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Abstract

Limiting factors of fast and effective classifiers for large

sets of images are their dependence on the number of im-

ages analyzed and the dimensionality of the image repre-

sentation. Considering the growing number of images as a

given, we aim to reduce the image feature dimensionality

in this paper. We propose reduced linear kernels that use

only a portion of the dimensions to reconstruct a linear ker-

nel. We formulate the search for these dimensions as a con-

vex optimization problem, which can be solved efficiently.

Different from existing kernel reduction methods, our re-

duced kernels are faster and maintain the accuracy benefits

from non-linear embedding methods that mimic non-linear

SVMs. We show these properties on both the Scenes and

PASCAL VOC 2007 datasets. In addition, we demonstrate

how our reduced kernels allow to compress Fisher vector

for use with non-linear embeddings, leading to high accu-

racy. What is more, without using any labeled examples the

selected and weighed kernel dimensions appear to corre-

spond to visually meaningful patches in the images.

1. Introduction

In classifying pictures in object and scene classes, the

issue of compactness of data emerges on the agenda. In

fact, the essential information content emerges due to the

enormous progress that has been made, so much so that very

large number of classes are now within reach.

From the TRECvid [20] and PASCAL experiments [4] it

has become clear that large sets of features are necessary to

capture the internal complexity of an arbitrary type of object

in its distinction from the rest of the objects in the world.

The feature set has to be capable of registering all internal

and external variations. Therefore it is essential to start from

a big set of features. For object classification this set has

now grown up to 250K and 500K per images [14, 21] for the

two ImageNet Large Scale Visual Recognition Challenge

winners of this year.

However, large sets of features tend to obscure the under-

standing of the classification result, i.e. which ones of the

features deliver most of the distinction. What is needed is a

small selected set of features specific for each class. From a

complexity point of view, both for storage and computation,

selection of features is to be preferred over compression.

Effective and semantically meaningful reduction of feature

complexity is a necessary step before making the jump to

routinely classifying anything on very large numbers of vi-

sual object classes.

In this paper we discuss fast and effective classifiers by

selection of a small subset of visual features from an ini-

tially very large set of features. In general, classifiers are

dependent on the number of images analyzed and on the

dimensionality of the image representation. To cope with

the increasing number of images, efficient linear SVM ker-

nels are preferred. Yet, linear SVM kernels have repeatedly

been shown [15, 24] to underperform in visual classifica-

tion tasks. Two current-day extensions improve the per-

formance of linear SVM kernels. The first one relies on

image feature transformations mimicking non-linear kernel

maps [24, 11, 15]. The second relies on richer image repre-

sentations, such as Fisher vectors [13], known to be effec-

tive in combination with linear SVM kernels. While both

solutions are effective in terms of classification accuracy,

they both result in high-dimensional image representations

and, hence, in inefficiency. We aim to reduce the complexity

of the image representation a posteriori by feature selection

when building the kernel, while maintaining the accuracy

advantage of both non-linear kernel maps and Fisher vec-

tors.

Dimensionality reduction for visual classification has

been a topic of constant interest, since it allows for more

compact and thus more efficient image representations. Re-

cent approaches [12, 7] focus on supervised vocabulary re-

duction by optimizing statistical and information theory cri-

teria. Both [12] and [7] use class labels from ground truth

to select vocabulary words that maximize statistical inter-

class criteria [6]. However, large data sets are also accom-



panied by the presence of large number of classes, e.g Im-

ageNet currently counts approximately 22K classes [3]. In

the presence of so many, and often visually similar, classes

optimizing such inter-class criteria is a futile task. In con-

trast, unsupervised data dimensionality reduction, such as

PCA [1] or UKDR [25] overcomes this hurdle. We consider

unsupervised kernel reduction.

We propose to perform kernel reduction before classi-

fication. Where standard kernels calculate distances be-

tween features dimension by dimension, before summing

them, we propose to calculate the distance on selected and

weighed feature dimensions. We pose selection and weigh-

ing of kernel dimensions as a convex optimization problem,

searching for those dimensions that cooperatively approxi-

mate the original kernel value set. Such a treatment allows

for class-independent feature dimensionality reduction. Ex-

periments on the Scenes [8] and PASCAL VOC 2007 [4]

datasets show that our reduction performs as accurate as

PCA yet much faster. Moreover, in contrast to existing di-

mensionality reduction methods, our method can be applied

independent of and additional to, both non-linear embed-

ding and Fisher vectors. The method does not use any la-

beling of images, nevertheless we find that the selected di-

mensions tend to correspond to meaningful patches in the

image.

2. Related Work

2.1. Enhancing linear kernels

Simple linear SVM kernels have repeatedly been

shown [15, 24] to underperform in visual classification.

However, linear SVM efficiency benefits are crucial when

moving to large data and feature sets. Several approaches

have been proposed that maintain the efficiency of linear

SVM kernels, while making them more accurate.

Kernel theory dictates that for every non-linear kernel

map K(p,q), there exists a feature mapping φ( · ), such that
K(p,q) = φ(q)Tφ(p). This is a simple dot product, thus

equivalent to a linear kernel calculated using φ(p) instead

of p. Several methods have been proposed that approximate

φ(·).
In their pioneering work, Maji and Berg [11] propose

to approximate φ( · ) for the histogram intersection ker-

nel with a modified version of Heaviside (step) functions.

Generalizing on the Maji and Berg embedding, Vedaldi

and Zisserman [24] describe the theoretical formulations

for explicit feature maps of the χ2, histogram intersection,

Hellinger’s and Jensen-Shannon kernel maps, calculated on

their corresponding Fourier transform space. They further-

more propose a periodic approximation of these explicit

feature maps, that allows for a concise, yet accurate enough

representation for φ( · ). Rahimi and Recht [17] and Li et

al. [10] also propose exploitation of the Fourier space of

kernel maps, using random sampling instead of the exact

Fourier formulation. Starting from the data point of view,

Williams et al. [26] proposed the kernel PCA. The kernel

PCA learns the non-linear embeddings from the data dis-

tribution. To improve the efficiency of kernel PCA when

learning the non-linear embedding, Perronnin et al. propose

the additive kernel PCA [15] that uses additivity to speed up

the process. Both kernel PCA and additive kernel PCA are

characterized of high computational complexity during em-

bedding of new samples, although this complexity can be

decreased in exchange of larger image feature dimensional-

ity.

Rather than focusing on the kernel, other approaches em-

phasize enriching the image representation. In [13], Per-

ronnin et al. propose to encode images using the Fisher

vectors. Instead of mapping every local feature to a single

element of a visual vocabulary, the difference between the

local features and all the elements in the visual vocabulary

is computed. In a similar fashion, Zhou et al. [27] propose

the Super vector encoding, which also captures the differ-

ence between local features and vocabulary elements. Both

methods have shown to perform exceptionally well in visual

classification benchmarks like PASCAL VOC 2007 [2].

2.2. Reducing linear kernels

Data dimensionality reduction is a classical problem in

the field of machine learning and statistics. The most pop-

ular method for unsupervised data reduction is PCA [1],

which has been shown to work in a variety of contexts. Re-

cently, Perronnin et al. [13] used PCA to reduce the dimen-

sionality of SIFT features, so that their proposed Fisher vec-

tors have a more manageable size. In [18], Raina et al. use

PCA as a competitor to their LASSO optimization, which

was applied on a transfer learning problem. Other methods

for reducing the kernel dimensionality in an unsupervised

manner include the work of Wang et al. [25]. Their desider-

atum is to mimic the autoencoders from the neural network

literature, and like PCA, learn a transformation map which

would reproduce the original kernel when applied inversely.

They obtain low classification errors, especially for very

low dimensions (less than 5). For larger dimensionality

problems, which is the standard in visual classification, they

achieve at best on par with PCA.

2.3. Contribution and novelty

State-of-the-art visual classification approaches such as

the approximated feature maps [24] and Fisher vectors [13]

enhance linear SVM kernels at the expense of image fea-

tures with high dimensionality. Since both approaches build

on the linear SVM kernel, reducing the linear kernel will re-

sult in substantial efficiency benefits. Methods for unsuper-

vised kernel dimensionality reduction exist [1, 25], but it is

unclear whether their reduced kernels benefit from methods



that enhance linear SVM models.

We propose to perform linear kernel reduction before

classification. We pose selection and weighing of kernel di-

mensions as a convex optimization problem, searching for

those dimensions that cooperatively approximate the orig-

inal kernel value set. Such a treatment allows for class-

independent feature dimensionality reduction. Our main

contributions are that i) our reduction performs as accurate

as PCA yet much faster, ii) our reduction is complemen-

tary to non-linear embeddings where others are not, and iii)

combining our reduced kernel with Fisher vectors and ap-

proximate feature maps yields robust accuracy.

3. Convex Reduction of Kernels

Let K(p,q) denote the abstract manifestation of a ker-

nel, such as K(p,q) = ∑imin{pi,qi} for the histogram in-

tersection kernel. With N(p,q) we shall denote the con-

vex reduced kernels we propose. With x = [x1, ...,xD]T ,y =
[y1, ...,yD]T we denote the image feature composed of D di-

mensions. Given x,y, let Kx,y denote the actual distance

value calculated between the two images, that is Kx,y =

K(p,q)|p=x
q=y. Finally, we shall denote the 1-d kernel dis-

tance values calculated per dimension i of x,y with kix,y ,

that is kix,y = K(pi,qi)|pi=xi
qi=yi .

3.1. Theory

The most popular kernels applied for visual classification

are the χ2, histogram intersection and Hellinger’s (or Bhat-

tacharya) kernels. These kernels share two basic properties,

additivity and homogeneity. A kernel is additive, when

K(p,q) =
D

∑
i

K(pi,qi), (1)

This property is especially convenient, since performing 1-

d, non-linear operations and adding them is always more

efficient than performing a single multi-dimensional, non-

linear operation. A kernel K(p,q) is γ-homogeneous, if

K(cp,cq) = cγ K(p,q), ∀c≥ 0. (2)

Homogeneity implies that scaling the kernel values by a

constant cγ has the same effect as scaling the correspond-

ing image feature dimensions by the same constant c. The

simplest kernel having both properties is the linear kernel,

i.e. K(p,q) = qTp.

Given an additive kernel K(p,q) and two image feature

representations, x,y, their kernel distance may be written as

a sum of the kernel distances of the individual dimensions,

that is

Kx,y = k1x,y + ...+ kDx,y. (3)

Interestingly, eq. (3) implicitly assumes that when calcu-

lating the distance between two images, the 1-d distances

Figure 1. Simple example of a convex reduced kernel using

eq. (5). The new kernel distances Nx, y approximate Kx, y for var-

ious pairs of images < x,y >, by using only 2 out of 5 of the 1-d

kernel distances.

between the individual dimensions have equal unit weight

and thus equal importance. However, when two images are

similar, it is mainly because some specific words contribute

the most by having large values for both images. For exam-

ple, when we have two images of boats, we expect that the

distance between “water” visual words will contribute more

to their similarity than the distance between “car wheel” vi-

sual words [22]. Therefore, we propose a different scaling

factor ci in front of each 1-d kernel distance and form a new

kernel distance Nx,y, that is

Nx,y = c1k
1
x,y + ...+ cDk

D
x,y

= cTkx, y, (4)

where kx, y = [k1x,y, ...,k
D
x,y]

T . Eq. (4) implies that in order

to find the similarity between two images, we may as well

measure the distances kix,y between each individual dimen-

sion and multiply them with the corresponding scaling fac-

tor ci. By doing so, we place more importance to the dis-

tances between certain dimensions. Note that N(p,q) is an
additive kernel map as well.

3.2. Convex reduction

Starting from eq. (4), we want to compact N(p,q).
Therefore, we first separate the 1-d kernel dimensions con-

tributing more to the final kernel distance values Nx,y from

the less important dimensions. In order to distinguish the

two, we denote with ∆ the number of important dimensions,

with c+
i the scaling factors of the important dimensions and

with c−i the scaling factors of the unimportant dimensions.

Compacting the kernel, or ignoring the unimportant dimen-

sions, is equivalent to setting their scaling factors to zero,

that is c−i = 0.

Intuitively, in order to obtain a successful compact ap-

proximation Nx,y, we want two conditions to hold: i) for all

possible image pairs x,y to have Nx,y ≈ Kx,y and ii) ∆ ≪ D.

The first condition is typically resolved in the literature by

minimizing the squared difference between the target value

Kx,y and the regressed value Nx,y. The second condition

is mathematically equivalent to minimizing the ℓ1 norm of

vector c, that is driving as many elements in c to zero as

possible. Taking into account eq. (4), we formulate the fol-



lowing optimization problem

argmin
c

∥

∥Kx, y− cTkx, y
∥

∥

2
+λ ‖c‖ℓ1

. (5)

Eq. (5) is a regularized least squares problem, also known

as LASSO convex optimization problem. A LASSO prob-

lem may be solved efficiently using non-negative quadratic

programming, such as the feature-sign algorithm [9]. In or-

der to phrase our optimization problem as a non-negative

quadratic one, we assume the values of c to be positive. In

order to efficiently solve eq. (5), we use 1-d kernel distances

as training data to learn from the kernel data distribution at

hand. We collect training data by measuring the kernel dis-

tances between random image pairs x,y to form the column

vector Kx, y . At the same time, we store the individual 1-d

kernel distances as computed from each one of the kernel

dimensions kix, y, see Fig. 1. While all possible image pairs

x,y can be used, we observe in our experiments that ran-

domly sampling and using 5% of them is adequate enough,

see Table 3. Parameter λ controls the sparsity of our solu-

tion, effectively affecting the coarseness of our approxima-

tion. The smaller the λ , the more dimensions are activated

and therefore the better an approximation is obtained. An

example is shown in Fig. 2.

After solving the optimization of eq. (5), we obtain the

scale vector c that approximates the original kernel dis-

tances Kx, y with a small number of selected and weighed

1-d kernel dimensions kix, y. In order to be able to apply the

optimization solution directly on the image feature repre-

sentations, we take advantage of γ-homogeneity, see eq. (2).

More specifically

N(x,y) =
∆

∑
i

c
γ +
i K(xi,yi)

=
∆

∑
i

K(c+
i xi,c

+
i yi). (6)

Based on eq. (6) we only need to consider the dimensions,

which correspond to the non-zero scale factors c+
i . We

then multiply the respective dimensions of the image fea-

tures x,y with γ

√

c+
i and ignore the rest of the dimensions.

When considering the 2-homogeneous linear kernel for ex-

ample we multiply each image’s feature dimension i with

the square root of the corresponding scaling factor, i.e.
√
ci.

The kernelN(p,q) is valid if it meets two conditions, that

is: i) being symmetric and ii) being semi-positive definite.

Based on eq. (4) and given that K(p,q) is a valid kernel,

we derive that the first condition is met, since the image

features in the 1- d kernel distances are interchangeable, i.e.

kix,y = kiy,x. Moreover, since ci ≥ 0 for all elements in vector

c and K(p,q) is positive semi-definite, then N(p,q) is also
positive semi-definite. We therefore conclude that the new

kernel is valid.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pairs of images

K
e

rn
e

l 
v

a
lu

e
 p

e
r 

p
a

ir

 

 

Crude approximation    (λ
1
)

Medium approximation (λ
2
)

Fine approximation       (λ
3
)

Full kernel

Figure 2. Kernel value distribution for various image

pairs (best viewed in color). In blue we have the original kernel

distance calculated. With the magenta, green and red we visualize

convex reduced versions, that is λ1 > λ2 > λ3. The λ1 approxima-

tions uses very few (i.e. 66) dimensions, therefore accuracy of the

kernel reconstruction is hurt.

An index of measuring the quality of our convex reduced

kernel is the root mean square error ε(c) between Nx, y and

Kx, y. If the error is small, then our reduced kernel properly

approximates the original kernel distances. In practice, we

require that the root mean square error given vector c over

the average kernel distance value is below a threshold t, that

is
ε(c)

K̂x, y

< t (7)

We may use eq. (7) to define the optimal ∆ for keeping a

balance between performance loss and reduction ratio.

All the formulations above did not specify the kernel

type. Although every kernel may be reduced, we observed

that with the current linear model of eq. (4), we obtain

the most accurate reconstruction when reducing the linear

kernel. Moreover, by reducing the original linear kernel,

we experimentally observe to have the additional benefit

of being complementary to non-linear embeddings, such

as [11, 15, 24]. In the remaining text we consider the linear

kernel, that is K(p, q) = qTp.

3.3. Complexity

We identify four stages that need to be evaluated with re-

spect to complexity. We separate these four stages into two

groups, the offline and the online computations. The of-

fline computations are fixed and independent of the dataset

size; whether having 1,000 or 1,000,000 images, the of-

fline optimization will spend the same time. Yet, the online

computation timings will be severly affected when having



Table 1. Experiment 1: Linear kernel reduction. Our proposed convex reduced kernels are as accurate as PCA when approximating a

full linear kernel, yet faster for online classification. We report rounded codebook sizes.

Scenes VOC 2007

Method Size mAP Preparation(s) Learning(s) Classification(s) mAP Preparation(s) Learning(s) Classification(s)

Full 4,000 0.767±0.001 0.18±0.01 10.39±0.05 0.13±0.00 0.388±0.002 0.36±0.01 20.89±0.14 0.32±0.01

PCA 600 0.763±0.001 1.44±0.01 1.14±0.01 0.04±0.00 0.381±0.001 3.10±0.06 3.59±0.01 0.08±0.00

PCA 1,200 0.766±0.001 2.74±0.08 2.71±0.15 0.05±0.00 0.387±0.002 6.17±0.15 6.70±0.02 0.12±0.00

PCA 2,200 0.766±0.001 4.88±0.01 4.14±0.01 0.08±0.00 0.388±0.002 10.33±0.35 11.14±0.04 0.18±0.00

Our kernel 600 0.747±0.001 0.11±0.00 1.14±0.01 0.03±0.00 0.364±0.002 0.20±0.00 3.58±0.01 0.08±0.00

Our kernel 1,200 0.757±0.002 0.19±0.01 2.88±0.12 0.06±0.00 0.376±0.002 0.42±0.01 6.72±0.01 0.12±0.00

Our kernel 2,200 0.761±0.000 0.41±0.01 4.42±0.16 0.08±0.00 0.379±0.002 0.80±0.01 11.13±0.02 0.18±0.00

1,000,000 instead of 1,000 images. Since datasets become

larger, we consider them separate for fairness.

1. Optimization time (offline). In the first stage we

optimize eq. (5). We first calculate 1-d kernel distances be-

tween pairs of images in the training set, with a O(D2 ·Q)
for the linear kernel, where Q the number of pairs of images

used to extract kernel distances. Then we solve eq. (5), with

the complexity depending on the solver used. The optimiza-

tion is performed in an offline manner once. Hence it does

not affect learning and classification.

2. Preparation time (online). The second stage refers

to the complexity for obtaining the new image representa-

tions. We first reduce the original image features according

to the new reduced kernel. During reduction, we require

only scaling of the selected dimensions with an appropriate

constant. Thus we have a O(∆) complexity per image. Ap-

plying the non-linear embeddings [24, 15, 11] on top of our

reduced kernel is optional. The complexity depends on the

embedding. However, having fewer dimensions always re-

sults in faster embeddings. Therefore, embedding our con-

vex reduced kernel is more efficient than embedding the full

kernel.

3. Learning time (online). The third stage involves the

run-time complexity. After obtaining the reduced kernel, a

linear SVM is applied for learning and classification. Lin-

ear SVM has learning complexity that depends on the algo-

rithm used. However, state-of-the-art algorithms like [19]

use sparse matrix algebra, hence complexity depends on the

number of non-zero elements per feature. When using con-

vex reduced kernel the dimensionality becomes smaller and

the number of non-zero elements per feature drops, there-

fore learning becomes faster.

4. Classification time (online). The forth stage refers

to the classification. We multiply the obtained weight vec-

tor w with the respective image features (and perform one

summation for the bias term). If we have M images, clas-

sification is a vector-matrix multiplication characterized by

O(D ·M) complexity. When applying our convex reduced

kernel, this complexity drops to O(∆ ·M), which is a notice-

able speedup, especially for large data and feature sets.

4. Experiments

4.1. Experimental setup

Datasets. For the experiments we use two popular

datasets. The first one is the Scenes dataset introduced

by Lazebnik et al. [8]. The Scenes dataset contains 4,485

medium size images of 15 indoor and outdoor scenes,

such as “kitchen” or “forest”. The second dataset is the

VOC 2007 dataset [4], which contains 9,963 images and

is composed of 20 different objects. The VOC 2007 dataset

is a particularly challenging dataset, since one image may

contain several of the objects. What is more, the instances

of an object in a picture may exhibit large variation in ap-

pearance, size, context, etc. For both datasets we use the

common training and test set divisions. Note that our con-

vex reduced kernel is optimized on the training sets only.

Evaluation criteria. We study the algorithms with re-

spect to their average precision accuracy, which is equiva-

lent to the area under the precision-recall curve. We report

the mean of average precision (mAP) over all scenes or ob-

jects. We also study the algorithms with respect to their

computational efficiency. We focus on the online timings

required by all the algorithms, that is the preparation tim-

ings, the learning timings and the classification timings, as

discussed in Subsection 3.3. We repeat the experiments 10

times and report the mean and the standard deviation. The

linear SVM solver we use, pegasos [19], returns approxi-

mate solutions, so we report the mean and standard devia-

tion of mean average precision for the 10 runs. For com-

pleteness, we also report the offline optimization timings.

All timings were computed on a standard Xeon machine at

2.93GHz.

Implementation. For all images we extract dense

SIFT [23] features every 2 pixels on multiple scales, i.e.

4, 6, 8 and 10 pixels for bin size. We then construct a vi-

sual vocabulary of 4,000 visual words using approximate

k-means [16]. Spatial pyramids [8] or other descriptors



Table 2. Experiment 2: Non-linear kernel embedding. In contrast to PCA, our kernel reduction is complementary to non-linear embed-

dings like approximated feature maps with χ2 kernel [24]. Our kernel maintains the accuracy advantages of non-linear embeddings, but is

more efficient for online classification, during all stages, when compared to non-linear embedding of the full 4,000 dimensional kernel.

Scenes VOC 2007

Method Size mAP Preparation(s) Learning(s) Classification(s) mAP Preparation(s) Learning(s) Classification(s)

Full 4,000 0.767±0.001 0.18±0.01 10.39±0.05 0.13±0.00 0.388±0.002 0.36±0.01 20.89±0.14 0.32±0.01

AFM(Full) 28,000 0.855±0.000 2.84±0.45 61.32±9.51 0.97±0.09 0.475±0.001 4.77±0.04 143.25±0.20 2.05±0.01

AFM(PCA-600) 4,500 0.746±0.001 1.88±0.10 7.55±0.11 0.13±0.0 0.351±0.001 4.11±0.16 23.21±3.08 0.36±0.00

AFM(PCA-1200) 8,700 0.753±0.001 3.72±0.03 14.65±0.15 0.24±0.01 0.346±0.001 7.55±0.45 42.37±0.07 0.65±0.03

AFM(PCA-2200) 15,300 0.753±0.001 4.07±0.72 23.38±0.08 0.39±0.01 0.345±0.001 13.46±0.25 70.54±0.11 1.11±0.00

AFM(Our kernel-600) 4,500 0.819±0.000 0.47±0.02 8.77±0.63 0.15±0.01 0.431±0.001 0.98±0.00 22.98±0.05 0.35±0.00

AFM(Our kernel-1200) 8,700 0.832±0.000 0.89±0.02 16.88±2.82 0.26±0.01 0.449±0.000 1.86±0.01 43.83±0.04 0.66±0.00

AFM(Our kernel-2200) 15,300 0.841±0.000 1.63±0.05 29.76±0.22 0.47±0.01 0.458±0.001 3.29±0.01 74.04±0.15 1.11±0.01

may be used to further improve accuracy, but we do not in-

clude them in our current experiments. In order to solve the

convex-optimization problem of eq. (5), we use the feature-

sign algorithm [9]. We learn the linear SVM using pega-

sos [19]. Prior to learning and classification, we perform ℓ2
normalization. For the non-linear embeddings, we use the

code provided [23] for the approximated feature maps [24].

We set its periods extension to 3. Preliminary experiments

have shown similar results also for kernel-PCA [26]. Fi-

nally, we use the approximate version of Fisher vectors pro-

vided by [5], which does not include the variance term.

We calculate the mixture parameters of the gaussian mix-

ture model (GMM) from the approximate k-means clusters.

Hence, our mixture model is equivalent to a GMM after one

round.

4.2. Experiment 1: Linear kernel reduction

In the first experiment we compare our proposed convex

reduced kernel with PCA [18]. We examine how well both

approximate the full linear kernel, which uses a dimension-

ality of 4,000 words. The results are summarized in Table 1.

For both the Scenes and VOC 2007 datasets, our kernel

and PCA perform on par in terms of classification accuracy.

Moreover, both approximate the full kernel well. We ob-

serve similar behavior for Caltech-101 (data not shown).

In terms of efficiency for offline optimization, our method

needs approximately 3 minutes to harvest the 1-d kernel dis-

tances from 50K pairs of images, and it takes 4, 36 and 248

seconds for the 600, 1,200 and 2,200 dimensional kernels

respectively. In the online stages of visual classification, the

efficiency of our kernel becomes prevalent. Especially in

the kernel preparation stage where PCA requires a matrix-

matrix multiplication with a O(∆ ·D ·M) complexity, and

ours is linear with O(∆). Hence, we are 10x faster as PCA.

Since the size of the reduced kernel is equal for learning

and classification, our method and PCA are equally efficient

for these stages. Depending on the reduction rate, both our

method and PCA can be up to 10x faster than using the full

linear kernel. In terms of total online classification time our

method is most efficient.

4.3. Experiment 2: Non­linear kernel embedding

We test in the second experiment the complementarity of

both our reduced kernel and PCA with the non-linear em-

bedding using approximated feature maps [24]. The results

are summarized in Table 2.

In contrast to PCA, our kernel reduction is comple-

mentary to approximated feature maps. Hence, our visual

classification results are much more accurate for both the

Scenes and VOC 2007 datasets. We approach the accuracy

of an embedding using a full kernel with approximately half

of the number of dimensions. Regarding the efficiency, we

observe substantial gains from using our reduction over the

full kernel. Data preparation is up to 80% faster than us-

ing the full kernel for both Scenes and VOC 2007 datasets.

Learning becomes 50-85% faster for both the Scenes dataset

and the VOC 2007 dataset. Classification becomes 55-

85% faster for the Scenes dataset and 45-85% faster for the

VOC 2007dataset. Again, PCA is considerably slower in

the data preparation time. The offline optimization is the

same as in Section 4.2. Performing the reduction first on

the linear kernel is theoretically inferior, yet has the appar-

ent benefit that from that moment on we no longer need

to apply subsequent optimizations on irrelevant kernel di-

mensions. For example, applying the approximate feature

maps on the 600 most relevant kernel dimensions results

in a 4,500-d kernel. When we compare it with the approxi-

mately similar sized regular 4,000-d kernel, we obtain a rel-

ative increase of 7% on Scenes and 11% on VOC 2007 (see

Table 2).

We show some classification examples for the

VOC 2007 dataset in Fig. 4. In the pictures the 10

dimensions with the largest ci values are visualized.

Although images are densely sampled, we find that fea-

tures mapped on these dimensions tend to be located on

salient locations, often on objects. It is interesting that
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Figure 3. Experiment 3: Convex reduction parameters. Mean

average precision given λ .

no labeled data are used to find these features lying on

salient locations. We conclude that our convex reduced

kernel is complementary to non-linear embeddings, and

should be used together with these embeddings, such as

the approximated features maps, to obtain an accurate and

efficient visual classification.

4.4. Experiment 3: Convex reduction parameters

In experiment 3 we first compare the performance of our

reduced kernels with respect to the image feature dimen-

sionality, which is controlled by parameter λ of eq. (5). We

show results in Fig. 3. For the Scenes dataset we observe

in Fig. 3(a) that a reduction to only 60 dimensions leads

to a crude approximation. As a result the error ratio, see

eq. (7), is high; around 14%. Increasing the number of di-

mensions results in smaller error ratios and better classifi-

cation accuracy. The same holds for the VOC 2007 dataset,

see Fig. 3(b).

We also test the influence of the number of samples used

for solving the optimization of eq. (5). We sample the 1-d

kernel distances geometrically in the interval [10K,200K]
for the Scenes dataset. The results are shown in Table 3.

We observe that using the kernel distances between 50K to

100K data samples, which corresponds to 2-5% of the num-

ber of the 2.5M possible pairs of images in the training set,

is adequate for a good approximation. Similar results were

obtained for the VOC 2007 dataset (data not shown).

Table 3. Experiment 3: Convex reduction parameters. Perfor-

mance of the kernel approximation with respect to the sample size

used for training in eq. (5). The results are averaged over 3 runs

including standard deviation. Using 50K pairs of images, that

is 2% of the number of possible pairs in the training set of the

Scenes dataset is adequate to solve eq. (5). Similar results are ob-

tained for the VOC 2007 dataset (data not shown).

Method 10K 20K 50K 100K

Our kernel 0.740±0.002 0.744±0.000 0.748±0.000 0.750±0.001

AFM(Our kernel) 0.816±0.001 0.818±0.001 0.819±0.001 0.819±0.000

Table 4. Experiment 4: Non-linear Fisher kernel. Using our

600-d kernel as a basis, we can apply additional optimizations like

Fisher vectors and approximate feature maps, whose computation

using the Full 4,000-d kernel is prohibitive. Combining our kernel

with Fisher vectors and approximate feature maps is fruitful (best

results bold).

Size Scenes VOC 2007

Method Full Ours Full Ours Full Ours

Kernel 4K 600 0.767 0.747 0.388 0.364

AFM(Kernel) 28K 4.5K 0.855 0.819 0.475 0.431

Fisher(Kernel) 256K 40K N/A 0.848 N/A 0.457

AFM(Fisher(Kernel)) 1.8M 290K N/A 0.883 N/A 0.529

4.5. Experiment 4: Non­linear Fisher kernel

In our fourth experiment, we take advantage of the con-

vex reduced kernels to combine them with the popular

Fisher vectors [13]. Extracting Fisher vectors using the full

kernel is computationally too expensive (our full kernel is

composed of 4,000 dimensions, contrast to the 256 in [13]).

Using the Fisher representation for the reduced kernels re-

sults in image feature of large, yet manageable dimensional-

ity. The reduced feature size allows us to embed the reduced

Fisher vectors on the approximated feature maps [24], so

that it benefits from non-linear SVMs. Using the full ker-

nel of 4,000 dimensions, combined with Fisher vectors and

approximated feature maps would require prohibitively ex-

pensive computations, resulting in vectors of 1.8M dimen-

sions, too large to handle. We show results in Table 4. For

completeness, we also include results from experiments 1

and 2.

We observe an explosion of dimensions when using

Fisher vectors, resulting in image features of 40K dimen-

sions. For the Scenes dataset the increase comes with an

accuracy boost from 0.747 to 0.848. When we apply the

approximated feature maps on the Fisher vectors and our

kernel reduction we improve even further, scoring 0.883 in

mAP. Since for the Scenes dataset also precision is used for

evaluation, we report our current best result of 0.840, not yet

including spatial pyramids and their newest variants. For

the VOC 2007 dataset the absolute improvement of embed-

ding the reduced Fisher vectors on the approximated feature

maps is even larger, going from 0.364 in mAP to 0.529, a

serious improvement. We conclude that our convex reduced

kernel is complementary to Fisher kernels. What is more,

using our convex kernel to reduce Fisher vectors makes non-

linear embeddings computationally feasible, and results in

robust classification accuracy.

5. Conclusion

We propose to perform linear kernel reduction before

classification. We pose selection and weighting of kernel

dimensions as a convex optimization problem by search-
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Figure 4. Ten kernel dimensions with the largest weights ci after reduction for VOC 2007 images (best viewed in color). Note that

dimensions were found based on pairwise 1-d kernel distances between pairs of images only. No individual bag-of-words image features,

nor labeled examples were used.

ing for those dimensions that cooperatively approximate the

original kernel value set. Our proposed algorithm performs

the reduction in an unsupervised manner, making it inde-

pendent of the number of classes in the classification. We

show on both the Scenes and VOC 2007 datasets that our

reduced linear kernels are more efficient and as accurate as

existing reduction methods. In contrast to existing reduction

methods, our reduced kernels benefit from the state-of-the-

art in visual classification, such as the approximated feature

maps [24] and Fisher vectors [13]. We advocate to use our

convex reduced kernel together with Fisher kernels and ap-

proximate feature maps to obtain the highest accuracy most

efficiently.
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