
baseline [35], which simply uses all frames of tagged videos, rather than selecting relevant
positive or negative frames, we obtain better results than the packed frames learning [19], with
17.6 % relative improvement in terms of mAP. The refined examples strategy for tagged
videos also shows lower performance than the baseline, mostly because of the selection of
false negative examples, as explained in more detail in Section 3. The paired examples
learning has best performance for tagged videos, showing that using relative information of
frames by creating ordered pairs is better than preselecting relevant positive and negative
examples. When relying on images as training source for concept detectors we observe
different behavior. Learning with refined examples reaches an mAP of 0.408, clearly
improving over all other learning strategies, and with best result for 13 out of 20 concepts,
see Table 5. We conclude with the best practice that training concept detectors from a

Table 4 Experiment 3: what negative examples?

Concept  Strategies using tagged videos Strategies using tagged images
1. 2. Pseudo 3. Negative L. 2. Pseudo 3. Negative
Random negative bootstrap Random negative bootstrap

Animal 0.101 0.095 0.070 0.140 0.099 0.157
Beach 0.225 0.226 0.103 0.324 0.260 0.361
Building  0.383 0.308 0.294 0.541 0.447 0.575
Car 0.221 0.191 0.294 0.308 0.291 0.384
Child 0.096 0.111 0.068 0.131 0.121 0.126
City 0.100 0.131 0.128 0.196 0.216 0.238
Face 0.548 0.528 0.422 0.602 0.531 0.672
Hand 0.120 0.110 0.133 0.159 0.106 0.141
Landscape 0.314 0.331 0.122 0.574 0.537 0.611
Mountain  0.196 0.220 0.037 0.506 0.388 0.539
Oceans 0.358 0.390 0.037 0.483 0.448 0.541
Outdoor  0.815 0.801 0.562 0.754 0.817 0.769
Plant 0.274 0.309 0.161 0.255 0.238 0.265
Road 0.336 0.302 0.190 0.416 0.301 0.474
Sky 0.351 0.368 0.176 0.629 0.587 0.619
Snow 0.109 0.105 0.087 0.242 0.139 0.229
Sports 0.170 0.146 0.153 0.225 0.232 0.171
Streets 0.113 0.125 0.129 0.184 0.186 0.214
Trees 0.576 0.570 0.436 0.648 0.582 0.646
Vehicle 0.339 0.282 0.202 0.386 0.380 0.431
mAP 0.287 0.282 0.190 0.385 0.345 0.408

As third research question we investigate what strategy should be used for selecting negative examples from
tagged sources when leaming video concept detectors. It leads to our third best practice: bootstrapping relevant
negatives from tagged images

Data in bold indicates the top performers for individual concepts
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tagged image source using refined examples, i.e. relevant positive and negative images, is
the best learning strategy.

5.5 Benchmark comparison

By taking all best practices into account, we participated in the NIST TRECVID 2013 [32]
benchmark, using our video search engine. We considered the no annotation version of the
task, and summarize results for all evaluated concepts in Fig. 9. Our detectors obtain the best
performance for 28 out of 38 concepts.

6 Conclusion

This paper strives to answer how to learn effective video concept detectors from social media
examples through a systematic empirical study. Supported by experiments on a present day

Table 5 Experiment 4: what learning strategies?

Concept  Strategies using tagged videos Strategies using tagged images

ALL- Packed Paired Refined ALL- Paired Refined
FRAME  examples examples examples IMAGE  examples examples

Animal 0.087 0.061 0.078 0.070 0.122 0.108 0.157
Beach 0.243 0.055 0.158 0.103 0.359 0.326 0.361
Building  0.323 0.154 0.334 0.294 0.500 0.496 0.575
Car 0.165 0.080 0.157 0.294 0.230 0.218 0.384
Child 0.083 0.080 0.069 0.068 0.118 0.111 0.126
City 0.091 0.048 0.064 0.128 0.131 0.160 0.238
Face 0.491 0.313 0.496 0.422 0.606 0.564 0.672
Hand 0.118 0.104 0.114 0.133 0.175 0.152 0.141
Landscape 0.276 0.099 0.207 0.122 0.567 0.520 0.611
Mountain  0.104 0.033 0.048 0.037 0.516 0.478 0.539
Oceans 0.288 0.092 0.129 0.037 0.481 0.463 0.541
Outdoor  0.815 0.743 0.816 0.562 0.722 0.750 0.769
Plant 0.244 0.214 0.188 0.161 0.270 0.249 0.265
Road 0.282 0.215 0.186 0.190 0.427 0.379 0.474
Sky 0.349 0.206 0.258 0.176 0.621 0.626 0.619
Snow 0.102 0.038 0.063 0.087 0.273 0.219 0.229
Sports 0.150 0.109 0.129 0.153 0.149 0.187 0.171
Streets 0.127 0.137 0.099 0.129 0.183 0.180 0.214
Trees 0.544 0.459 0.470 0.436 0.693 0.646 0.646
Vehicle 0.296 0.411 0.221 0.202 0.351 0.311 0.431
mAP 0.214 0.182 0.259 0.190 0.375 0.357 0.408

As forth research question we investigate what leaming strategy is most suited for leaning video concept
detectors from social media examples. We show results for the three learning strategies and baselines for tagged
images and tagged videos. We recommend a forth best practice: To use SVM with refined examples learning
from tagged images, by selecting relevant negative and positive training examples

Data in bold indicates the top performers for individual concepts
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TRECVID 2013 Benchmark Comparison
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Fig. 9 Results per concept from the TRECVID 2013 Semantic Indexing with No Annotations task. The
recommended best practices of this paper within our video search engine achieved best result for 28 out of 38
concepts, compared to the other submitted runs in the same task

testbed, our major findings are: 1) Tagged images are the preferred choice as training source,
when compared to tagged videos. Concept detectors trained on tagged images surpass their
counterparts trained on tagged videos, with an absolute improvement of approximately 16 % in
terms of mAP. While images may not be one’s first option due to source change, we find that the
better annotation quality let them beat videos with ease. 2) For both tagged videos and tagged
images, selecting positive examples from those with the largest tag relevance scores is superior
to getting positives at random. We show that the cut-off of the top ranked relevant examples can
be simply estimated, obtaining a near-optimal result. 3) The selection of negative training
examples is also important. With negative bootstrap of tagged images we gain 6 % relative
improvement over simple random selection. For videos random sampling is the best choice. 4)
We show that preselecting relevant positive and negative training examples beforehand and
training support vector machine is more beneficial then strategies where the relevance of the
tagged training data is considered during learning. Below we summarize our best practices:
Best Practices:

Tagged images are a better source then tagged videos for learning video concept detectors.
Positive examples with relevant cut-off of tagged images show best performance.
Relevant negatives are best selected with negative bootstrap of tagged images.

For learning we recommend SVM with relevant positive and negative examples.

Ealb el

When the best practices of this paper are combined into a single video search engine it
results in state of the art video concept detection without the need of any predefined manual
annotations.
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