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ABSTRACT
This paper proposes a new video representation for few-
example event recognition and translation. Different from
existing representations, which rely on either low-level fea-
tures, or pre-specified attributes, we propose to learn an em-
bedding from videos and their descriptions. In our embed-
ding, which we call VideoStory, correlated term labels are
combined if their combination improves the video classifier
prediction. Our proposed algorithm prevents the combina-
tion of correlated terms which are visually dissimilar by op-
timizing a joint-objective balancing descriptiveness and pre-
dictability. The algorithm learns from textual descriptions
of video content, which we obtain for free from the web by
a simple spidering procedure. We use our VideoStory rep-
resentation for few-example recognition of events on more
than 65K challenging web videos from the NIST TRECVID
event detection task and the Columbia Consumer Video
collection. Our experiments establish that i) VideoStory
outperforms an embedding without joint-objective and al-
ternatives without any embedding, ii) The varying quality
of input video descriptions from the web is compensated
by harvesting more data, iii) VideoStory sets a new state-
of-the-art for few-example event recognition, outperforming
very recent attribute and low-level motion encodings. What
is more, VideoStory translates a previously unseen video to
its most likely description from visual content only.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Video analysis

General Terms
Algorithms, Experimentation, Measurement

1. INTRODUCTION
The goal of this paper is to recognize and translate events

in web video from ten examples only. For multimedia chal-
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Figure 1: VideoStory at work. We propose an al-
gorithm that learns from web data an optimal mul-
timedia embedding optimizing both the visual pro-
jection for recognition and the textual projection for
translation. For unseen videos it recognizes events
from just ten examples and it predicts the most
likely description from visual content only.

lenges where examples are scarce, a traditional solution is to
rely on clever combinations and rerankings of as many ex-
tracted information sources as possible e.g., [25,28]. In prin-
ciple, such approaches would be well-suited for event recog-
nition, despite the fact that none of them is able to provide a
semantic interpretation of the obtained result. We adhere to
a different solution. The main contribution of this paper is a
new video representation for few-example event recognition
and translation, which we learn from freely available web
videos and their descriptions. We call our new video repre-
sentation VideoStory, since it strives to encode the story of
a video rather than a collection of single words (Figure 1).
Before detailing our contributions we discuss related work
on representations for event recognition, learning from the
web, and multimedia embedding.

Representations for Event Recognition The state-
of-the-art in event recognition represents a video in terms of



low-level audiovisual features [2,6,16,27,34,37]. These meth-
ods first extract from the video various descriptors e.g., color
SIFT [36], or motion boundary histograms [37]. Then, the
descriptors are quantized and aggregated as bag-of-word his-
tograms or Fisher vectors [32,37]. Despite good recognition
performance, low-level representations suffer from two draw-
backs. First, they are incapable of providing a semantic
interpretation of an event. Second, because of their high-
dimensionality, training effective event classifiers on the low-
level representation often requires a sufficient number of
training examples. When only a few event exemplars are
available, the applicability of the low-level representation is
limited [22,23].

Semantic video representations provide an alternative, they
are achieved by representing a video by their attribute (or
concept) scores. Yang et al. [41] obtain the attributes by
compressing their low-level features in three consecutive un-
supervised clustering steps. The obtained attributes are
shown to outperform the low-level audiovisual features they
started from. However, attributes obtained by unsupervised
clustering of low-level features still have no semantic inter-
pretation. In [22], Ma et al. learn the attribute classifiers and
event classifiers jointly. In their work, the attribute classi-
fiers are trained to optimize the event recognition, without
explicitly optimizing the individual attribute classifier accu-
racies. As a consequence, the obtained representation does
not necessarily have a semantic interpretation either. We
aim for a representation that is both robust for recognition
and interpretable by humans.

Semantic representations for event recognition that are
both accurate and interpretable rely on the prediction scores
made by a set of pre-trained attribute classifiers [11, 13, 21,
22, 24, 26]. In [26], Merler et al. obtain the attribute classi-
fiers by training 280 SVMs on a manually labeled collection
of images, including objects, people, and scenes. Habib-
ian et al. [11] study the properties of 1,346 attribute clas-
sifiers trained from ImageNet [8] and TRECVID [29] for
representing and recognizing events in web video. In [24],
Mazloom et al. learn a semantic representation per event
by feature selection of a subset of attributes, from the same
1,346 used in [11], which maximizes the event recognition ac-
curacy. While effective and promising, a considerable draw-
back of attribute representations is their dependence on in-
dividual attribute classifiers. They demand a considerable
classifier training and video representation construction ef-
fort. However, the biggest limitation is the need to pre-
specify and manually label the attributes in advance, often
leading to a mismatch between the representation and the
events of interest. Rather than specifying and labeling the
attributes one by one to represent video, we propose an al-
gorithm that discovers the semantic representation without
the need for specification or annotation.

Representation Learning from the Web Many have
used annotations from the web to learn individual attributes,
e.g., [17, 35, 39], without considering their utility as a rep-
resentation. We are inspired by the work on image repre-
sentations by Berg et al. [4], who start by collecting a set
of web pages, relevant to the (visual) attributes of interest,
by submitting attribute names to an Internet search engine.
The retrieved web pages are mined to discover the most fre-
quent terms and their associated images. Subsequently, a
classifier is trained by using all the images corresponding to
a certain term as positive annotations and randomly sam-

pling images from other terms as negatives. They hold out
a portion of the training data as a validation set, which they
use to select the most reliable term classifiers for the final
representation. While their work is proposed for images, it
is easily extended to video. However, a drawback is that
many terms rarely occur. For these infrequent terms only
a limited number of positive examples are available, which
leads to a biased estimation of their reliability. As a conse-
quence, many of the discovered visual terms might be over-
fitted to their small training set and do not generalize well
for new videos. We also discover our representation from
the Internet, but rather than selecting individual, and often
unreliable, classifiers per term, we prefer to combine terms
automatically into more descriptive attributes. By combin-
ing terms, more training examples are available and a more
robust representation is obtained, without losing descriptive
ability.

Representation by Multimedia Embedding Cur-
rent representations for video (and image) translation also
combine terms, typically by multimedia embeddings of vi-
sual features and descriptions from labels [40], attributes [1]
or documents [7,31] into a joint low dimensional space. Most
multimedia embeddings are proposed for image classifica-
tion [1, 40] and cross-media retrieval [31], we are not aware
of any multimedia embeddings for few-example event recog-
nition and translation. Das et al. [7] focus on generat-
ing video translations. They model the relation between
low-level video-features and textual terms by an embedding
founded on multimodal latent dirichlet allocation; a proba-
bilistic topic model which models the videos and their de-
scriptions as mixed memberships over a set of latent topics.
Despite their effectiveness for translating video to text, this
method is not intended to recognize events in video. As
an aside we note that by design multimodal topic models
are only applicable for discrete features. Therefore, they
cannot leverage recent state-of-the-art video encodings such
as Fisher vectors [32] or deep learned representations [19],
which would undermine the effectiveness of multimodal topic
models for the purpose of event recognition. In addition to
generating event video translations, we aim for state-of-the-
art video event recognition using a multimedia embedding
that leverages the benefits of modern encodings.

Contributions We make the following contributions:

• We propose a multimedia embedding for few-example
event recognition and translation, which we learn from
videos and their descriptions.

• We introduce an algorithm that combines correlated
terms if their combination improves the video classifier
prediction by optimizing a joint-objective trading of
descriptiveness and predictability (Section 2).

• The algorithm learns from textual descriptions of video
content, for which we introduce a new dataset obtained
for free from the web by a simple spidering procedure
(Section 3).

We use our VideoStory representation for few-example recog-
nition and translation of events on more than 65K challeng-
ing web videos from the NIST TRECVID event detection
task [33] and the Columbia Consumer Video collection [15]
(Section 4). State-of-the-art results support our proposed
contributions (Section 5). We conclude in Section 6.
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Figure 2: Dataflow for learning the VideoStory and
using it for event recognition and translation.

2. VIDEOSTORY FRAMEWORK
Our VideoStory framework contains three major parts,

schematically illustrated in Figure 2.

1. The VideoStory training, where we learn our multime-
dia embedding from a dataset consisting of videos with
descriptions. This training outputs two projection ma-
trices: a visual projection matrix W , and a textual
projection matrix A. The VideoStory representation
S is computed from the visual projection matrix W
and low-level video features.

2. The event classifier training, where we use off-the-shelf
SVMs to train classifiers on a dataset consisting of
videos with a few event labels. The videos are encoded
with our VideoStory representation.

3. The recognition and translation stage, where we eval-
uate the event classifiers, and use the semantics of our
representation to describe videos.

In this section we introduce the VideoStory embedding, its
design principles and how it is obtained by learning.

2.1 Objective Function
Using the notation summarized in Table 1, we will de-

scribe the objective function we minimize to obtain the Video-
Story representation. To learn the embedding we use a
dataset of videos, represented by low-level video features
X , and their descriptions, represented by binary term vec-
tors Y , indicating which terms are present in each video
description. While we use and emphasize low-level visual
features in this work, our approach is generic and can create
a VideoStory from any multimedia feature.

The aim of the VideoStory representation is to balance
two compelling forces:

1. Descriptiveness, to preserve the information encoded
in the video descriptions Y as much as possible, and

2. Predictability, to ensure that the VideoStory could be
effectively recognized from visual video content X .

Notation Description
N Number of videos
M Number of unique terms in descriptions
D Dimensionality of visual feature
k Dimensionality of VideoStory embedding
X ∈ R

D×N Matrix of low-level video features
Y ∈ {0, 1}M×N Matrix of binary term vectors
W ∈ R

D×k VideoStory visual projection
A ∈ R

M×k VideoStory textual projection
S ∈ R

k×N VideoStory embedding
xi,yi, si The column representing the i-th video

Table 1: Summary of notation.

Therefore, we learn the VideoStory representation by both
objectives in a joint optimization framework.

The VideoStory representation is learned by minimizing:

LVS(A,W ) = min
S

Ld(A,S) + Lp(S,W ), (1)

where A is the textual projection matrix, W is the visual
projection matrix, and S is the VideoStory embedding. The
loss function Ld corresponds to our first objective for learn-
ing a descriptive VideoStory, and the loss function Lp cor-
responds to our second objective for learning a predictable
VideoStory. The VideoStory embedding S interconnects the
two loss functions. To the best of our knowledge this joint
embedding framework is novel.

Descriptiveness For the Ld function, we use a variant
of regularized Latent Semantic Indexing [38]. This objective
minimizes the quadratic error between the original video
descriptions Y , and the reconstructed translations obtained
from A and S:

Ld(A,S) =
1

N

N∑
i=1

‖yi −Asi‖22 + λaΩ(A) + λsΨ(S), (2)

where Ψ(·) and Ω(·) denote regularization functions, and
λa ≥ 0 and λs ≥ 0 are regularizer coefficients. We use
the squared Frobenius norm for regularization, which is the
matrix variant of the �2 regularizer, i.e., Ω(A) = ‖A‖2F =∑

i‖ai‖22 =
∑

ij a
2
ij , the sum of the squared matrix elements.

Similarly for the VideoStory matrix Ψ(S) = ‖S‖2F.
The main difference with regularized Latent Semantic In-

dexing [38] is that they used an �1 regularizer, Ω(A) =∑
i‖ai‖1, which enforces sparsity in the textual projection

A. However, with our larger representation (typically we
use k between 256 and 1,024 in our experiments compared
to only k = 20 used in [38]) and fewer number of unique
terms (around 10K, compared to 100K), enforcing sparsity
is not necessary for good performance.

Note that many other textual embedding methods, such
as Sparse Coding and probabilistic Latent Semantic Index-
ing [12] can be formulated similar to Eq. (2), when appropri-
ate regularization functions Ω(·) and Ψ(·) are used. Further-
more, when the textual projection matrix A is constrained
such that each column has a single non-zero value, i.e., se-
lects a single term, our objective becomes very close to meth-
ods that select the best single term labels, such as [4].

Predictability The Lp function measures the occurred
loss between the VideoStory S and the embedding of low-
level videos features using W . Since the VideoStory S is
real valued, as opposed to a binary or multi-class encod-



ing, we can not rely on standard classification losses such as
the hinge-loss used in SVMs. Therefore, we define Lp as a
regularized regression, similar to ridge regression:

Lp(S,W ) =
1

N

N∑
i=1

‖si −W�xi‖22 + λwΘ(W ), (3)

where we use (again) the Frobenius norm for regularization
of the visual projection matrix W , Θ(W ) = ‖W ‖2F, and λw

is the regularization coefficient.

2.2 Learning Algorithm
To handle large scale datasets and state-of-the-art high-

dimensional visual features, e.g., Fisher vectors [32] on low-
level video features [37] or deep learned representations [19],
we employ SGD (Stochastic Gradient Descent) [5]. SGD
is an efficient online procedure and converges fast to the
(global) minimum of a model. At each step, training with
SGD consists of (i) choosing a random sample from the
dataset consisting of a video and a description, (ii) comput-
ing the sample estimate of the gradient of the parameters in
the model, and (iii) updating the parameters in the direc-
tion of the gradient with step-size η. The number of passes
over the datasets, often denoted as epochs, and the step-size
η are hyper-parameters of SGD.

The VideoStory objective function, as given in Eq. (1),
is convex with respect to matrix A and W when the em-
bedding S is fixed. In that case, the joint optimization is
decoupled into Eq. (2) and Eq. (3), which are both reduced
to a standard ridge regression for a fixed S. Moreover, when
both A and W are fixed, the objective Eq. (1) is convex
w.r.t. S. Therefore we use standard SGD by computing the
gradients of a sample w.r.t. the current value of the param-
eters, and we minimize S jointly with A and W .

Lets denote a randomly sampled video and description
pair at step t by (xt,yt), and let st denote the current Video-
Story embedding of sample t. The gradients of Eq. (1) for
this sample w.r.t. A,W and st are given by:

∇ALVS = −2 (yt −Ast) s
�
t + λaA, (4)

∇WLVS = −2 xt

(
st −W�xt

)�
+ λwW , and (5)

∇stLVS = 2
[
st −W�xt −A� (yt −Ast)

]
+ λsst. (6)

Our algorithm is summarized in Algorithm 1.
The effect of joint learning the descriptiveness and the

predictability, becomes clear in Eq. (6), where both the tex-
tual projection matrix A and visual projection matrix W
contribute to learning the VideoStory embedding S. This
embedding S is subsequently used to obtain the textual pro-
jection A matrix, in Eq. (4), and the visual projection W
matrix, in Eq. (5). This leads to the VideoStory embed-
ding, which is both descriptive, by preserving the textual
information, and predictable, by minimizing the visual pre-
diction loss.

2.3 Using the VideoStory Embedding
The result of training our VideoStory embedding is the

visual projection matrix W and the textual projection ma-
trix A. These are used to encode a new video i into our
VideoStory representation si.

In the case that both a video xi and description yi are
given, we could obtain the semantic embedding by return-
ing si from Eq. (1), while keeping both A and W fixed.

input : X , Y , k, η (step-size), m (max-epochs)
output: W and A

A, W , and S ← random (zero-mean, unit variance)

for e← 1 to m do
for i← 1 to N do

Pick a random video-description pair (xt,yt)
Compute gradients w.r.t. A,W and st

Update parameters:

A ←A− ηt∇ALVS see Eq. (4)

W ←W − ηt∇WLVS see Eq. (5)

S ←st − ηt∇stLVS see Eq. (6)
end

end
return: W and A

Algorithm 1: Pseudocode for learning VideoStory

However, in practice most videos are not provided with a
description. Therefore, we use:

si = W�xi, (7)

to construct our VideoStory representation from the low-
level video features xi. Given an embedded video si, we
can translate a video by:

ŷi = Asi, (8)

where the terms with the highest values are most relevant
for this video.

3. HARVESTING VIDEOS AND THEIR DE-
SCRIPTIONS FROM THE WEB

Rather than describing the video content manually, we opt
to harvest both videos and descriptions from the web. Video
sharing web sites, such as YouTube and Vimeo, provide a
rich and varied source of videos and user provided descrip-
tions, such as their title captions and comments. Although
video title captions do not necessarily correspond to the vi-
sual content of the videos, we will show that by harvesting
a large number of these captioned videos and applying a set
of quality filters we obtain reliable video descriptions.

We start from an initial pool of descriptions, as the col-
lection seeds, and iteratively collect videos and their title
captions from YouTube. For the collection seeds, we rely
on 3,000 sentence descriptions from the training partition
of the NIST TRECVID HAVIC corpus [33]. Then each de-
scription within the pool is queried to YouTube and the
25 most relevant videos are retrieved, based on YouTube’s
textual similarity search. Every retrieved video is passed
through a set of quality filters. The videos which pass all
the filters are added to the collection and their title captions
are added to the description pool. We iteratively repeat this
procedure until enough videos are collected. We will first de-
tail our quality filters before providing the statistics of our
harvested video and description dataset.

3.1 Quality Filters
Event Filter Events are generally described by their ac-

tors, actions, and possible involved objects [10]. Hence we
assume that a description of an event video should contain
actors, actions and objects. For this purpose, we parse the



Figure 3: Terms from the VideoStory46K dataset
occurring in more than 500 title captions of the har-
vested YouTube videos.

grammatical structure of title captions using a probabilistic
context free grammar parser [18]. Then we accept a video
only if its caption includes verbs, subjects, and objects.

Visualness Filter There are many terms in title captions
which do not refer to visually depictable attributes, such as
buy, God, and genius. These attributes are not recognizable
by present-day visual classifiers, so should not be included
in the collection. For this filter we evaluate the visualness of
caption terms. Rather than relying on visual features [4, 9,
20], which are expensive to extract and limit the scalability,
we evaluate the visualness of each term in the title caption
by measuring its similarities to the ImageNet synsets [8] in
the WordNet hierarchy. We measure the similarity of each
synset pair by following [3], which finds overlaps between
the glosses of two synsets as well as their directly linked
synsets. Finally, we define the visualness of a title caption
by averaging the visualness of all its terms. The captions
whose visualness exceeds a threshold of 0.5 are accepted by
our harvesting procedure.

Reality FilterA considerable amount of YouTube videos
are related to celebrities, TV series, and movie trailers. We
observe these professional videos are typically semantically
dissimilar to the event videos which we are interested in.
Moreover, they often infringe intellectual property rights.
Therefore, we prefer to filter out the corresponding videos.
Our reality filter relies on a list of keywords from Wikipedia,
which provides an extensive index of celebrity, TV series and
movie names1. We exclude the videos whose description
matches any of the keywords from the list.

Temporal Filter Our last filter rests on the assumption
that short videos better match their title captions, com-
pared to long videos. It is because long videos usually con-
tain a broad set of attributes that are typically not specified
completely by their captions. Hence, we only retrieve the
YouTube videos which are shorter than 120 seconds.

3.2 VideoStory46K Dataset
Following the proposed procedure, including all quality

filters, we harvest 45,826 videos from YouTube. The videos
have an average length of 58.4 seconds and the whole collec-
tion contains 743 hours of videos. Every video comes with
a short title caption provided by the user who has uploaded

1
wikipedia.org/wiki/List_of_American_television_series

the video. Every caption is made of 7.7 individual terms on
average, with a standard deviation of 1.8 terms. There are
19,159 unique terms in the captions, most of them occurring
infrequently in the collection, i.e., 50% of the terms occur
only once in the collection, and only 0.4% of the terms oc-
cur more than 500 times. Some examples of these frequent
terms are shown as a tag cloud in Figure 3. Our dataset of
videos and their descriptions, which we call VideoStory46K,
is available for download at http://www.mediamill.nl. Il-
lustrative examples from the dataset are shown in Figure 4.

4. EXPERIMENTAL SETUP

4.1 Evaluation Datasets
We perform our experiments on the challenging NIST

TRECVID HAVIC corpus [33] and the Columbia Consumer
Video collection [15], together containing more than 65K
videos collected from the web. To the best of our knowledge
these are the largest publicly available video corpora in the
literature for event recognition containing user-generated
video with a large variation in quality, length and content.

NIST TRECVID HAVIC [33] The 2013 public re-
lease of this dataset comes with five partitions of videos:
Event Kit training, Background training, test set MED, test
set Kindred, and a Research collection, including about 200,
5K, 27K, 14K, and 10K videos, respectively2. Apart from
the Research partition (which we only use in experiment 2),
all four other partitions come with ground truth annotation
at video-level for 20 event categories. We follow the 10Ex
evaluation procedure outlined by the NIST TRECVID event
recognition task [29] for all our experiments. It means that
for each event the training data is composed of 10 positive
videos from the Event Kit training data along with about
5K negative videos from the Background training data. We
report event recognition results of each event classifier on
both the test set MED and test set Kindred datasets.

Columbia Consumer Video [15] This dataset con-
tains 9,317 user-generated videos from YouTube. It consists
of over 210 hours of videos in total, where each video has an
average length of 80 seconds. Moreover, the dataset contains
ground truth annotations at video-level for 20 semantic cat-
egories, where 15 of them are events. The other 5 categories
are objects and scenes, which are excluded from the dataset
in our experiments: “bird”, “cat”, “dog”, “beach” and “play-
ground”. We use the standard partitioning of the dataset,
but we use only 10 positive examples per event in the train-
ing data. These 10 are selected based on alphabetical order
of the respective video names, we ignore the remaining pos-
itive examples in the train set. We report event recognition
results on the standard test partition.

4.2 Event Recognition Protocol
Our event recognition pipeline consists of the following

consecutive steps:
1. Extracting low-level features. For all videos we

compute MBH descriptors [37] along the motion trajecto-
ries. The extracted 288-dimensional descriptors are reduced
to 128 dimensions using PCA and are then aggregated per
video using a Fisher vector [32], with 128 Gaussians result-
ing in a 32K dimensional vector. Each Fisher vector is power

2There is also a PROGRESS set with 98K videos, but this
partition is for blind testing by NIST only.



Crazy guy doing insane stunts on bike.

Cute tabby cat gives her dog a bath

Two kids drive a 1/2 size Jeep through mud

Kids sing happy birthday to daddy

Bobo doesn't like brush his hair

How to check tire Pressure and inflate tires

Cute little girl Sophia trying to make sandwich

Baby climbing refrigerator.... Lil baby..... strong body

Women try win a sack race by alexis868

Figure 4: Example videos and title captions from our introduced VideoStory46K dataset.

normalized, with α = 0.2, as in [14]. This representation is
shown to be state-of-the-art for recognizing events using a
single modality [37].

2. Learning the VideoStory. We learn the Video-
Story on the MBH-encoded videos from the VideoStory46K
dataset using the algorithm described in Algorithm 1, we
use 75% of the dataset for training and 25% for validation
to set the hyper-parameters of our model (λw, λa, λs) and of
SGD (number of epochs, η).

3. Applying the VideoStory. We apply the learned
VideoStory on all the MBH-encoded training and test videos
in the NIST TRECVID HAVIC and Columbia Consumer
Video datasets.

4. Training event classifiers. On top of the VideoStory
we train event classifiers using the 10-example training sets
of the NIST TRECVID HAVIC and Columbia Consumer
Video datasets. We train SVM classifiers with RBF kernels,
which is shown to be effective for learning events from se-
mantic representations [26]. We obtain the parameters for
the SVM regularization cost and the RBF kernel by 2-fold
cross-validation.

5. Testing event classifiers. We apply the event classi-
fiers on the VideoStory embedding of the MED test, Kindred
test and Columbia Consumer Video test sets, and rank the
video classification results.

As an evaluation criteria for the ranked lists, we follow
the standard convention in the literature [15, 29] by relying
on the average precision (AP) per event, and we report the
mean average precision (mAP) for overall accuracy.

4.3 Experiments

4.3.1 Effect of Embedding
In our first experiment we quantify the merit of the Video-

Story, by comparing it with three baselines: an embedding
without joint optimization and two baselines without em-
bedding inspired by the work on image representations by
Berg et al. [4].

Baseline 1: Description embedding. In this baseline
we learn the embedding in two stages. First, the descrip-
tions are embedded using regularized Latent Semantic In-
dexing [38], according to Eq. (2). Then the video embedding
is learned separately, by minimizing the error of predicting
the embedded descriptions from the videos using ridge re-
gression, according to Eq. (3).

Baseline 2: Visual terms. We learn this representation
directly from the terms in the description following Berg et
al. [4] (see Section 1). A linear SVM classifier is trained
per term. The classifiers which have the highest prediction
accuracy, based on a 2-fold cross-validation, are selected as
visual terms in the video representation.

Baseline 3: Frequent terms. This representation is sim-
ilar to baseline 2, but rather than using cross-validation to
select terms it simply selects the terms with the highest fre-
quency in the descriptions. The occurrences of these terms
in the description accompanying a video are considered as
labels which are used for training the classifiers.

We evaluate all four video representations for recognizing
events from few-examples using a varying dimensionality of
the representation, from 32 up to 8,192.

4.3.2 Description Quality and Quantity
In our second experiment we assess the influence of the

quality and quantity of the videos and descriptions that
we use as input to learn our VideoStory. We compare the
VideoStory learned from the VideoStory46K dataset with
two baselines.

Baseline 4: ExpertSentences10K, includes 10K videos
from the Research partition of the NIST TRECVID HAVIC
corpus [33]. Each video in this collection comes with an
expert written description. The descriptions are made of
a few sentences written by a team of 60 expert annotators
with the purpose of summarizing the visual content of the
videos. Consequently, there is always a strong correspon-
dence between a description and its video in this collection.

Baseline 5: VideoStory10K, includes 10K random videos
and descriptions from the VideoStory46K dataset, which we
collected as discussed in Section 3. This collection includes
the same number of videos and captions as the ExpertSen-
tences10K dataset, but the captions are generally of lower
quality for event recognition because of the non-expert de-
scriptions and the fact that video captions on YouTube do
not necessarily correspond to the visual content.

Again we use a varying dimensionality of the representa-
tion, starting from 32 up to 2,048, and we compare their
effectiveness for recognizing events from few examples.

4.3.3 VideoStory vs Others
In this experiment we compare the VideoStory with al-

ternative representations for event recognition. We consider
three state-of-the-art baselines.
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Figure 5: Effect of embedding. The VideoStory, which is learned by our proposed algorithm, outperforms all
three alternatives on all three test sets. The Description embedding is the closest competitor, but it suffers
from the embedding of correlated terms which are visually dissimilar. Representations without term label
combinations, i.e., the Visual terms and Frequent terms, inspired by Berg et al. [4], are always worse.

Baseline 6: Attributes [11]. This representation uses
1,346 pre-specified attribute classifiers to represent a video.
Every image and key frame is represented as a Fisher vec-
tor encoding of densely sampled color SIFT descriptors [36]
with spatial pyramids. Each individual attribute classifier is
trained by a linear SVM on annotated images from TRECVID
and ImageNet. The video representation is obtained by ap-
plying the trained classifiers on the video frames, extracted
every two seconds, and then averaging over the entire video [11].

Baseline 7: Informative Attributes [24]. This baseline
automatically selects informative attributes per event, and
uses the selected subset as video representation. The infor-
mative attributes are selected from the same 1,346 attribute
classifiers used for baseline 6 by using mRMR feature selec-
tion [30] on the training data, with 2-fold cross validation.
The reported results are based on the optimal number of
selected attributes per event.

Baseline 8: Low-Level [37]. The last baseline is the state-
of-the-art Fisher vector representation using MBH descrip-
tors, explained in Section 4.2. In this case the event classi-
fiers are trained directly on the low-level video representa-
tions, without extracting an embedding.

Different from the low-level baseline, the attributes and
the informative attributes baselines rely only on static vi-
sual features, since they are trained, in part, on the Ima-
geNet dataset. These baselines are included because of their
translation ability, a capability the low-level features cannot
achieve. For this experiment we use a fixed 1,024 dimen-
sional VideoStory representation, since this resembles most
closely with the dimensionality of the other semantic base-
lines (using at most 1,346 dimensions), although it is not
necessarily the optimal VideoStory dimensionality.

5. RESULTS

5.1 Effect of Embedding
The results are shown in Figure 5. The VideoStory, which

is learned by our proposed algorithm, outperforms all three
alternatives on all three test sets.

The lowest performing representation is obtained with Vi-
sual terms, which relies on the estimated reliability of in-
dividual term classifiers. As expected, this representation
suffers from two drawbacks. First, many of the visual terms
refer to very specific terms, which are incapable of char-
acterizing the events of interest i.e., necklace, suitcase,
cellphone, elevator and earring. Although these terms

can be accurately predicted from videos, they are incapable
of providing a characteristic representation of the events.
Second, many of the terms rarely occur in video descrip-
tions. For these infrequent terms there are only a limited
number of positive examples available, which leads to a bi-
ased estimation of their reliability. As a consequence, many
of the discovered visual terms might be overfitted to their
small training set and do not generalize well for new videos.

The drawbacks of Visual terms are relaxed by Frequent
terms, by simply relying on the most frequent terms. We
observe the most frequent terms usually refer to character-
izing attributes of events which are frequently used by hu-
mans when describing a video, i.e., car, girl, man, kid,
and truck. Moreover, because of their large number of pos-
itive examples, the trained visual classifiers are in general
more reliable. Hence, Frequent terms consistently outper-
form Visual terms on the MED test, the Kindred test, and
the Columbia Consumer Video datasets.

Both the Visual terms and Frequent terms use no em-
bedding. However, a Description embedding, without joint
optimization, is always better than using no embedding at
all. We explain it by the fact that the Description embed-
ding represents the terms in a reduced-dimensional space,
where the correlated terms are usually combined together.
Combining correlated terms per dimension leads to less cor-
relation between dimensions. Moreover, as the positive ex-
amples for all correlated terms are combined, it provides
more positive video examples to train visual classifiers, of-
ten leading to better accuracy. The results demonstrate that
a more effective video representation is obtained by consid-
ering correlated terms together.

Finally, our proposed VideoStory outperforms the De-
scription embedding, especially for higher dimensional repre-
sentations. For example, by extracting a 1,024 dimensional
Description embedding we obtain an event recognition mAP
of 0.183, 0.287 and 0.405 on MED test, Kindred test, and
Columbia Consumer Video test, respectively. However, by
extracting a VideoStory of the same dimensionality we ob-
tain an event recognition mAP of 0.196, 0.312, and 0.432,
which is a relative improvement of 7%, 9%, and 7%. Given
the difficulty of recognizing events from only ten positive
examples [29], this is a considerable improvement. We ex-
plain the improvement by the fact that combining the terms
based on textual correlation only does not necessarily im-
ply that the corresponding video is visually correlated as
well. For example, the terms puppy and kid have a high
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Figure 6: Description quality and quantity. As expected, the more reliable the correspondence between
description and video content, the better the result. The event recognition accuracy obtained by ExpertSen-
tences10K can be approached, and even improved, by simply harvesting more descriptions from the web.

correlation in the descriptions but are visually dissimilar.
Combining these two terms together, as is done by Descrip-
tion embedding, undermines the accuracy of the classifiers
predicting them from videos. In contrast, our VideoStory
learns the embedding by taking both the term correlations
and their visual similarity into account. In other words, in a
VideoStory the correlated terms are combined only if their
combination improves their classifier prediction. It prevents
the combination of correlated terms which are visually dis-
similar.

5.2 Description Quality and Quantity
The results of experiment 2 are presented in Figure 6. As

expected, the more reliable the correspondence between the
description and the video content it describes, the better the
result. A VideoStory learned from ExpertSentences10K al-
ways performs better than an embedding learned from the
same amount of descriptions from VideoStory10K. Yet it
should be noted that the expert descriptions are generally
unavailable or hard to obtain. Interestingly, the event recog-
nition accuracy obtained by expert descriptions can be ap-
proached, and even improved (for both the test set MED
and test set Kindred) by simply harvesting more descrip-
tions from the web. When considering all results, the com-
plete VideoStory46K dataset is the best choice overall. The
embedding reduces the influence of noisy video descriptions,
especially when the number of input videos and descriptions
are large. It demonstrates the value of user generated videos
and descriptions as an unlimited, free, yet precious resource
for constructing an effective VideoStory.

5.3 VideoStory vs Others
Table 2 and Table 3 show that the VideoStory outper-

forms all three state-of-the-art video representations on all
three test sets. By comparing the VideoStory and the low-
level representation we observe a higher event recognition
accuracy of 0.196 vs 0.174 for the MED test, 0.312 vs 0.263
for the Kindred test, and 0.432 vs 0.409 for the Columbia
Consumer Video test set. It demonstrates that the Video-
Story enriches the video representation by transferring and
incorporating semantics from the descriptions.

The results further demonstrate that the VideoStory out-
performs the attributes and the informative attributes with
ease. We provide two reasons to explain this. First, both
the attributes and the informative attributes rely on the
TRECVID Semantic Indexing task and the ImageNet cat-
egories as attributes. However, many of these pre-specified

Table 3: VideoStory vs Others. VideoStory outper-
forms state-of-the-art video representations on the
Columbia Consumer Videos dataset.

Test set Columbia Consumer Video

Event Attributes [11] Informative [24] Low-Level [37] VideoStory

Basketball 0.293 0.317 0.485 0.553

Baseball 0.401 0.463 0.298 0.299

Soccer 0.336 0.302 0.469 0.505

Ice skating 0.632 0.649 0.646 0.675

Skiing 0.641 0.651 0.610 0.671

Swimming 0.520 0.489 0.691 0.764

Biking 0.324 0.307 0.420 0.561

Graduation 0.083 0.058 0.135 0.121

Birthday 0.149 0.216 0.187 0.257

Wedding reception 0.147 0.201 0.124 0.117

Wedding ceremony 0.216 0.248 0.387 0.324

Wedding dance 0.243 0.294 0.550 0.521

Music performance 0.279 0.247 0.225 0.201

Non-music performance 0.195 0.190 0.334 0.282

Parade 0.247 0.295 0.579 0.634

mean 0.314 0.328 0.409 0.432

attributes are not semantically relevant for the events. For
example, a considerable number of ImageNet categories are
devoted to specific animal species, which are not charac-
teristic for representing events. Although the informative
attributes address this problem by selecting only the most
relevant subset of attributes per event, their performance
is limited to the availability of relevant attributes. If the
relevant attributes are unavailable in the initial pool, they
can never be selected. In contrast to pre-specified attributes,
the VideoStory embedding is automatically derived from the
VideoStory46K dataset, which includes many descriptions
relevant to events. Second, 1,000 out of 1,346 pre-specified
attributes are derived from ImageNet images, for which we
can only extract static visual features. As a consequence,
all the pre-specified attribute representations, which rely on
image data to train attribute predictors, can not benefit
from the state-of-the-art motion features for event recog-
nition. Hence, it limits their performance in comparison
to our VideoStory which is trained from video data. The
results demonstrate the importance of learning a represen-
tation from event descriptions and their corresponding video
data, which are both achieved by using the VideoStory.

Apart from their better event recognition accuracy, the
VideoStory is also extracted much more efficiently compared
to the attribute based representation. The attribute based
representation is trained on images and so can only be ap-
plied to video frames. Hence, extracting the attribute-based



Table 2: VideoStory vs Others. VideoStory outperforms the state-of-the-art on MED and Kindred test set.

Test set MED Test set Kindred

Event Attributes [11] Informative [24] Low-Level [37] VideoStory Attributes [11] Informative [24] Low-Level [37] VideoStory

Birthday party 0.089 0.103 0.083 0.118 0.365 0.379 0.224 0.331

Changing vehicle tire 0.217 0.239 0.106 0.103 0.087 0.109 0.167 0.180

Flash mob gathering 0.432 0.434 0.544 0.535 0.078 0.080 0.248 0.309

Getting vehicle unstuck 0.307 0.309 0.137 0.319 0.354 0.371 0.301 0.393

Grooming animal 0.102 0.110 0.114 0.151 0.328 0.336 0.381 0.501

Making sandwich 0.055 0.054 0.073 0.074 0.297 0.296 0.356 0.278

Parade 0.195 0.198 0.352 0.452 0.056 0.059 0.106 0.146

Parkour 0.170 0.184 0.705 0.721 0.023 0.037 0.619 0.792

Repairing appliance 0.143 0.163 0.174 0.184 0.111 0.131 0.540 0.534

Working sewing project 0.081 0.106 0.085 0.151 0.022 0.047 0.327 0.488

Attempting bike trick 0.135 0.144 0.033 0.061 0.042 0.041 0.099 0.198

Cleaning appliance 0.007 0.033 0.072 0.078 0.008 0.034 0.110 0.162

Dog show 0.164 0.187 0.409 0.354 0.133 0.156 0.479 0.416

Giving directions location 0.007 0.018 0.047 0.004 0.003 0.014 0.004 0.003

Marriage proposal 0.002 0.018 0.007 0.004 0.003 0.019 0.008 0.008

Renovating home 0.047 0.047 0.072 0.051 0.141 0.142 0.112 0.131

Rock climbing 0.090 0.101 0.118 0.100 0.244 0.255 0.557 0.618

Town hall meeting 0.157 0.176 0.149 0.118 0.097 0.116 0.065 0.061

Winning race without vehicle 0.206 0.210 0.130 0.217 0.243 0.255 0.308 0.413

Working metal crafts project 0.090 0.101 0.068 0.118 0.083 0.104 0.241 0.278

mean 0.135 0.147 0.174 0.196 0.136 0.149 0.263 0.312

representation for video includes many predictions for each
individual frame, before they are aggregated per video. In
contrast, our proposed VideoStories are directly trained on
videos and thus provide video-level predictions, which makes
it significantly more efficient.

Finally, we evaluate the video descriptions generated by
VideoStory and by the attribute baseline [11]. Following the
protocol of [7], we use the ROUGE-1 metric on the auto-
matically generated descriptions, with the expert-provided
descriptions as ground truth. For the generated descriptions
we predefine the length k, and use the highest scoring terms
from Eq. (8) for VideoStory, see Figure 8 for some examples
of videos and their predicted terms. As baseline, we use the
highest scoring attributes names.

In Figure 7 we show the results on the MED test and Kin-
dred test sets, where expert-provided descriptions are avail-
able for each video. Since ROUGE-1 is a recall based metric,
it computes the recall of the ground truth terms in the pro-
vided description, we evaluate different values of k. From the
results we observe that VideoStory generates more accurate
video translations, and the performance gap increases for a
higher value of k. This could be explained by the fact that
the attribute baseline uses only terms of TRECVID and Im-
ageNet categories, many being very specific and rarely used
by humans to describe videos. In contrast, VideoStory re-
lies on human-provided descriptions obtained from the web,
which leads to a video description that is more in-line with
the ground truth descriptions.

6. CONCLUSION
In this paper we propose VideoStory a new multimedia

embedding for few-example event recognition and transla-
tion. Our joint objective function aims to optimize the tex-
tual descriptiveness as well as the visual predictability of the
embedding. In contrast to previous approaches, VideoStory
allows both to train event classifiers using just a few exam-
ples in a low-dimensional, yet highly-discriminative, embed-
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Figure 7: VideoStory vs Others. VideoStory gener-
ates more accurate descriptions.

ding space and to translate embedded videos to text. For
training our VideoStory embedding, we rely on the weak su-
pervision of easy to harvest descriptions from web videos.
Therefore, we have introduced the VideoStory46K dataset,
consisting of 46K YouTube videos with their title captions
as descriptions. Results on three challenging test sets show
that our event classification framework outperforms the cur-
rent state-of-the-art. Moreover, we are able to generate hu-
man interpretable translations for previously unseen videos,
opening up new connections with natural language process-
ing and computational linguistics for describing and query-
ing videos.
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