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In the face of current large-scale video libraries, the practical applicability of content-based indexing
algorithms is constrained by their efficiency. This paper strives for efficient large-scale video indexing
by comparing various visual-based concept categorization techniques. In visual categorization, the pop-
ular codebook model has shown excellent categorization performance. The codebook model represents
continuous visual features by discrete prototypes predefined in a vocabulary. The vocabulary size has
a major impact on categorization efficiency, where a more compact vocabulary is more efficient. How-
ever, smaller vocabularies typically score lower on classification performance than larger vocabularies.
This paper compares four approaches to achieve a compact codebook vocabulary while retaining catego-
rization performance. For these four methods, we investigate the trade-off between codebook compact-
ness and categorization performance. We evaluate the methods on more than 200 h of challenging video
data with as many as 101 semantic concepts. The results allow us to create a taxonomy of the four meth-
ods based on their efficiency and categorization performance.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Today, digital video is ubiquitous. This omnipresence of digital vi-
deo material spurs research in automatic content-based indexing.
However, given the sheer quantity of available digital video, the
applicability and quality of current video indexing algorithms se-
verly depends on their efficiency [12,35]. One approach to achieve
efficiency is by means of a compact, yet powerful representation of
the visual data. To this end, this paper compares various methods
which obtain compact and expressive models for video indexing.

As an instantiation of video indexing, we focus on automatic
concept categorization [18,28,38,39,49]. Applications are mainly
found in content-based retrieval and browsing. The goal of concept
categorization is to rank shots according to their relevance to a set
of predetermined semantic concepts. Some examples of these con-
cepts are airplane, beach, explosion, George Bush, people walking, etc.

Many visual concepts are captured as a typical contextual
arrangement of objects [2,15,20,27,30,42]. For example, consider
an image of a beach, a city skyline, or a conference meeting. Such
concepts are portrayed by a composition of the image as a whole,
rather than characterized by one specific part in the image. More-
over, the background context of an object may provide consider-
able recognition cues. Consider Fig. 1 where an object is cut out
of its surroundings. Without the background information, recogni-
tion becomes ambiguous even for humans. Alternatively, in Fig. 2a,
a white patch is placed over the object, where the identity of a hid-
ll rights reserved.

Gemert).
den object may be derived with high accuracy from the context
and nothing but the context. Hence, the background context of
an object can be more informative than the object itself. Therefore,
in this paper we model the whole image for concept categorization,
purposely including the context provided by the background.

We describe visual concepts in context with the codebook, or
bag-of-visual-words, model. The codebook model is inspired by a
word-document representation as used in text retrieval [34]. An
schematic of the codebook model is given in Fig. 3. The codebook
model treats an image as a distribution of local features, where
each feature is labeled as a discrete visual prototype. These proto-
types, or codewords, are defined beforehand in a given vocabulary,
which may be obtained by unsupervised clustering [4,7,17,21,31,
33,36,41], or manual, supervised annotation [5,24,45,48]. Given a
vocabulary, the codebook model allows visual categorization by
representing an image by a histogram of codeword counts. The
codebook model yields a distribution over codewords that models
the whole image, making this model well-suited for describing
context. This paper strives towards efficient concept categorization
by investigating qualitative and compact codebooks.

1.1. Contribution

In this paper, we experimentally evaluate various codebook
methods to obtain a small, compact, vocabulary that discriminates
well between classes. The size of the vocabulary is linked to the dis-
criminative power of the model. A too small vocabulary does not dis-
criminate well between concept categories [47]. Hence, current
state-of-the-art methods typically use several thousands of code-
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Fig. 1. Example of an object that is ambiguous without context.
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words [44,22]. In a practical application, however, it may not be fea-
sible to use such large number of codewords. Practical objections to
a large vocabulary are its storage requirements, working memory
usage, and the computation time to train a classifier. Moreover, it
has recently been shown that a too large vocabulary severely deteri-
orates the performance of the codebook model [47]. Therefore, we
selected four state-of-the-art methods that each individually focus
on improving performance and evaluate these algorithms under a
compactness constraint. The compactness constraint is typically ig-
nored by systems who focus solely on performance. The four com-
pacting methods consist of (1) global vocabulary clustering; (2)
concept-specific vocabulary clustering; (3) annotating a semantic
vocabulary; and (4) soft-assignment of image features to code-
words. Methods 1–3 deal with vocabulary building, where method
2 is a variant of method 1. Method 4 is a generic approach to increase
the expressive power of the codebook vocabulary. We evaluate each
of these methods against each other, on a large shared dataset over
two different feature types, and two different classifiers.

This paper is organized as follows. In the next section we give
an overview of the related literature. In Section 3 we describe
the four evaluated methods. We present our experimental setup
in Section 4, whereas we highlight the results in Section 5. Section
6 concludes the paper.
Fig. 2. Example showing the influence of context. (a) The surroundings of an object and
inferred from the context.

Fig. 3. An example of the visual word, or codebook model. An image is represented as a
vocabulary. The distribution of the codeword-counts yields the image model.
2. Related work

Several techniques exist for efficiently retrieving high-dimen-
sional image features in large image collections. Nistér and Stewé-
nius [29] use hierarchical k-means clustering to quantize local
image features in a vocabulary tree. This vocabulary tree demon-
strates efficient feature retrieval in as many as 1 million images. A
tree structure is also used by [23] who obtains efficiency gains by
reducing the dimensionality of the features by a truncated Mahalan-
obis metric. Moreover, novel quantization method based on ran-
domized trees is used by [32]. In contrast to a tree structure,
Grauman and Darrell [11] present an approximate hashing scheme
based on pyramid matching. The pyramid matching allows multi-
resolution image matching while the hashing technique allows
sub-linear retrieval in large collections of features. Hashing is also
used by Kise et al. [19] who show that a simple binary representa-
tion of feature vectors can result in an efficient approximate nearest
neighbor algorithm. Tree and hashing algorithms are well-suited for
assigning features to extremely large vocabularies, with millions of
centroids. These algorithms, however, do not consider categoriza-
tion. They focus on recognition of (close to) exact image and feature
matches. For categorization with the codebook model, a vocabulary
of a million codewords is no longer practical when training a classi-
fier, and a tree-structure does not help out there. The classifier is still
left with storing a feature vector of a million codewords for each im-
age. Therefore, we focus on compact vocabularies for efficiency.

A compact codebook model can be achieved by modeling
codeword co-occurrence. Under the assumption that frequent
(b) the whole image. Note that the category of the hidden object in (a) can easily be

bag-of-regions where each region is represented by the best fitting codeword in the
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co-occurring codewords describe similar information, the vocabu-
lary size may be reduced by merging these codewords. Codeword
co-occurrence is typically modeled by a generative probabilistic
model [3,14]. To this end, Fei-Fei and Perona [7] introduce a
Bayesian hierarchical model for scene categorization. Their goal
is a generative model that best represents the distribution of
codewords in each concept category. They improve on latent
Dirichlet allocation [3] by introducing a category variable for clas-
sification. The proposed algorithm is tested on a dataset of 13 nat-
ural concept categories where it outperforms the traditional
codebook model by nearly 30%. The work by Fei-Fei and Perona
is extended by Quelhas et al. [33], who investigate the influence
of training data size. Moreover, Bosch et al. [4] show that proba-
bilistic latent semantic analysis improves upon latent dirichlet
allocation. Further contributions using co-occurrence codebook
models are by [41]. Typically, a generative model is built on top
of a codebook model. Hence, the techniques proposed in this pa-
per can easily be extended with co-occurrence modeling. The ex-
tra modeling step requires ample additional processing which is
less practical for large datasets. Moreover, an additional step
makes it harder to evaluate which part of our algorithm is respon-
sible for what. Therefore, in this paper, we focus on compact
codebook models, without introducing additional co-occurrence
modeling steps.

Apart from co-occurrence modeling, a compact codebook may
be achieved directly by reducing the vocabulary size or by carefully
selecting the vocabulary elements. Such a careful selection can be
achieved with a semantic vocabulary [5,45,24,48] that describes an
image in meaningful codewords. A semantic vocabulary can be
constructed by manually selecting image patches with meaningful
labels, for example sky, water or vegetation. The idea of meaningful
codewords, is that they allow a compact, discriminative, and
semantic image representation. In contrast to annotating a vocab-
ulary, Jurie and Triggs [17] compare clustering techniques to ob-
tain a vocabulary. Specifically, they show that radius-based
clustering outperforms the popular k-means clustering algorithm.
Furthermore, Winn et al. [50] concentrate on a global codebook
vocabulary, whereas Perronnin et al. [31] focus on concept-specific
vocabularies.

In this paper, we concentrate on compact vocabulary construc-
tion while trying to retain the ability to discriminate well between
concept categories. Note that this is more general than vocabular-
ies that are built by a discriminative criterion [25]. Such methods
assume that the discriminative ability of a single feature carries
over to the whole vocabulary. Hence, a vocabulary created by dis-
criminative criteria of single features also aims at a final vocabu-
lary which is discriminative between concept categories.

Instead of reducing the size of a vocabulary, the expressive
power of the vocabulary may be increased. With higher expressive
power, a vocabulary needs less codewords to obtain similar perfor-
mance which in turn leads to a more compact vocabulary. The
expressive power can be increased by disposing of the hard-assign-
Fig. 4. Three examples of continuous space partitioning, using (a) a uniform histogram,
histogram, the cluster centers in densely populated areas of k-means, and the uniform p
ment of a single codeword to a single image features. Instead of
using hard-assignment, some weight may be given to related code-
words. To this end, Tuytelaars and Schmid [43] and Jiang et al. [16]
assign weights to neighboring visual words. Whereas a visual word
weighting scheme based on feature similarity is used in Agarwal
and Triggs [1] and in our previous work [45,47]. This soft-assign-
ment increases the expressiveness of a vocabulary. We will test
the influence of soft-assignment on vocabulary compactness. In
the next section we will present the details of the method.
3. Compact codebook models

In the codebook model, the vocabulary plays a central role. The
expressive power of the vocabulary determines the quality of the
model, whereas the size of the vocabulary controls the complexity
of the model. Therefore, vocabulary construction directly influ-
ences model complexity. We identify two methods for construct-
ing a vocabulary: a data-driven approach characterized by
unsupervised clustering and a semantic approach which relies on
annotation. Besides the construction of the vocabulary, the expres-
sive power may be increased. To this end, we consider replacing
the hard-assignment of codewords to image features with soft-
assignment. This soft-assignment aims for a more powerful vocab-
ulary, which in turn leads to a more compact model.
3.1. Codebook compactness by a clustered vocabulary

A codebook vocabulary consists of discrete visual codewords,
which are described by high-dimensional features. In order to ob-
tain discrete codewords, the continuous high-dimensional feature
space needs to be discretized. A common approach to discretizing
a continuous feature space is by uniform histogram binning. How-
ever, in a high-dimensional feature space a histogram with a fixed
bin size for each dimension will create an exponentially large num-
ber of bins. Moreover, since feature spaces are rarely uniformly dis-
tributed, many of these bins will be empty [43]. We illustrate the
partitioning of a continuous feature space with a uniform histo-
gram in Fig. 4a.

An alternative to a uniform partitioning of the high-dimensional
feature space is unsupervised clustering. The benefit of using clus-
ters as codewords is a small vocabulary size without empty bins. A
popular clustering approach for finding codewords is k-means
[4,7,17,21,31,33,41]. k-Means is an unsupervised clustering algo-
rithm that tries to minimize the variance between k clusters and
the training data, where k is a parameter of the algorithm. The
advantages of k-means are its simple and efficient implementation.
However, the disadvantage of k-means is that the algorithm is var-
iance-based. Thus, the algorithm will award more clusters to high-
frequency areas of the feature space, leaving less clusters for the
remaining areas. Since frequently occurring features are not
necessarily informative, this over-sampling of dense regions is
(b) k-means clustering, and (c) radius-based clustering. Note the empty bins in the
artitioning of radius-based clustering.
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inappropriate. For example, in analogy of text retrieval, the most
frequent occurring words in English are the so called function
words like the, a, and it, despite their high frequency these function
words convey little information about the content of a document.
Therefore a codebook vocabulary based on variance-based cluster-
ing may not be as expressive as it could be.

In contrast to variance-based clustering, Jurie and Triggs [17]
argue that the codewords for a codebook vocabulary are better rep-
resented by radius-based clustering. Radius-based clustering as-
signs all features within a fixed radius of similarity r to one
cluster, where r is a parameter of the algorithm. This radius de-
notes the maximum threshold between features that may be con-
sidered similar. As such, the radius determines whether two
patches describe the same codeword. Hence, the influence of the
radius parameter r on the codebook model is clear where the
number of clusters, k, in k-means clustering is typically chosen
arbitrary. The difference between radius-based clustering and
k-means is illustrated in Fig. 4b and c. Note that the codewords
found by k-means populate the densest part of the feature space,
whereas the radius-based method finds codewords that each rep-
resent a distinct part of the feature space. Hence, radius-based
clustering results in a non-empty, uniform sampling of a continu-
ous feature space. Therefore, we will adopt radius-based clustering
for data-driven codebook vocabulary creation.
3.1.1. Concept-specific vocabulary
A vocabulary formed by unsupervised clustering offers us the

opportunity to construct a different, tuned, vocabulary for each con-
cept [21,31]. This tuning endows each concept with its own unique
vocabulary. For example, it might be beneficial to model the concept
boat with a different vocabulary than the concept office, since scenes
with a boat will contain water and sky, whereas office scenes hold
tables and chairs. The idea behind concept-specific vocabularies is
to obtain a reduced vocabulary, while retaining expressive power.
We will experimentally compare the compactness and expressive-
ness of the concept-specific vocabularies against a global vocabulary
obtained by clustering the whole feature space.
3.2. Codebook compactness by a semantic vocabulary

Whereas the previous section described a clustering approach
for obtaining a codebook vocabulary, this section will focus on a
semantic vocabulary. The use of semantic codewords builds on
the principle of compositionality, stating that the meaning of an
image can be derived from the meaning of the constituent parts
of the image [5,24,45,48]. For example, an outdoor image is likely
to contain vegetation, water, or sky. A semantic vocabulary consists
of meaningful codewords. Therefore, the creation of the vocabulary
requires a human annotator. This annotation step typically consists
of drawing bounding boxes around a meaningful patch of pixels
[45,48]. The rationale behind meaningful codewords is that local
image semantics will propagate to the global codebook image
model, leading to compact visual models.

Both the semantic vocabulary and the clustered vocabulary
have specific advantages and disadvantages. The semantic vocabu-
lary approach is based on manual selection of visually meaningful
codewords. However, this approach has the underlying assumption
that images can be decomposed in these semantic codewords,
which may not hold for all images. For example, an indoor image
is unlikely to contain any sky or buildings. In contrast to semantic
labeling, clustering uses statistics to determine descriptive code-
words. However, these codewords lack any meaningful interpreta-
tion. Such an interpretation may be important since humans
typically decompose complex scenes into meaningful elements.
Both approaches of acquiring a vocabulary of low-level descriptors
have their merits. We will experimentally compare both methods
to determine their compactness and expressiveness.
3.3. Codebook compactness by soft-assignment

In order to take the continuous nature of image patches into ac-
count, we have proposed [45] to base the codebook model on a de-
gree of similarity between patches. Similarity between patches is a
more suitable representation than assigning only one visual word
to an image patch. Labeling an image patch with the single best vi-
sual word ignores all ambiguity regarding the meaning of the im-
age patch. In contrast, assigning a degree of similarity to an
image patch will model the inherent uncertainty of the image
patch. For example, instead of labeling a blue pixel patch as sky,
the patch is better represented by saying that its similarity to sky
is 0.9, and its similarity to water is 0.8. By using soft-assignment
to model the uncertainty of the meaning of an image patch, we
foresee improved expressive and discriminative power while
maintaining a constant vocabulary size [45]. To evaluate this claim
we will test soft-assignment versus hard-assignment as used in the
traditional codebook model. If this claim is sound, the vocabulary
size may be reduced, which in turn yields a more compact
codebook.

Soft-assignment is easily incorporated in the codebook model. For
each codeword, or bin, b in the vocabulary V the traditional codebook
model constructs the distribution of codewords over an image by

HðbÞ ¼
X

r2RðimÞ

1 if b ¼ arg max
v2V

ðSðv; rÞÞ;

0 otherwise:

(
ð1Þ

Here, RðimÞ denotes the set of regions in image im, and Sðv ; rÞ is the
similarity between a codeword v and region r. The similarity Sðb; rÞ
is specific to the type of image features that are used. The similari-
ties are given with the image features in Appendix A. The similari-
ties allow replacing hard-assignment with soft-assignment by

HðbÞ ¼
X

r2RðimÞ
Sðb; rÞ: ð2Þ

This soft-assignment weights each codeword according to the sim-
ilarity of an image region to this codeword. Fig. 5 illustrates this
advantage.
4. Experimental setup

The experiments focus on the relation between codebook com-
pactness and codebook quality. Codebook compactness is given by
the size of the vocabulary, whereas codebook quality is measured
by its categorization performance. To reduce dependency on a sin-
gle visual feature, we show results over two visual features (Wic-
cest features and Gabor features, see Appendix A). Furthermore,
we investigate the effect of the linear and light-weight Fisher clas-
sifier against a computationally more intensive non-linear SVM
classifier. We identify three experiments:

� Experiment 1: Soft-assignment versus hard-assignment.
� Experiment 2: Semantic vocabulary versus globally-clustered

vocabulary.
� Experiment 3: Semantic vocabulary versus concept-specific clus-

tered vocabulary.

The experiments are conduced on a large video dataset where
each shot is annotated if a concept is present. This fixed ground-
truth allows repeatable experiments.
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Fig. 5. Two examples indicating the difference between hard-assignment and soft-assignment of codewords to image features. The first row shows two images with each five
samples (dots) around two codewords ‘a’ and ‘b’. The second row displays the normalized occurence histograms of hard-assignment and soft-assignment for both images.
Note that hard-assignment is identical for both examples, whereas soft-assignment is sensitive to the position of the samples.
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4.1. Video datasets

The experiments are evaluated on the TREVID 2005 develop-
ment set [37]. This video set contains nearly 85 h of English, Chi-
nese and Arabic news video. In addition to the video data, we
use the standard ground truth provided by the MediaMill Chal-
lenge [40]. This ground truth defines 101 semantic concepts with
shot labels for each category, where the video data is split in 70%
for training, and the remaining 30% for testing. In total there are
43,907 shots, where 30,630 are in the training set, and 13,277 in
the testing set. The shots are indexed by their representative key-
frame, as defined by the MediaMill Challenge. We selected the
MediaMill Challenge because it is a realistic and challenging data-
set with a shared ground truth, allowing repeatable experiments.
In Fig. 6 we show some concepts defined by the MediaMill Chal-
lenge. Note the wide variety of concepts, i.e.: graphics (drawing,
maps, weather), objects ( bird, chair, flag USA), scenes (duo-anchor,
meeting, night fire, river, sky, splitscreen, studio, tennis), persons
(anchor, Mr. Lahoud, prisoner), and emotional (entertainment). The
video data is a realistic subset of broadcast news, containing com-
Fig. 6. Some examples of the concepts defined by the MediaMill Ch
mercials, e.g. (bird, river), and concepts with little variation in their
appearance for this set, (e.g.night fire,tennis, chair, weather, anchor).
In contrast to simplified datasets recorded in a laboratory setting
[26], the MediaMill Challenge allows a more truthful extrapolation
of our conclusions to other real-world datasets.
4.2. Visual categorization implementation

4.2.1. Image features
To evaluate if a method generalizes over visual features, we

conduct all experiments with two different image features: Wic-
cest and Gabor. Wiccest features rely on natural image statistics
which makes them well suited to describe natural images. On
the other hand, Gabor features respond to regular textures and col-
or planes, which is beneficial for man-made structures. Both these
image features measure colored texture, where the Gabor features
also takes non-textured color into account. Each feature is calcu-
lated on two scales, making them sensitive to differently scaled
textures. We selected texture features because of their ability to
allenge, which we use to evaluate categorization performance.



J.C. van Gemert et al. / Computer Vision and Image Understanding 114 (2010) 450–462 455
describe the foreground as well as the contextual background of an
image. More details about the image features are in Appendix A.

4.2.2. Image sampling
The codebook model represent an image as a distribution over

codewords. To build this distribution, several regions are sampled
from an image. Since grid-based sampling is shown to outperform
interest points in scene categorization [7,17], we use a grid for re-
gion sampling. Specifically, this grid is constructed by dividing an
image in several overlapping rectangular regions. The regions are
uniformly sampled across the image, with a step size of half a re-
gion. We use two different region sizes, with ratios of 1

2 and 1
6 of

both the x-dimension and y-dimension of the image.

4.3. Compact codebook models implementation

4.3.1. Semantic vocabulary
A semantic vocabulary consists of meaningful elements, ob-

tained by annotation. We use the semantic vocabulary by [45]. This
vocabulary consists of 15 different codewords, namely: building
(321), car (192), charts (52), crowd (270), sand/rock (82), fire
(67), flag USA (98), maps (44), mountain (41), road (143), sky
(291), smoke (64), snow (24), vegetation (242), water (108), where
the number in brackets indicates the number of annotation sam-
ples of that concept. We use the train set as a basis for selecting rel-
evant shots containing the codewords. In those shots, we annotate
rectangular regions where the codeword is visible for at least 20
frames. Note that a vocabulary of 15 codewords, evaluated for
two scales and two region sizes will yield a descriptor of
4� 15 ¼ 60 elements.

4.3.2. Globally-clustered vocabulary
A globally-clustered vocabulary is created on all image features

in the train set. We build a such a global vocabulary by radius-
based clustering. Radius-based clustering aims to cover the feature
space with clusters of a fixed similarity radius. Hence, the algo-
rithm yields an even distribution of visual words over the feature
space and has been shown to outperform the popular k-means
algorithm [17]. Whereas Jurie and Triggs [17] use mean-shift with
a Gaussian kernel to find the densest-point, we maximize the num-
ber of features within its radius r for efficiency reasons.

Since each image features is calculated at two scales for two re-
gion sizes there are four image descriptors per feature. We cluster
each descriptor separately, yielding four different clustering steps.
The final vocabulary consists of the resulting clusters for a single
radius as found by all these four clustering steps. Note that the
number of clusters may vary per scale and region size combination.

4.3.3. Concept-specific clustered vocabulary
A concept-specific vocabulary is designed for a single concept.

Such a specific vocabulary may be found by limiting the radius-
based clustering algorithm to images in a single class only. This
makes the resulting clusters depend on only that subset of the fea-
ture space which is relevant for the concept. Note that the images
are labeled globally, whereas the clustering is based on local code-
words. The clustering step itself is identical to the globally-clus-
tered vocabulary, and is performed separately for each of the
four feature scale and region size combinations.

4.4. Supervised machine learning implementation

Automatic concept categorization in video requires machine
learning techniques. For each semantic concept, we aim for a rank-
ing of shots relevant to this concept. To evaluate this ranking, we
employ two classifiers: a strong and computationally intensive
SVM classifier and a weak but fast Fisher classifier. Fisher’s linear
discriminant [8] projects high-dimensional features to a one-
dimensional line that aims to maximize class separation. The most
important reason why we use Fisher’s linear discriminant is its fair
categorization performance with high efficiency. This efficiency is
mostly due to its linearity and the benefit that this classifier has
no parameters to tune. The other classifier is the popular discrim-
inative maximum-margin SVM classifier. The reason for choosing
an SVM is because it generally gives good results on this type of
data [40]. For the SVM we use a non-linear v2 kernel, where we
use episode constrained cross-validation [46] to tune the best C-
slack parameter.

4.5. Evaluation criteria

We evaluate compactness and categorization performance.
Compactness is measured in by the size of the codebook vocabu-
lary. For measuring categorization performance, we adopt average
precision from the Challenge framework. Average precision is a
single-valued measure that summarizes the recall–precision curve.
If Lk ¼ fs1; s2; . . . ; skg are the top k ranked elements from the re-
trieved results set L, and let R denote the set of all relevant items,
then average precision (AP) is defined as

APðLÞ ¼ 1
jRj
XjLj
k¼1

jLk \ Rj
k

IRðskÞ; ð3Þ

where j � j denotes set cardinality and IRðskÞ ¼ 1 if sk 2 R and 0 other-
wise. In our experiments we compute AP over the whole result set.

Average precision measures the categorization performance for
a single concept. The MediaMill Challenge, however, defines 101
concepts. As the performance measure over multiple concepts,
we report the mean average precision (MAP), given by the average
precision averaged over all concepts.

5. Experimental results

5.1. Experiment 1: soft-assignment versus hard-assignment

The first experiment compares soft-assignment with hard-
assignment in the codebook model for a semantic vocabulary over
two classifiers and over the two visual features. In Appendix A we
detail both features and their respective soft-assignment functions.
In Fig. 7 we show the results for the Wiccest and Gabor features.
The figure illustrates that performance for nearly all concepts im-
proves by using soft-assignment. This improvement is in line with
the expectations in [45]. In the few cases where soft-assignment is
outperformed by hard-assignment, the performance difference is
marginal. On average over the two features and two classifiers
there are 92� 2:71 concepts that increase and 8:75� 2:87 con-
cepts that decrease. Over both features and both classifiers there
are 78 of the 101 concepts that always improve. In contrast, there
is no concept whose performance always decreases. For the four
feature-classifier combinations, there are 28 concepts that de-
crease in performance for at least one of these combinations. Note
that this is the absolute worst-case performance. In contrast, all
101 concepts are found to increase at least once or more in the four
feature-classifier combinations. The average performance over all
101 concepts for the two visual features is shown in Table 1. The
table shows that using soft-assignment improves performance
for both feature types and for both classifiers.

The difference per concept between soft-assignment and hard-
assignment is given in Fig. 8. Here we show the five most increas-
ing concepts and the five most decreasing concepts by replacing
hard-assignment with soft-assignment. Note that the performance
gain by the improving concepts is several magnitudes higher
than the decrease in performance. There are four concepts that



Fig. 7. Comparing hard-assignment versus soft-assignment for all 101 concepts, over two different visual features with a semantic vocabulary.
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consistently decrease in the bottom five. The concepts prisonerper-
son, HassanNasrallah, bicycle are found in the bottom five of the Ga-
bor features for both the Fisher as the SVM classifier. These
concepts are sensitive to exact color matching. The bicycle concept
is a sparse but repetitive commercial, and the prisonerperson, Has-
sanNasrallah concepts contain shots of highly discriminative colors,
like an orange prisoner uniform. Since the Gabor features take the
color of an image patch into account, these features are more ef-
fected than the Wiccest features. The six concepts bird, river, Duo-
NewsAnchorPersons, graphicalmap, EmileLahoud, splitscreen
consistently increase in the top five. Of these six concepts the con-
cepts graphicalmap and EmileLahoud are found in the Gabor fea-
tures top five for both the Fisher as the SVM classifier. In this
case the concepts are again typically colorful, such as the many
variations of a graphicalmap, or a colorful flag in the background
of Mr. EmileLahoud. In this case, however, performance increases.
We deem that this is the case because there is significant variation
in the colors. By using soft-assignment this variation is better mod-
eled. The concept DuoNewsAnchorPersons increases for the Wiccest
Table 1
The mean average precision over all 101 concepts in experiment 1. Results are shown
for hard-assignment versus soft-assignment for Wiccest features and Gabor features
and the Fisher and SVM classifier, using a semantic vocabulary. Note that soft-
assignment outperforms hard-assignment for both feature types and for both
classifiers.

Experiment 1 Wiccest Gabor

SVM Fisher SVM Fisher

Hard-assignment 0.120 0.113 0.100 0.097
Soft-assignment 0.179 0.157 0.187 0.175
features in both the SVM as in the Fisher classifier. Again, we attri-
bute the gain of soft-assignment to slight variation between the
examples. With slight variation in the images, hard-assignment
may choose complete different visual words, whereas soft-assign-
ment proves robust. The concept splitscreen is found in the top five
of three feature-classifier combinations. Only the Gabor-Fisher
does not have this concept in the top five. This concept is charac-
terized by a strong artificial edge in the middle of the screen.

Besides this edge, there is some variation on the people present
in the screens. Again, soft-assignment seems to be able do deal bet-
ter with this variation. The concept bird improves for Wiccest-Fish-
er and for Gabor-SVM. This concept is a repetitive commercial. We
attribute the reason why static or near-copies benefit most to the
fact that minor changes in the image content results in minor
changes in the soft-assignment approach. In contrast, minor image
content changes in the traditional codebook model may give rise to
completely different codewords stemming from the hard-assign-
ment in this method. In Fig. 6 we show example images for some
concepts.

5.2. Experiment 2: semantic vocabulary versus globally-clustered
vocabulary

As a second experiment, we focus on the difference between a
semantic vocabulary and a clustered vocabulary. In Fig. 9 we show
the results with hard-assignment and soft-assignment over the
two features and over the two classifiers. This figure shows that
increasing the number of visual words increases the performance.
Moreover, the figure shows a clear advantage of using an SVM clas-
sifier over the Fisher classifier. Nevertheless, for Gabor features
with a vocabulary of 1480 codewords the Fisher classifier proves



Fig. 8. The difference between soft-assignment and hard-assignment for the top and bottom five concepts in experiment 1.

Fig. 9. Comparing a semantic codebook vocabulary with a globally-clustered codebook vocabulary for hard-assignment and soft-assignment. Results are shown in mean
average precision over 101 concepts. The semantic vocabulary is the same as in experiment 1. Note that the Wiccest and the Gabor features have different vocabulary sizes.
This is the case, because the number of clusters depends on the similarity function of the visual features (see Appendix A).
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competitive to an SVM classifier. Note that a larger vocabulary not
always yields the best results. For example, for the Fisher classifier
with soft-assignment, the largest vocabulary is not the best per-
forming one. Furthermore, the figure shows that for Wiccest fea-
tures and a Fisher classifier the performance difference between
a semantic and a clustered vocabulary is only slightly in favor of
the semantic vocabulary when both vocabularies have an equal
number of visual words (±60). In contrast, for Gabor features a
semantic vocabulary is more beneficial, yielding a higher perfor-
mance for a lower number of codewords. We credit this difference
between the Wiccest and the Gabor features to the difference in
dimensionality between the features. The Wiccest features use
only 12 numbers, whereas the Gabor features consist of histograms
of 101 bins. Since the feature-space of the Gabor descriptor is much
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higher in dimensionality, it is harder to fill this space, let alone find
discriminative visual words. In contrast to clustering, a semantic
vocabulary is given by manual annotation. This annotation step
introduces meaningful visual words without the need to partition
a high-dimensional feature space. Nevertheless, a fixed sized
semantic vocabulary is outperformed by a clustered vocabulary
for both features. This performance gain comes at a price, paid
by an exponentially growing visual word vocabulary, leading to a
more complex, and therefore less compact model. Comparing the
results of a semantic vocabulary and a clustered vocabulary for
the SVM classifier, shows a clear advantage for a clustered vocab-
ulary. The clustered vocabulary already outperforms a semantic
vocabulary with half the number of codewords in the case of Wic-
cest features. Moreover, for the Wiccest features the hard-assign-
ment method outperforms the soft-assignment method for large
vocabularies. In the case of the Gabor features, the hard-assign-
ment performance equal to soft-assignment for large vocabularies.
Nevertheless, for an SVM classifier, soft-assignment proves robust
over the size of the vocabulary. Soft-assignment clearly outper-
forms hard-assignment for compact vocabularies.
Fig. 10. The red dots indicate the best performing vocabulary size for each concept. The c
the references to colour in this figure legend, the reader is referred to the web version o

Fig. 11. Comparing a semantic vocabulary with a conce
In Fig. 10 we show per concept the vocabulary size which gives
the best performance. Moreover, we show the contours of the areas
that perform within 90% of the best score. When comparing soft-
assignment versus hard-assignment, it can be seen that for soft-
assignment there are more areas where the performance is within
90% of the best score. Hence, soft-assignment seems more robust
to the size of the vocabulary. Furthermore, the figure shows that
soft-assignment has more variation in the size of the best vocabu-
lary than hard-assignment. Hence, soft-assignment seems the bet-
ter choice for compact vocabularies. Moreover, as the variation in
the size of the best vocabulary suggests, it may prove beneficial
to tune a vocabulary per concept, instead of using a global vocab-
ulary. This tuning per concept is explored in the next section.

5.3. Experiment 3: semantic vocabulary versus concept-specific
clustered vocabulary

In an attempt to create more compact vocabularies while keep-
ing performance on par, we evaluate individual vocabularies that
are tuned to the specific concept at hand. These concept-specific
ontours highlight the area within 90% of the best performance. (For interpretation of
f this article.)

pt-specific vocabulary, both using soft-assignment.
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vocabularies are created by restricting the radius-based clustering
algorithm to the positive examples of a semantic concept. To con-
strain the computations, we limit this experiment to the Fisher
classifier only and to the 39 concepts that were used in the TREC-
VID 2006 benchmark. Moreover, we select a fixed radius for the
clustering algorithm: r ¼ 1:2 for the Wiccest features and r ¼ 4:5
for the Gabor features. These radii are selected with the intention
to closely match the performance of the semantic vocabulary.

The performance differences between the semantic vocabulary
and the concept-specific vocabularies for the Wiccest and Gabor
features using soft-assignment are shown in Fig. 11. Note that
the performance of both methods is closely aligned. Nevertheless,
there are a few concepts that perform better with a concept-spe-
cific vocabulary. The top ten of the concepts that increase most
are shown in Fig. 12. Some video frames containing these concepts
are shown in Fig. 6. In the top ten, there are three concepts (animal,
weather, sky) that increase for both features. The other features
that improve per visual feature seem related to the feature type.
The Wiccest features are related to edge statistics as found in nat-
ural images, and the concepts that improve are related to natural
scenes (animal, mountain, waterbody, desert, sports, sky, crowd). Fur-
thermore, it is striking that seven concepts out of the top ten for
the Wiccest features consist of elements that are also used in the
semantic vocabulary (mountain, waterbody, desert, charts, maps,
Fig. 12. The 10 concepts that benefit most from a conce

Table 2
The number of codewords used to obtain the same performance over three types of vo
(experiment 3). The size of the codeword vocabulary is shown, with the mean average prec
case of the concept-specific vocabulary, we show the average number of codewords, since

Feature Experiment 1: semantic Experiment 2

Size MAP Size

Wiccest 60 0.219 205
Gabor 60 0.235 249

Table 3
Summary of the four evaluated methods to obtain a compact and expressive codebook. We
method yields compact models, with good performance. We distinguish between a strong c
denotes good, � indicates bad, and ± is medium. Note that soft-assignment is performed

Method Manual Computational

Strong Wea

Semantic � ± +
Globally clustered + � ±
Concept-specific clustered + � �
sky, crowd). We speculate that this is the case because the im-
proved concepts for the Wiccest features focus on natural images,
and the semantic vocabulary consists mainly of naturally occurring
codewords. In the case of Gabor features, that are more related to
color and texture frequency, the concepts that improve may rely on
colored texture for discrimination (prisoner, flag USA, meeting,
entertainment, weather, studio). Nevertheless, disregarding those
few outliers who outperform the semantic vocabulary, both vocab-
ulary types perform more or less equal, as intended.

In Table 2 we show the number of codewords used to achieve
more or less the same performance. The number of codewords
for the concept-specific vocabulary was found by increasing the ra-
dius of the clustering algorithm, until the performance of the con-
cept-specific clustered vocabulary was reached. The results show
that an annotated vocabulary has the most compact descriptor,
with only 60 visual words. In contrast, the globally-clustered
vocabulary requires at least three times more visual words than
a semantic vocabulary. The individually clustered concept-specific
vocabularies require two times the number of codewords than a
semantic vocabulary. However, those concept-specific vocabular-
ies are still only half the size of a globally clustered vocabulary.
Hence, while a semantic vocabulary proves the most descriptive,
the concept-specific clustered vocabularies yield a more powerful
descriptor than a globally-clustered vocabulary (see Table 3).
pt-specific vocabulary over a semantic vocabulary.

cabularies: semantic (experiment 1), clustered (experiment 2), and concept-specific
ision in brackets for Wiccest features and Gabor features using soft-assignment. In the

this varies per concept.

: clustered Experiment 3: concept-specific

MAP Size MAP

0.251 128.7 0.244
0.270 118.5 0.254

indicate if a method requires manual annotation effort, computation effort, and if the
lassifier such as an SVM and a weak classifier such as Fisher’s linear discriminant. A +

after vocabulary creation, thus it is not affected by annotation nor clustering.

Compact Performance

k Strong Weak Strong Weak

� + � ±
+ � + +
+ + + +
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5.4. Summary of experimental results

We summarize our results in Table 3. The first observation we
can make is that soft-assignment typically outperforms hard-
assignment in the codebook method. This improvement has been
shown for two different visual features and for both a semantic
vocabulary and a clustered vocabulary over two classifiers. Only
for a very large vocabulary and an SVM classifier hard-assignment
may improve over soft-assignment. Furthermore, the semantic
vocabulary which requires manual annotation work has been
shown to provide a competitive vocabulary when a weak classifier
is used. In the case of the Fisher classifier it yields excellent perfor-
mance with a minimum number of visual words leading to com-
pact and expressive codebooks. For the Fisher classifier, a
clustered vocabulary outperforms a semantic vocabulary when
the number of visual words is high enough. However, this high
number of visual words leads to less compact models, which
may be infeasible for large video datasets. In the case of a strong
classifier, the results show that clustered vocabularies outperform
a semantic vocabulary. However, an SVM classifier takes more ef-
fort to train, with additional complication with cross-validation
for parameter tuning [46]. Additional results indicate that the
number of visual words in a clustered vocabulary may be reduced
by tuning this vocabulary to each concept. These tuned vocabular-
ies retain categorization performance while maintaining a reason-
ably compact vocabulary.
6. Conclusions

Given the vast amount of visual information available today, the
applicability of automatic visual indexing algorithms is con-
strained by their efficiency. Accordingly, this paper focuses on
compact, and thus efficient, models for visual concept categoriza-
tion. We considered the codebook algorithm where model com-
plexity is determined by the size of the vocabulary. We
structurally compared four approaches that lead to compact and
expressive codebooks. Specifically, we compared three methods
to create a compact vocabulary: (1) global clustering, (2) con-
cept-specific clustering, and (3) a semantic vocabulary. The fourth
approach increases expressive power by soft-assignment of code-
words to image features. We experimentally compared these four
methods on a large and standard video collection. The results show
that soft-assignment improves the expressive power of the vocab-
ulary, leading to increased categorization performance without
sacrificing vocabulary compactness. Further experiments showed
that a semantic vocabulary leads to compact vocabularies, while
retaining reasonable categorization performance. A concept-spe-
cific vocabulary leads to reasonable compact vocabularies, while
providing fair visual categorization performance. Given these re-
sults, the best method depends at the application at hand. In this
paper we presented a guideline for selecting a method given the
size of the video dataset, the desirability of manual annotation,
the amount of available computing power and the desired catego-
rization performance.
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Fig. A.1. Some examples of the integrated Weibull distribu
Appendix A. Image features

A.1. Wiccest features

Wiccest features [9] utilize natural image statistics to effec-
tively model texture information. Texture may be described by
the distribution of edges at a certain region in an image. Hence, a
histogram of a Gaussian derivative filter is used to represent the
edge statistics. The histogram describes image statistics in natural
textures, which are well modeled with an integrated Weibull dis-
tribution [9]. This distribution is given by

f ðrÞ ¼ c
2c

1
cbCð1cÞ

exp �1
c

r � l
b

���� ����c� �
; ðA:1Þ

where r is the edge response to the Gaussian derivative filter and
Cð�Þ is the complete Gamma function, CðxÞ ¼

R1
0 tx�1e�1dt. The

parameter b denotes the width of the distribution, c represents
the ‘peakness’ of the distribution, and l denotes the mode of the
distribution. See Fig. A.1 for examples of the integrated Weibull
distribution.

The Wiccest features for an image region consist of the Weibull
parameters for the illumination invariant edges in the region at
r ¼ 1 and r ¼ 3 of the Gaussian filter [45]. The b and c values
for the x-edges and y-edges of the three opponent color channels
normalized by the intensity [10] yields a 12-dimensional descrip-
tor. The similarity, SW, between two Wiccest features is given by
the accumulated fraction between the respective b and c
parameters
SWðF;GÞ ¼
X minðbF ;bGÞ

maxðbF ;bGÞ
minðcF ; cGÞ
maxðcF ; cGÞ

� �
; ðA:2Þ
where F and G are Wiccest features.
A.2. Color Gabor features

As an alternative to Wiccest features, one may use the popular
Gabor filters. Gabor filters may be used to measure perceptual sur-
face texture in an image [6]. Specifically, Gabor filters respond to
regular patterns in a given orientation on a given scale and fre-
quency. A 2D Gabor filter is given by

eGðx; yÞ ¼ Grðx; yÞ exp 2pi
Xx0

Xy0

� �
x

y

� �� �
; i2 ¼ �1; ðA:3Þ

where Grðx; yÞ is a Gaussian with a scale r;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

x0
þX2

y0

q
is the radial

center frequency and tan�1 Xy0
Xx0

� 	
the orientation. Note that a zero-

frequency Gabor filter reduces to a Gaussian filter. An example of
color Gabor filters is shown in Fig. A.2. Illumination invariance is
obtained by normalizing each Gabor filtered opponent-color chan-
nel by the intensity [13]. A histogram is constructed for each Gabor
filtered color channel, where the Gabor similarity measure, SG, is gi-
ven by histogram intersection,
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tion for b ¼ 1;l ¼ 0, varying values for c 2 f1
2 ;1;2;4g.



Fig. A.2. Some examples of the color Gabor filter with the chosen orientations, scales and frequencies.

J.C. van Gemert et al. / Computer Vision and Image Understanding 114 (2010) 450–462 461
SGðI;MÞ ¼
Xn

j¼1

minðIj;MjÞ; ðA:4Þ
where Ij is bin j of the n-dimensional histogram of image I.
In the case of a Gabor filter, its parameters consist of orienta-

tion, scale and frequency. We follow Hoang et al. [13] and use four
orientations, 0�;45�;90�;135�, and two fixed (scale and frequency)
pairs: (2.828 and 0.720), (1.414 and 2.094), where we append zero
frequency color to each scale. Furthermore, the histogram repre-
sentation of the Gabor filters uses 101 bins for each Gabor filtered
color channel.
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