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Abstract

This paper tackles the problem of localizing actions
in long untrimmed videos. Different from existing works,
which all use annotated untrimmed videos during training,
we learn only from short trimmed videos. This enables
learning from large-scale datasets originally designed for
action classification. We propose a method to train an
action localization network that segments a video into in-
terpretable fragments, we call ActionBytes. Our method
jointly learns to cluster ActionBytes and trains the local-
ization network using the cluster assignments as pseudo-
labels. By doing so, we train on short trimmed videos that
become untrimmed for ActionBytes. In isolation, or when
merged, the ActionBytes also serve as effective action pro-
posals. Experiments demonstrate that our boundary-guided
training generalizes to unknown action classes and local-
izes actions in long videos of Thumos14, MultiThumos, and
ActivityNet1.2. Furthermore, we show the advantage of Ac-
tionBytes for zero-shot localization as well as traditional
weakly supervised localization, that train on long videos, to
achieve state-of-the-art results.

1. Introduction

The goal of this paper is to determine the start, the end
and the class of each action instance in a long untrimmed
video. State-of-the-art approaches for action localization
slide a trained model over an untrimmed video to produce
classification score sequences over time [5, 18, 40]. They
depend on start, end, and action class labels at training time.
Weakly-supervised approaches [28, 32, 34] have demon-
strated this even works when the long untrimmed training
videos come with action class labels only. Different from
all these works, we will localize action instances in long
untrimmed videos by learning from short trimmed videos
labeled with just their action class.
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Figure 1: From short, trimmed videos we learn to local-
ize actions in long, untrimmed video. During training, our
method jointly learns to generate pseudo-labels from Ac-
tionBytes, and to localize them in the short video. During
testing, our localization model detects the instances of the
query action class in the untrimmed video.

Short trimmed videos are highly popular and easy to
access for action classification. Datasets in this domain
come with a large number of samples and labels [3, 4, 8,
24]. Kinetics-700 [3], for example, has nearly 650k short
trimmed video clips categorized into as many as 700 action
classes. In this work, we leverage datasets commonly used
for action classification, the what, for tackling the task of ac-
tion localization, the when. This opens up opportunities for
1) learning from larger datasets with more action classes,
and 2) localizing unknown classes by transferring knowl-
edge between trimmed and untrimmed video datasets.

However, given just short trimmed videos during training
provides virtually no scope to learn about action boundaries.
To overcome this limitation, we adopt a self-supervised ap-
proach to regularize our network to learn boundary-aware
models. Specifically, we use intermediate layers of a CNN
model to decompose a trimmed video into multiple atomic
actions called ActionBytes. From these we generate pseudo-
labels to train a CNN to localize ActionBytes within videos.
This model can be used to extract a new set of ActionBytes,
so we iterate between updating ActionBytes and training the
localization model using new pseudo-labels. Given a long
test video, we slide our trained model over it to generate a
classification score sequence for the query action, and thus
localize its instances, see Figure 1.

1



We make three contributions in this paper. First, we
define What2When, the task of localizing actions in long
untrimmed videos using short trimmed videos commonly
used for action classification. Second, we introduce Action-
Bytes: interpretable, temporally scale-invariant fragments
of videos capable of spotting parts of an action. Third, we
propose an iterative approach for training boundary-aware
models from short videos. We experimentally show the ef-
fectiveness of our method on Thumos14 [10], MultiThu-
mos [38] and AcitivityNet [1]. Since our approach transfers
action class knowledge from trimmed videos to untrimmed
videos with unseen classes, it is a natural fit for zero-shot
applications. We evaluate our model in a zero-shot scenario
where the label set of the short trimmed training videos and
the long untrimmed test videos are disjoint. Finally, we con-
duct experiments on the task of weakly supervised action
localization. Although our method is not designed for learn-
ing from long videos, we show the benefit of ActionBytes as
action proposals in obtaining favorable performance com-
pared to the state-of-the-art.

2. Related work
The problem of learning from short videos to localize

action in long videos relates to multiple recognition tasks in
videos.

Mid-level representation. Several works have proposed
methods to automatically discover mid-level representa-
tions by segmenting an action into atomic actions [9, 15,
33]. Lan et al. [15] discover mid-level action elements by
clustering spatio-temporal segments. This is done on a per-
class basis. In [6, 9] the authors automatically obtain mean-
ingful action fragments but they require temporal action an-
notations to do so. Alternatively, [39] also uses parts of
actions but exploits their ordered fashion. Unlike all the
above methods, our ActionBytes are class-agnostic, which
makes them suitable to enable knowledge transfer to videos
of unseen classes.

Pseudo-labeling. Recently self-supervised approaches
have been proposed pseudo-labeling data in representation
learning [2], label propagation for semi-supervised learn-
ing [11] and semantic segmentation [16]. This line of work
relies on clustering to create pseudo-labels from unlabelled
data. We also generate pseudo-labels per video during train-
ing, but for a different purpose, we use them to regularize
our localization model to be sensitive to boundaries.

Self-training. Our approach can also be considered as
a self-training procedure applied to the video domain, and
adapted for localization in the What2When task. It differs
from other self-training approaches [17, 29, 42] in many
ways, but mainly because the pseudo-labels are generated
at the sub-video level and are regularized for localization.

Weakly supervised. In recent times, there has been in-
creased interest in developing models that can be trained

with weaker forms of supervision, such as video-level la-
bels. UntrimmedNets [34] and STPN [26] formulated
weakly supervised action localization as a multiple instance
learning problem along with attention to locate the actions
in videos. AutoLoc [32] introduced a boundary predictor
built on an Outer-Inner-Constrastive loss. W-TALC [28] in-
troduced a co-activity similarity loss that looks for similar
temporal regions in a pair of videos containing a common
action class. Nguyen et al. [27] proposes to model both
foreground and background, while [39] exploits temporal
relations among video segments. All these methods depend
on the presence of multiple actions in long videos to learn
to discriminate foreground action from background. Differ-
ently, we propose a method to learn action boundaries from
short videos through our ActionByte mining.

Zero-shot learning. Many approaches for zero-shot and
few shot learning focus on intra-dataset splits between seen
and unseen classes [7, 14, 19, 37]. While others attempt
cross-dataset action recognition [12, 20, 41] and some of
those learn only from the image domain to recognize ac-
tions in videos [12, 20]. To avoid the use of common classes
across datasets, Roitberg et al. [30] present an evaluation
by filtering very similar classes between source and target.
The common practice in zero-shot learning is to transfer ac-
tion class knowledge through a semantic embedding space,
such as attributes, word vectors or visual features. Among
these, word vectors have been preferred as only category
names are required for constructing the semantic embed-
ding space. In this paper, we also employ word embeddings
to map source classes to target classes while precisely fol-
lowing the zero-shot regime.

3. Method
In this section, we explain our proposed method that

learns from short trimmed videos to temporally localize ac-
tions in long untrimmed videos. We first formally define
the problem of What2When action localization. Then, we
explain our method illustrated in Figure 2 and its compo-
nents. We start by introducing ActionBytes, the basic build-
ing block of our method and give an explanation on how to
extract them from videos. Next, we explain our two-step
iterative pipeline that leverages ActionBytes to train local-
ization models on short videos in a self-training fashion.
Finally, we discuss the potential of ActionBytes by itself as
action proposals in the video localization context.

Problem statement. Given a long test video, we aim
to predict a set of action categories present in that video,
together with their start and end time. During training, a
set of n short, single-action videos χshort = {xi}ni=1 is
given where each video x has a single label c, belonging
to label set Cshort = {ci}nc

i=1. During testing, a set of long
untrimmed videos χlong = {x′i}n

′

i=1 is given, where for each
video x′, the goal is to find the boundary of all action in-
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Figure 2: The proposed mining pipeline segments a video into ActionBytes. These are then clustered and assigned pseudo-
labels, which are used as a supervision signal to train the localization model. Action classes labels are from Cshort.

stances and predict their category labels, c′, from the label
set Clong = {c′i}

n′c
i=1. In this paper, unless explicitly other-

wise stated, we train on χshort and evaluate on χlong.

3.1. ActionBytes

It is well-known that high-level features of consecutive
frames, extracted from a CNN, usually vary smoothly over
time [13, 35]. Therefore, any abrupt change in feature space
can represent a high-level change in the pixel space. We
leverage this property to segment videos into interpretable
fragments, we call ActionBytes.

Suppose F = {ftftft}Tt=1 are d-dimensional features ex-
tracted using a deep model for each time instant t, where T
is the temporal sequence length. We learn to map these fea-
tures to a latent space using a latent projection module. The
output of the latent projection module,L ∈ Rl×T , keeps the
affinity to l latent concepts for each time instant (Figure 3).
For a given video, we find ActionByte boundaries B by
looking for time instants where affinities to latent concepts
change abruptly compared to the previous time instant:

B = {t|t :
l∑

i=1

|L[i, t]− L[i, t− 1]| > τ} (1)

where τ is set to the pth percentile, so the number of Action-
Bytes in a video is directly proportional to its length T . In
general, the pth percentile leads to T × 100−p

100 ActionBytes.
The length of each of them varies with the video content,
with average length equal to 100

100−p .
Each boundary in the set B starts an ActionByte, Ai =

(Bi, Bi+1 − 1), resulting in |B| − 1 ActionBytes. Such
boundaries are obtained in a class-agnostic way, but they
segment a video into interpretable fragments. These Ac-
tionBytes are temporally scale-invariant as their lengths are
adapted to the video content. For example, a single Action-
Byte can capture an atomic action regardless of the action
speed. Some ActionBytes examples are shown in Figure 4.
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Figure 3: Localization model and ActionByte extraction.
The localization model is trained with classification and lo-
calization losses on pseudo-labels. The latent output L is
used to extract ActionBytes. Classes labels are from Cshort.

3.2. Mining ActionBytes

Next, we discuss how we learn a model from short
videos. One can train a classification model on short videos
and slide it on long test videos. However, such a model is
agnostic to boundaries within the short videos, and might
not be able to generate good class activation scores for lo-
calization. Here, we leverage ActionBytes, to train a dis-
criminative, boundary-aware model from short videos. This
is done by decomposing a video into multiple ActionBytes,
from which we generate pseudo-labels to train our model.

The proposed pipeline for mining ActionBytes is shown
in Figure 2. It has two steps that iterates between Gener-
ating pseudo-labels from ActionBytes and Training the lo-
calization model with pseudo-labels. For the creation of the
pseudo-labels we take inspiration from Caron et al. [2]. We
first extractN ActionBytes from a set of training videos and
represent each of them by averaging latent features within
its boundaries. Next, we group all the ActionBytes into K
clusters using the k-means algorithm by solving

min
C∈IRl×K

1

N

N∑
n=1

min
yn∈{0,1}K

‖an − Cyn‖22



Figure 4: Extracted ActionBytes, highlighted in different colors, for two examples of Baseball Pitch. The ActionBytes
capture the action in four parts that are interpretable as (1) ‘get into wind-up position‘ (red), (2) ’loading to deliver’ (blue),
(3) ‘delivery’ (pink) and (4) ‘follow-through’ (green). ActionBytes are scale-invariant and can adapt to varying temporal
scale, e.g., the ‘follow-through’ extends to different number of snippets in the two examples.

where an is feature vector obtained from ActionByte n.
Solving this problem provides a centroid matrix C that is
used to assign a cluster id to each ActionByte in a video.
Finally, the pseudo-label vector for a video is defined as all
the cluster ids assigned to ActionBytes of that video.

Having obtained the multiple pseudo-labels for each
training video, we update the parameters of the localiza-
tion network in the second step for classifying and local-
izing ActionBytes in the video (shown in Figure 3). Such
training leads to a better representation of latent concepts,
L, of the model that in turn result in a better set of Ac-
tionBytes. Therefore, we iterate over these two steps of
extracting ActionBytes and training the localization model.
This approach can be seen as a regularization technique. By
training the model with pseudo-labels, we avoid the risk of
overfitting the model to class labels.

Localization model. Our full localization model, used
in the second step of our pipeline, is shown in Figure 3.
The role of this model is to learn to classify and localize
ActionBytes into the assigned pseudo-labels. This is rem-
iniscent of a model for weakly-supervised temporal local-
ization, where each video has multiple instances of actions
and temporal annotations are not available. With this moti-
vation, we now describe our localization.

We first extract features F = {ftftft}Tt=1 from a pretrained
deep network where d is the feature dimension and T is
the temporal sequence length. We pass extracted features
to a latent projection module to map the features to a set of
latent concepts, from which we extract ActionBytes. For the
latent projection module, we simply use a fully connected
layer followed by ReLU [25].

L = ReLU(WprojF )

where Wproj ∈ Rl×d is the latent projection matrix and
l is number of latent concepts. The output of the latent
projection layer, L, is passed through a linear classifier to
obtain activation scores over time for pseudo-classes. On
these activation sequences, following [28], we apply k-max
multiple-instance learning loss for classification and co-

activity similarity loss for localization. For k-max MIL loss,
the prediction score corresponding to a class is computed as
the average of its k-max activations over the temporal di-
mension. The co-activity similarity loss is computed over
class activation sequences and L. For a given video and a
class, a vector of similarities between class activation se-
quence and each row of L (lth latent concept) is computed.
A pair of videos with a common class label will have higher
similarities with the same latent concepts. This is what is
enforced by this loss, which makes it a suitable localization
loss in our method.

Using this model in our mining, we get predictions for
the pseudo-labels. In order to translate this into predictions
for the training classes, Cshort, we add a transfer layer on
top of the linear classifier. This is an FC layer learned again
with a k-max MIL loss, but using class labels (see Figure 3).
For localization at test time, we follow the two-stage thresh-
olding scheme of [28] on the output of the transfer layer.

Knowledge transfer. In cross-dataset evaluation, the la-
bel set of seen short videos, Cshort can be different from
the label set of unseen long videos, Clong. For knowledge
transfer in such cases, we follow Objects2Action [12]. We
employ the skip-gram model of word2vec [21, 22] as a se-
mantic embedding function to embed each word of a given
class label as a vector. For multi-word class labels, we take
the average vector of the embedded words [12, 23] to rep-
resent the label. The affinities between class labels from
Cshort and Clong are computed by cosine similarity between
their embeddings. Thus, the class activation score for Cshort

is transferred to that for Clong.
The two sets of class-labels, though different, may have

some overlap. To evaluate in a pure zero-shot localization
set-up, we also conduct an experiment where training is
done on a subset of Cshort, such that this subset does not
overlap with test label set Clong.

3.3. Action proposals from ActionBytes

Segmenting video into ActionBytes is critical to learn a
reliable localization model from short videos. In addition



to this, ActionByte by itself is also suited for action local-
ization as an informative action unit. We show how they
can be used to form action proposals in long videos dur-
ing testing. Consequently, we also demonstrate the utility
of ActionBytes is not limited to the What2When set-up but
also extends to the weakly-supervised set-up.

Since an ActionByte represents an interpretable part of
an action, one or more ActionBytes together form a good
action proposal. For a given test video, we generate action
proposals, PAB , by merging m ∈ M ActionBytes, where
set M contains the numbers of ActionBytes to be merged.

PAB =
⋃

m∈M

|B|−m⋃
i=1

(Bi, Bi+m − 1) (2)

where Bi is the start of ActionByte i. (Bi, Bi+m − 1)
is an action proposal from Bi to Bi+m − 1. Each of these
proposals is temporally jittered to include up to one neigh-
boring time-step. This is to make sure the immediate neigh-
borhood of boundaries is included in the action proposals.

ActionBytes for weakly-supervised localization.
Weakly-supervised action localization is a popular task
where training and testing are done on long videos i.e.
Lshort = Llong. The ActionByte mining explained in
Section 3.2 is critical to learn from short videos. But,
when learning on long videos in a weakly-supervised
set-up, generating pseudo-labels is not needed, as the long
videos are already untrimmed w.r.t. the actual action labels.
Therefore, only the localization model, without the transfer
layer, is enough to learn good quality classification score
sequences and ActionBytes.

4. Experiments
In this section, we first explain the datasets we train and

evaluate our proposed method on, following the implemen-
tation details. Then we present an ablation study of our
method, and next we compare our model with baselines in
the What2When setup. We also conduct an experiment in
a zero-shot setup and compare our model with the state-of-
the-art models in the weakly-supervised regime.

Datasets. We use the validation set of Kinetics-400 [4]
for training our model. It contains 17, 281 single trimmed
action videos belonging to 400 action classes with a maxi-
mum length of 10 seconds. For evaluation, we report on the
untrimmed Thumos14 [10], MultiThumos [38] and Ac-
tivityNet1.2 [1]. Thumos14 contains 200 validation videos
and 212 test videos with temporal annotations belonging to
20 action classes, with about 15.5 action instances per video
on average. The length of the videos in this dataset is on av-
erage 212 seconds. MultiThumos has the same set of videos
as in Thumos14, but it extends the latter from 20 action
classes with 0.3 labels per frame to 65 classes with 1.5 la-
bels per frame. Also, the average number of distinct action

classes in a video is 10.5 (compared to 1.1 in Thumos14),
making it a more challenging multi-label dataset. Activi-
tyNet1.2 has 4, 819 videos for training and 2, 383 videos
for validation, which in the literature is used for evaluation.
It has 100 classes, with on an average 1.5 action instances
per video. The average length of the videos in this dataset
is 115 seconds.

Implementation details. As a base network we use
I3D [4] pretrained on Kinetics-400. We extract RGB and
flow features from the last average-pooled layer (1024 di-
mensions for each stream). We use TVL1 to compute opti-
cal flow. Features are extracted from non-overlapping 16-
frame chunks of video. We do not finetune the feature
extractors. The network is implemented in PyTorch and
trained with Adam optimizer with a learning rate of 0.001.
We initialize the localization model by training on the val-
idation set of Kinetics-400 dataset. For k-max MIL loss,
we set k to 1/8 of the length of the video. In all the ex-
periments, we iterate over our pipeline for 3 iterations. The
value of the p percentile (sets τ in Eq. 1) determines how
many ActionBytes are extracted from a given video. For
Thumos14 and MultiThumos we set p = 50, and for Ac-
tivityNet1.2 we use p ∈ {92, 95, 97.5, 99, 99.5}. In all the
experiments we set M = {1, 2} in Eq. 2. We report the
commonly used mean Average Precision (mAP) metric on
snippet-level granularity for evaluating detections. For the
weakly-supervised setup, experiment settings are kept sim-
ilar to [28].

Localization at test time. For localization at test time,
we use our trained model to generate class-activation se-
quences over the untrimmed test video. We follow the two-
stage thresholding scheme of [28] for localizing actions.
The first threshold is applied to filter out classes that have
confidence score less than the mean confidence score. The
second threshold is applied along the temporal axis to ob-
tain the detections. When ActionByte proposals are added,
non-maximum suppression is also applied.

4.1. Ablation study

In the ablation, we test on untrimmed Thumos14, and
train on the validation set of trimmed Kinetics-400 dataset.

Fixed length versus scale-invariant ActionBytes.
First, we evaluate the effect of ActionBytes. We run two
setups: the first uses fixed-size segments, uniformly sam-
pled along the video, and the second uses our automatically-
extracted ActionByte boundaries. For the first setup we uni-
formly segment the video into chunks of two snippets, in
order to make it comparable with the average length of Ac-
tionBytes. The final localization performance at IoU= 0.5
is 14.1% for fixed-size segments and 15.5% for Action-
Bytes. Automatically extracted ActionByte boundaries are
preferred over uniformly sampled boundaries.

Influence of number of clusters. Next, we evaluate the



Figure 5: Influence of the number of clusters on localiza-
tion performance. The performance increases up to 500 and
decreases afterward, as over-granular clusters might not be
able to represent a single ActionByte.

influence of the number of clusters for generating pseudo-
labels on the final localization performance. Figure 5 shows
that the performance increases by increasing the number of
clusters up to 500 and then decreases. This makes sense as
with a large number of clusters, an ActionByte might not be
represented by a single cluster centroid. Therefore, during
all the experiments, we fix the number of clusters to 500.

Number of mining iterations. In Figure 6 (Left), we
show how performance changes over training iterations. It
increases up to a point, and then decreases slightly. This
is mainly because, after few epochs, our iterative mining
reaches an equilibrium point where the clustering loss stops
decreasing (see Figure 6 (Right)) and the model converges
to an optimum.

Figure 6: Iterative mining. (Left) Action localization mAP
over mining iterations. Performance increases as long as the
clustering loss (Right) decreases, then both get saturated.

ActionByte as proposals. As explained in Section 3.3,
ActionBytes, when merged together, can act as action pro-
posals. In this ablation, we show how the number of
merged ActionBytes influences localization performance.
As shown in Figure 7, using single ActionByte proposals
(M = {1}) can improve the performance by more than 3%
compared to not using ActionByte proposals. This shows
the effectiveness of ActionBytes as proposals. Merging up
to 4 ActionBytes (M = {1, 2, 3, 4}) can improve localiza-
tion performance further. However, it comes with the cost

Figure 7: ActionByte as proposals for localization. Single
ActionByte proposals (M = {1}) improve mAP compared
to not using ActionByte proposals. We set M = {1, 2} in
all the experiments as adding more proposals increases the
computational cost while bringing marginal improvement.

of processing more proposals. To keep the balance between
computational cost and performance, we set M = {1, 2}
in the remaining experiments. Since the ActionBytes vary
in length, the proposal length also varies. This is reminis-
cent of commonly used anchor lengths [32]. The proposal
length, for chosen M and p, ranges from 1 to 70 for Thu-
mos14/MultiThumos and from 6 to 369 for ActivityNet.

4.2. What2When action localization

In the What2When action localization experiments, we
show the benefit of our mined ActionBytes compared to the
baseline. For training, we use the validation set of Kinetics-
400 dataset. For evaluation, we follow the common pro-
tocol from the literature and evaluate on the test sets of
Thumos14 and MultiThumos, and validation set of Activ-
itynet1.2. Baseline is the localization model trained on the
Kinetics-400 validation set, without ActionBytes and iter-
ative training. This model generates confidence scores for
400 classes over untrimmed long videos. Then we transfer
the class scores to target classes as explained in Section 3.2,
and localize actions using the two-stage thresholding. Ours
is our proposed deep mining method, that is similar to the
baseline (and trained on the same dataset) except that we
use pseudo-labels during training to regularize the model.
To have a fair comparison, we keep all the hyper-parameters
fixed during evaluation. Finally, for Ours (+ Proposals) we
add ActionByte proposals to the pool of proposals during
localization.

As shown in Table 1, the baseline performance on Thu-
mos14 dataset for IoU = 0.5 is 8.4% which shows the dif-
ficulty of the task. Using our model, the performance in-
creases to 11.3%. This is interesting, considering that the
state-of-the-art performance for this dataset for the weakly-
supervised regime where training and test is done on the
same dataset is just 26.5% [27] (see Table 3). Finally, by



Table 1: What2When action localization performance on Thumos14, ActivityNet1.2 and MultiThumos.

Thumos14 ActivityNet1.2 MultiThumos

0.3 0.4 0.5 0.7 0.3 0.4 0.5 0.7 0.3 0.4 0.5 0.7
Baseline 18.8 12.7 8.4 1.7 24.0 21.7 19.4 8.0 7.5 4.9 3.2 0.6
Ours 21.1 15.6 11.3 2.8 24.4 22.4 20.1 8.2 8.1 5.7 4.1 1.0
Ours (+ Proposals) 26.1 20.3 15.5 3.7 24.7 22.7 20.3 8.3 10.8 8.1 6.1 1.4

Table 2: Zero-shot action localization performance on
Thumos14 and MultiThumos in What2When setup.

0.1 0.2 0.3 0.4 0.5
Thumos14
Baseline 13.8 11.1 7.1 4.7 3.1
Ours 14.9 12.6 8.5 6.1 4.1
Ours (+ Proposals) 17.8 15.5 11.3 8.7 6.3
MultiThumos
Baseline 6.4 5.14 3.1 2.0 1.3
Ours 7.0 5.7 3.7 2.5 1.7
Ours (+ Proposals) 9.4 8.0 5.6 4.1 3.0

adding ActionByte proposals, the performance increases to
15.5% i.e. an 84% relative improvement overall. This also
shows the effectiveness of our ActionBytes as proposals,
which is mainly due to their complementary nature to the
baseline proposals. The improvements are obtained across
the IoUs, especially for the higher ones.

For ActivityNet1.2 the baseline obtains an mAP of
19.4% at IoU= 0.5, while our full model gets to 20.3%.
The gains are less compared to Thumos14 but consistent
across the IoUs. The reduced gains can be attributed to the
nature of temporal annotations, which merge several nearby
action instances and in-between pauses into one instance.
This meant extra false-positives, as ActionByte proposals
do well at separating actions from temporal context.

For results on MultiThumos the trend is similar to Thu-
mos14, mining and then ActionByte proposals consistently
improve performance across the IoU thresholds. It is
promising that the proposed method maintains its gain on
this more challenging multi-label dataset.

4.3. Zero-shot action localization

For this set of experiments, we have a similar setup to the
previous What2When experiment, except that we adhere to
a zero-shot premise and exclude common classes between
the source Kinetics-400 dataset and the target datasets.
Thus, during training, we exclude 18 classes of Kinetics-
400 for Thumos14/MultiThumos. Similarly, 72 classes of
Kinetics-400 are excluded for ActivityNet1.2, which leaves
classes that are semantically very different from those of

Table 3: Weakly-supervised localization on Thumos14
dataset. (*) indicates I3D features.

0.3 0.4 0.5 0.7
Strong supervision
Shou et al. [31] 40.1 29.4 23.3 7.9
Xu et al. [36] 44.8 35.6 28.9 -
Zhao et al. [40] 50.6 40.8 29.1 -
Chao et al. * [5] 53.2 48.5 42.8 20.8
Weak supervision
Nguyen et al. * [26] 35.5 25.8 16.9 4.3
Shou et al. [32] 35.8 29.0 21.2 5.8
Paul et al. * [28] 40.1 31.1 22.8 7.6
Yu et al. * [39] 39.5 - 24.5 7.1
Nguyen et al. * [27] 46.6 37.5 26.5 9.0
Ours* (Proposals) 43.0 35.8 29.0 9.5

ActivityNet1.2. The remaining classes are semantically
very different from those of ActivityNet1.2, resulting in
a much lower baseline mAP of 2.6% at IoU= 0.3 com-
pared to 24.0% in the What2When experiment. As Activi-
tyNet1.2 is not suitable for zero-shot transfer from Kinetics-
400, we evaluate on the other two datasets in Table 2. Com-
pared to the What2When results there is a drop in perfor-
mance, which is expected, considering the difficulty of the
task. However, the same trend is maintained: our mining
model performs better than the baseline and adding Ac-
tionByte proposals further adds to the localization perfor-
mance. Again, we observe considerable gains over the base-
line for both Thumos14 and MultiThumos, leading to con-
sistent improvement across the IoUs. We believe that these
are the first zero-shot temporal localization results reported
on Thumos14 and MultiThumos.

4.4. Comparison with the state-of-the-art

Here, we demonstrate the effectiveness of our Action-
Byte proposals in a weakly-supervised setup as explained in
Section 3.3. We employ the off-the-shelf model of Paul et
al. [28] as baseline and add ActionBytes proposals on top of
it. For the Thumos14 dataset, we train the model on the val-
idation set and evaluate on the test set. Similar as before, we
use IoU between detections and ground-truth as the evalua-
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Figure 8: Qualitative results showing top localizations on sample videos from Soccer Penalty and Basketball Dunk. Frames
representing action instances are highlighted by the orange boxes and the ones for the background are in blue boxes. Below
these frames, ground-truth is plotted in red against time in seconds. Localization boundaries are shown in other colors for the
baseline detections as well as the detections using the ActionByte proposals. In Soccer Penalty example, there is only one
true-positive which is missed by the baseline, while it is populated by our proposals, one of which detects it. Both methods
have false positives. The second example of Basketball Dunk is a video longer than 10 minutes, with many action instances.
Out of shown 16 instances, our approach could localize 6 while getting 3 false-positives at IoU= 0.5. Two of these false-
positives are duplicate detections (in cyan near 620s and 650s). The baseline could localize two action instances with one
false-positive. There are a few false-positives and missed detection by our approach, but it could localize some very difficult
action instances. Figure best viewed in color.

tion metric. As shown in Table 3, our method outperforms
the state-of-the-art for higher overlap thresholds. Our im-
provement is particularly notable at IoU= 0.5, where we
improve the state-of-the-art by a margin of 2.4%. It val-
idates that our ActionByte proposals are suitable for both
What2When and weakly supervised tasks. In Table 4, re-
sults on ActivityNet1.2 are reported. We outperform state-
of-the-art for all IoUs except 0.7. In Table 5, we report re-
sults for MultiThumos. To our knowledge, the only video-
level localization results reported on MultiThumos is by Ye-
ung et al. [38]. While they report 32.4% at IoU = 0.1, with
frame-level supervision, we reach this mAP with weak su-
pervision only. To the best of our knowledge, this is the first
weakly-supervised evaluation on MultiThumos. We also
evaluate our baseline [28] on this dataset and consistently
improve it over the IoU thresholds. In summary, our method
could improve over the baselines and achieve promising re-
sults on all three datsets. This shows the effectiveness of the
ActionByte proposals. We show some qualitative results of
our detections in Figure 8.

5. Conclusions
We introduced the new task of learning from short

trimmed videos to localize actions in long untrimmed
videos. To tackle the new task, our proposed pipeline is
jointly trained to segment the videos into ActionBytes and
localize them in the short video. Our method can be consid-

Table 4: Weakly-supervised localization on Activi-
tyNet1.2 dataset. (*) indicates I3D features.

0.3 0.4 0.5 0.7
Wang et al. [34] - - 7.4 3.9
Shou et al. [32] - - 27.3 17.5
Paul et al. * [28] 45.5 41.6 37.0 14.6
Yu et al. * [39] - - 28.3 18.9
Ours* (Proposals) 47.8 44.0 39.4 15.4

Table 5: Weakly-supervised localization on MultiThumos
dataset. (*) indicates I3D features. †Our evaluation of [28].

0.1 0.2 0.3 0.4 0.5
Strong supervision
Yeung et al. [38] 32.4 - - - -
Weak supervision
Paul et al. *† 30.7 24.0 17.1 12.6 8.9
Ours* (Proposals) 32.4 26.8 20.5 15.7 12.1

ered as a technique to regularize action boundaries during
training. Experiments on the three datasets show the effec-
tiveness of our method not only for the proposed task, but
also for zero-shot action localization and weakly supervised
action localization. This demonstrates the adaptability of
the models trained by our method, as we considerably im-
prove over the baselines and achieve state-of-the-art results.
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