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Predicting Visual Features from Text for

Image and Video Caption Retrieval
Jianfeng Dong, Xirong Li, and Cees G. M. Snoek

Abstract—This paper strives to find amidst a set of sentences
the one best describing the content of a given image or video.
Different from existing works, which rely on a joint subspace for
their image and video caption retrieval, we propose to do so in a
visual space exclusively. Apart from this conceptual novelty, we
contribute Word2VisualVec, a deep neural network architecture
that learns to predict a visual feature representation from textual
input. Example captions are encoded into a textual embedding
based on multi-scale sentence vectorization and further trans-
ferred into a deep visual feature of choice via a simple multi-layer
perceptron. We further generalize Word2VisualVec for video
caption retrieval, by predicting from text both 3-D convolutional
neural network features as well as a visual-audio representa-
tion. Experiments on Flickr8k, Flickr30k, the Microsoft Video
Description dataset and the very recent NIST TrecVid challenge
for video caption retrieval detail Word2VisualVec’s properties,
its benefit over textual embeddings, the potential for multimodal
query composition and its state-of-the-art results.

Index Terms—Image and video caption retrieval.

I. INTRODUCTION

THIS paper attacks the problem of image and video

caption retrieval, i.e., finding amidst a set of possible

sentences the one best describing the content of a given

image or video. Before the advent of deep learning based

approaches to feature extraction, an image or video is typically

represented by a bag of quantized local descriptors (known as

visual words) while a sentence is represented by a bag of

words. These hand-crafted features do not well represent the

visual and lingual modalities, and are not directly comparable.

Hence, feature transformations are performed on both sides

to learn a common latent subspace where the two modalities

are better represented and a cross-modal similarity can be

computed [1], [2]. This tradition continues, as the prevailing

image and video caption retrieval methods [3]–[8] prefer to

represent the visual and lingual modalities in a common

latent subspace. Like others before us [9]–[11], we consider

caption retrieval an important enough problem by itself, and
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Fig. 1. We propose to perform image and video caption retrieval in

a visual feature space exclusively. This is achieved by Word2VisualVec
(W2VV), which predicts visual features from text. As illustrated by the
(green) down arrow, a query image is projected into a visual feature space
by extracting features from the image content using a pre-trained ConvNet,
e.g., , GoogleNet or ResNet. As demonstrated by the (black) up arrows, a
set of prespecified sentences are projected via W2VV into the same feature
space. We hypothesize that the sentence best describing the image content
will be the closest to the image in the deep feature space.

we question the dependence on latent subspace solutions. For

image retrieval by caption, recent evidence [12] shows that

a one-way mapping from the visual to the textual modality

outperforms the state-of-the-art subspace based solutions. Our

work shares a similar spirit but targets at the opposite direction,

i.e., image and video caption retrieval. Our key novelty is

that we find the most likely caption for a given image or

video by looking for their similarity in the visual feature space

exclusively, as illustrated in Fig. 1.

From the visual side we are inspired by the recent progress

in predicting images from text [13], [14]. We also depart

from the text, but instead of predicting pixels, our model

predicts visual features. We consider features from deep

convolutional neural networks (ConvNet) [15]–[19]. These

neural networks learn a textual class prediction for an image
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by successive layers of convolutions, non-linearities, pooling,

and full connections, with the aid of big amounts of labeled

images, e.g., ImageNet [20]. Apart from classification, visual

features derived from the layers of these networks are superior

representations for various challenges in vision [21]–[25] and

multimedia [26]–[30]. We also rely on a layered neural net-

work architecture, but rather than predicting a class label for an

image, we strive to predict a deep visual feature from a natural

language description for the purpose of caption retrieval.

From the lingual side we are inspired by the encouraging

progress in sentence encoding by neural language modeling

for cross-modal matching [5]–[7], [31]–[33]. In particular,

word2vec [34] pre-trained on large-scale text corpora provides

distributed word embeddings, an important prerequisite for

vectorizing sentences towards a representation shared with

image [5], [31] or video [8], [35]. In [6], [7], a sentence is fed

as a word sequence into a recurrent neural network (RNN).

The RNN output at the last time step is taken as the sentence

feature, which is further projected into a latent subspace.

We employ word2vec and RNN as part of our sentence

encoding strategy as well. What is different is that we continue

to transform the encoding into a higher-dimensional visual

feature space via a multi-layer perceptron. As we predict visual

features from text, we call our approach Word2VisualVec.

While both visual and textual modalities are used during

training, Word2VisualVec performs a mapping from the textual

to the visual modality. Hence, at run time, Word2VisualVec

allows the caption retrieval to be performed in the visual space.

We make the following three contributions in this paper:

• First, to the best of our knowledge we are the first to

solve the caption retrieval problem in the visual space. We

consider this counter-tradition approach promising thanks to

the effectiveness of deep learning based visual features which

are continuously improving. For cross-modal matching, we

consider it beneficial to rely on the visual space, instead of

a joint space, as it allows us to learn a one-way mapping from

natural language text to the visual feature space, rather than a

more complicated joint space.

• Second, we propose Word2VisualVec to effectively realize

the above proposal. Word2VisualVec is a deep neural network

based on multi-scale sentence vectorization and a multi-layer

perceptron. While its components are known, we consider their

combined usage in our overall system novel and effective to

transform a natural language sentence into a visual feature

vector. We consider prediction of several recent visual fea-

tures [16], [18], [19] based on text, but the approach is general

and can, in principle, predict any deep visual feature it is

trained on.

• Third, we show how Word2VisualVec can be easily gener-

alized to the video domain, by predicting from text both 3-D

convolutional neural network features [36] as well as a visual-

audio representation including Mel Frequency Cepstral Coeffi-

cients [37]. Experiments on Flickr8k [38], Flickr30k [39], the

Microsoft Video Description dataset [40] and the very recent

NIST TrecVid challenge for video caption retrieval [41] detail

Word2VisualVec’s properties, its benefit over the word2vec

textual embedding, the potential for multimodal query com-

position and its state-of-the-art results.

Before detailing our approach, we first highlight in more

detail related work.

II. RELATED WORK

A. Caption Retrieval

Prior to deep visual features, methods for image caption

retrieval often resort to relatively complicated models to learn

a shared representation to compensate for the deficiency of

traditional low-level visual features. Hodosh et al. [38] lever-

age Kernel Canonical Correlation Analysis (CCA), finding

a joint embedding by maximizing the correlation between

the projected image and text kernel matrices. With deep

visual features, we observe an increased use of relatively light

embeddings on the image side. Using the fc6 layer of a pre-

trained AlexNet [15] as the image feature, Gong et al. show

that linear CCA compares favorably to its kernel counterpart

[3]. Linear CCA is also adopted by Klein et al. [5] for visual

embedding. More recent models utilize affine transformations

to reduce the image feature to a much shorter h-dimensional

vector, with the transformation optimized in an end-to-end

fashion within a deep learning framework [6], [7], [42].

Similar to the image domain, the state-of-the-art methods

for video caption retrieval also operate in a shared subspace

[8], [43], [44]. Xu et al. [8] propose to vectorize each subject-

verb-object triplet extracted from a given sentence by a pre-

trained word2vec, and subsequently aggregate the vectors into

a sentence-level vector by a recursive neural network. A

joint embedding model projects both the sentence vector and

the video feature vector, obtained by temporal pooling over

frame-level features, into a latent subspace. Otani et al. [43]

improve upon [8] by exploiting web image search results

of an input sentence, which are deemed helpful for word

disambiguation, e.g., telling if the word “keyboard” refers to a

musical instrument or an input device for computers. To learn

a common multimodal representation for videos and text, Yu

et al. [44] use two distinct Long Short Term Memory (LSTM)

modules to encode the video and text modalities respectively.

They then employ a compact bilinear pooling layer to capture

implicit interactions between the two modalities.

Different from the existing works, we propose to perform

image and video caption retrieval directly in the visual space.

This change is important as it allows us to completely remove

the learning part from the visual side and focus our energy on

learning an effective mapping from natural language text to

the visual feature space.

B. Sentence Vectorization

To convert variably-sized sentences to fixed-sized feature

vectors for subsequent learning, bag-of-words (BoW) is ar-

guably the most popular choice [3], [38], [45], [46]. A BoW

vocabulary has to be prespecified based on the availability of

words describing the training images. As collecting image-

sentence pairs at a large-scale is both labor intensive and

time consuming, the amount of words covered by BoW is

bounded. To overcome this limit, a distributional text embed-

ding provided by word2vec [34] is gaining increased attention.

The word embedding matrix used in [8], [31], [43], [47] is
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Fig. 2. Word2VisualVec network architecture. The model first vectorizes an input sentence into a fixed-length vector by relying on bag-of-words, word2vec
and a GRU. The vector then goes through a multi-layer perceptron to produce the visual feature vector of choice, from a pre-trained ConvNet such as
GoogleNet or ResNet. The network parameters are learned from image-sentence pairs in an end-to-end fashion, with the goal of reconstructing from the input
sentence the visual feature vector of the image it is describing. We rely on the visual feature space for image and video caption retrieval.

instantiated by a word2vec model pre-trained on large-scale

text corpora. In Frome et al. [31], for instance, the input text

is vectorized by averaging the word2vec vectors of its words.

Such a mean pooling strategy results in a dense representation

that could be less discriminative than the initial BoW feature.

As an alternative, Klein et al. [5] and their follow-up [42]

perform fisher vector pooling over word vectors.

Beside BoW and word2vec, we observe an increased use

of RNN-based sentence vectorization. Socher et al. design a

Dependency-Tree RNN that learns vector representations for

sentences based on their dependency trees [32]. Lev et al. [48]

propose RNN fisher vectors on the basis of [5], replacing the

Gaussian model by a RNN model that takes into account the

order of elements in the sequence. Kiros et al. [6] employ

an LSTM to encode a sentence, using the LSTM’s hidden

state at the last time step as the sentence feature. In a follow-

up work, Vendrov et al. replace LSTM by a Gated Recurrent

Unit (GRU) which has less parameters to tune [7]. While RNN

and its LSTM or GRU variants have demonstrated promising

results for generating visual descriptions [49]–[52], they tend

to be over-sensitive to word orders by design. Indeed Socher

et al. [32] suggest that for caption retrieval, models invariant

to surface changes, such as word order, perform better.

In order to jointly exploit the merits of the BoW, word2vec

and RNN based representations, we consider in this paper

multi-scale sentence vectorization. Ma et al. [4] have made

a first attempt in this direction. In their approach three mul-

timodal ConvNets are trained on feature maps, formed by

merging the image embedding vector with word, phrase and

sentence embedding vectors. The relevance between an image

and a sentence is estimated by late fusion of the individual

matching scores. By contrast, we perform multi-scale sentence

vectorization in an early stage, by merging BoW, word2vec

and GRU sentence features and letting the model figure out

the optimal way for combining them. Moreover, at run time

the multi-modal network by [4] requires a query image to

be paired with each of the test sentences as the network

input. By contrast, our Word2VisualVec model predicts visual

features from text alone, meaning the vectorization can be

precomputed. An advantageous property for caption retrieval

on large-scale image and video datasets.

III. WORD2VISUALVEC

We propose to learn a mapping that projects a natural

language description into a visual feature space. Consequently,

the relevance between a given visual instance x and a specific

sentence q can be directly computed in this space. More

formally, let φ(x) ∈ R
d be a d-dimensional visual feature

vector. A pretrained ConvNet, apart from its original mission

of visual class recognition, has now been recognized as an

effective visual feature extractor [21]. We follow this good

practice, instantiating φ(x) with a ConvNet feature vector. We

aim for a sentence representation r(q) ∈ R
d such that the

similarity can be expressed by the cosine similarity between

φ(x) and r(q). The mapping is optimized by minimizing the

Mean Squared Error between the vector of a training sentence

and the vector of the visual instance the sentence is describing.

The proposed mapping model Word2VisualVec is designed to

produce r(q), as visualized in Fig. 2 and detailed next.

A. Architecture

Multi-scale sentence vectorization. To handle sentences of

varying length, we choose to first vectorize each sentence. We

propose multi-scale sentence vectorization that utilizes BoW,

word2vec and RNN based text encodings.
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BoW is a classical text encoding method. Each dimension

in a BoW vector corresponds to the occurrence of a specific

word in the input sentence, i.e.,

sbow(q) = (c(w1, q), c(w2, q), . . . , c(wm, q)), (1)

where c(w, q) returns the occurrence of word w in q, and

m is the size of a prespecified vocabulary. A drawback of

Bow is that its vocabulary is bounded by the words used in

the multi-modal training data, which is at a relatively small

scale compared to a text corpus containing millions of words.

Given faucet as a novel word, for example, “A little girl plays

with a faucet” will not have the main object encoded in its

BoW vector. Notice that setting a large vocabulary for BoW

is unhelpful, as words without training images will always

have zero value and thus will not be effectively modeled. To

compensate for such a loss, we further leverage word2vec.

By learning from a large-scale text corpus, the vocabulary of

word2vec is much larger than its BoW counterpart. We obtain

the embedding vector of the sentence by mean pooling over

its words, i.e.,

sword2vec(q) :=
1

|q|

∑

w∈q

v(w), (2)

where v(w) denotes individual word embedding vectors, |q| is

the sentence length. Previous works employ word2vec trained

on web documents as their word embedding matrix [4], [31],

[49]. However, recent studies suggest that word2vec trained on

Flickr tags better captures visual relationships than its coun-

terpart learned from web documents [53], [54]. We therefore

train a 500-dimensional word2vec model on English tags of

30 million Flickr images, using the skip-gram algorithm [34].

This results in a vocabulary of 1.7 million words.

Despite their effectiveness, the BoW and word2vec repre-

sentations ignore word orders in the input sentence. As such,

they cannot discriminate between “a dog follows a person” and

“a person follows a dog”. To tackle this downside, we employ

an RNN, which is known to be effective for modeling long-

term word dependency in natural language text. In particular,

we adopt a GRU [55], which has less parameters than LSTM

and presumably requires less amounts of training data. At a

specific time step t, let vt be the embedding vector of the t-th

word, obtained by performing a lookup on a word embedding

matrix We. GRU receives inputs from vt and the previous

hidden state ht−1, and accordingly the new hidden state ht is

updated as follows,

zt = σ(Wzvvt +Wzhht−1 + bz),
rt = σ(Wrvvt +Wrhht−1 + br),

h̃t = tanh(Whvvt +Whh(rt ⊙ ht−1) + bh),

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t,

(3)

where zt and rt denote the update and reset gates at time

t respectively, while W and b with specific subscripts are

weights and bias parameterizing the corresponding gates.

The symbol ⊙ indicates element-wise multiplication, while

σ(·) is the sigmoid activation function. We re-use word2vec

previously trained on the Flickr tags to initialize We. The last

hidden state h|q| is taken as the RNN based representation of

the sentence.

Multi-scale sentence vectorization is obtained by concate-

nating the three representations, that is

s(q) = [sbow(q), sword2vec(q), h|q|]. (4)

Text transformation via a multilayer perceptron. The

sentence vector s(q) goes through subsequent hidden layers

until it reaches the output layer r(q), which resides in the

visual feature space. More concretely, by applying an affine

transformation on s(q), followed by an element-wise ReLU

activation σ(z) = max(0, z), we obtain the first hidden layer

h1(q) of an l-layer Word2VisualVec as:

h1(q) = σ(W1s(q) + b1). (5)

The following hidden layers are expressed by:

hi(q) = σ(Wihi−1(q) + bi), i = 2, ..., l − 2, (6)

where Wi parameterizes the affine transformation of the i-th

hidden layer and bi is a bias terms. In a similar manner, we

compute the output layer r(q) as:

r(q) = σ(Wlhl−1(q) + bl). (7)

Putting it all together, the learnable parameters are represented

by θ = [We,Wz.,Wr.,Wh., bz, br, bh,W1, b1, . . . ,Wl, bl].
In principle, the learning capacity of our model grows

as more layers are used. This also means more solutions

exist which minimize the training loss, yet are suboptimal

for unseen test data. We analyze in the experiments how

deep Word2VisualVec can go without losing its generalization

ability.

B. Learning algorithm

Objective function. For a given image, different persons

might describe the same visual content with different words.

For example, “A dog leaps over a log” versus “A dog is leaping

over a fallen tree”. The verb leap in different tenses essentially

describe the same action, while a log and a fallen tree can have

similar visual appearance. Projecting the two sentences into the

same visual feature space has the effect of implicitly finding

such correlations. In order to reconstruct the visual feature

φ(x) directly from q, we use Mean Squared Error (MSE) as

our objective function. We have also experimented with the

marginal ranking loss, as commonly used in previous works

[31], [56]–[58], but found MSE yields better performance.

The MSE loss lmse for a given training pair is defined as:

lmse(x, q; θ) = (r(q)− φ(x))2. (8)

We train Word2VisualVec to minimize the overall MSE loss

on a given training set D = {(x, q)}, containing a number of

relevant image-sentence pairs:

argmin
θ

∑

(x,q)∈D

lmse(x, q; θ). (9)

Optimization. We solve Eq. (9) using stochastic gradient

descent with RMSprop [59]. This optimization algorithm di-

vides the learning rate by an exponentially decaying average of

squared gradients, to prevent the learning rate from effectively

shrinking over time. We empirically set the initial learning
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rate η = 0.0001, decay weights γ = 0.9 and small constant

ǫ = 10−6 for RMSprop. We apply dropout to all hidden

layers in Word2VisualVec to mitigate model overfitting. Lastly,

we take an empirical learning schedule as follows. Once the

validation performance does not increase in three consecutive

epochs, we divide the learning rate by 2. Early stop occurs if

the validation performance does not improve in ten consecutive

epochs. The maximal number of epochs is 100.

C. Image Caption Retrieval

For a given image, we select from a given sentence pool

the sentence deemed most relevant with respect to the image.

Note that image-sentence pairs are required only for training

Word2VisualVec. For a test sentence, its r(q) is obtained by

forward computation through the Word2VisualVec network,

without the need of any test image. Hence, the sentence pool

can be vectorized in advance. Image caption retrieval in our

case boils down to finding the sentence nearest to the given

image in the visual feature space. We use the cosine similarity

between r(q) and the image feature φ(x), as this similarity

normalizes feature vectors and is found to be better than the

dot product or mean square error according to our preliminary

experiments.

D. Video Caption Retrieval

Word2VisualVec is also applicable for video as long as we

have an effective vectorized representation of video. Again,

different from previous methods for video caption retrieval

that execute in a joint subspace [8], [43], we project sentences

into the video feature space.

Following the good practice of using pre-trained ConvNets

for video content analysis [23], [60]–[62], we extract features

by applying image ConvNets on individual frames and 3-

D ConvNets [36] on consecutive-frame sequences. For short

video clips, as used in our experiments, mean pooling over

video frames is considered reasonable [60], [62]. Hence, the

visual feature vector of each video is obtained by averaging

the feature vectors of its frames. Note that longer videos open

up possibilities for further improvement of Word2VisualVec

by exploiting temporal order of video frames, e.g., [63]. The

audio channel of a video sometime provides complementary

information to the visual channel. For instance, to help decide

whether a person is talking or singing. To exploit this channel,

we extract a bag of quantized Mel-frequency Cepstral Coeffi-

cients (MFCC) [37] and concatenate it with the previous visual

feature. Word2VisualVec is trained to predict such a visual-

audio feature, as a whole, from input text.

Word2VisualVec is used in a principled manner, transform-

ing an input sentence to a video feature vector, let it be visual

or visual-audio. For the sake of clarity we term the video

variant Word2VideoVec.

IV. EXPERIMENTS

A. Properties of Word2VisualVec

We first investigate the impact of major design choices,

e.g., how to vectorize an input sentence?. Before detailing the

investigation, we first introduce data and evaluation protocol.

Data. For image caption retrieval, we use two popular

benchmark sets, Flickr8k [38] and Flickr30k [39]. Each image

is associated with five crowd-sourced English sentences, which

briefly describe the main objects and scenes present in the

image. For video caption retrieval we rely on the Microsoft

Video Description dataset (MSVD) [40]. Each video is labeled

with 40 English sentences on average. The videos are short,

usually less than 10 seconds long. For the ease of cross-paper

comparison, we follow the identical data partitions as used in

[5], [7], [58] for images and [60] for videos. That is, training

/ validation / test is 6k / 1k / 1k for Flickr8k, 29K / 1,014 /

1k for Flickr30k, and 1,200 / 100 / 670 for MSVD.

Visual features. A deep visual feature is determined by

a specific ConvNet and its layers. We experiment with four

pretrained 2-D ConvNets, i.e., CaffeNet [16], GoogLeNet

[18], GoogLeNet-shuffle [61] and ResNet-152 [19]. The first

three 2-D ConvNets were trained using images containing

1K different visual objects as defined in the Large Scale Vi-

sual Recognition Challenge [20]. GoogLeNet-shuffle follows

GoogLeNet’s architecture, but is re-trained using a bottom-

up reorganization of the complete 22K ImageNet hierarchy,

excluding over-specific classes and classes with few images

and thus making the final classes more balanced. For the

video dataset, we further experiment with a 3-D ConvNet

[36], trained on one million sports videos containing 487

sport-related concepts [64]. As the videos were muted, we

cannot evaluate Word2VideoVec with audio features. We tried

multiple layers of each ConvNet model and report the best

performing layer. Finally we use the fc7 layer for CaffeNet

(4,096-dim), the pool5 layer for GoogleNet (1,024-dim),

GoogleNet-shuffle (1,024-dim) and ResNet-152 (2,048-dim),

and the fc6 layer for C3D (4,096-dim).

Details of the model. The size of the word2vec and GRU

layers is 500 and 1,024, respectively. The size of the BoW

layer depends on training data, which is 2,535, 7,379 and

3,030 for Flickr8k, Flickr30k and MSVD, respectively (with

words appearing less than five times in the corresponding

training set removed). Accordingly, the size of the composite

vectorization layer is 4,059, 8,903 and 4,554, respectively.

The size of the hidden layers is 2,048. The number of

layers is three unless otherwise stated. Code is available at

https://github.com/danieljf24/w2vv.

Evaluation protocol. The training, validation and test set

are used for model training, model selection and performance

evaluation, respectively, and exclusively. For performance

evaluation, each test caption is first vectorized by a trained

Word2VisualVec. Given a test image/video query, we then

rank all the test captions in terms of their similarities with

the image/video query in the visual feature space. The perfor-

mance is evaluated based on the caption ranking. Following

the common convention [4], [7], [38], we report rank-based

performance metrics R@K (K = 1, 5, 10). R@K computes

the percentage of test images for which at least one correct

result is found among the top-K retrieved sentences. Hence,

higher R@K means better performance.

How to vectorize an input sentence? As shown in Table

I, II and III, multi-scale sentence vectorization outperforms

its single-scale counterparts. Table IV shows examples for

https://github.com/danieljf24/w2vv
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TABLE I
PERFORMANCE OF IMAGE CAPTION RETRIEVAL ON FLICKR8K. MULTI-SCALE SENTENCE VECTORIZATION COMBINED WITH THE RESNET-152

FEATURE IS THE BEST.

BoW word2vec GRU Multi-scale

Visual Features R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CaffeNet 20.7 43.3 55.2 18.9 42.3 54.2 21.2 44.7 56.1 23.1 47.1 57.7

GoogLeNet 27.1 53.5 64.9 24.7 51.6 64.1 25.1 51.9 64.2 28.8 54.5 68.2

GoogLeNet-shuffle 32.2 57.4 72.0 30.2 57.6 70.5 32.9 59.5 70.5 35.4 63.1 74.0

ResNet-152 34.7 62.9 74.7 32.1 62.9 75.5 33.4 63.1 75.3 36.3 66.4 78.2

TABLE II
PERFORMANCE OF IMAGE CAPTION RETRIEVAL ON FLICKR30K. MULTI-SCALE SENTENCE VECTORIZATION COMBINED WITH THE RESNET-152

FEATURE IS THE BEST.

BoW word2vec GRU Multi-scale

Visual Features R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CaffeNet 24.4 47.1 57.1 18.9 42.3 54.2 24.1 46.4 57.4 24.9 50.4 60.8

GoogLeNet 32.2 58.3 67.7 24.7 51.6 64.1 33.6 56.8 67.2 33.9 62.2 70.8

GoogLeNet-shuffle 38.6 66.4 75.2 30.2 57.6 70.5 38.6 64.8 76.7 41.3 69.1 78.6

ResNet-152 41.8 70.9 78.6 36.5 65.0 75.1 42.0 70.4 80.1 45.9 71.9 81.3

TABLE III
PERFORMANCE OF VIDEO CAPTION RETRIEVAL ON MSVD. MULTI-SCALE SENTENCE VECTORIZATION COMBINED WITH THE GOOGLENET-SHUFFLE

FEATURE IS THE BEST.

BoW word2vec GRU Multi-scale

Visual Features R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CaffeNet 9.4 19.9 26.7 8.7 22.2 31.3 9.6 19.4 26.9 9.6 21.9 30.6

GoogLeNet 14.2 27.5 36.0 14.5 30.3 39.7 16.0 33.1 43.0 17.2 33.7 42.8

GoogLeNet-shuffle 14.8 29.6 37.2 16.6 33.7 43.4 16.6 35.1 42.8 18.5 36.7 45.1

ResNet-152 15.8 32.1 39.9 16.4 34.8 46.6 15.8 31.3 41.8 16.1 34.5 43.1

C3D 10.4 22.5 28.4 14.8 34.5 44.0 13.1 26.6 33.4 14.9 27.8 35.5

which a particular vectorization method is particularly suited.

In the first two rows, word2vec performs better than BoW

and GRU, because the main words rottweiler and quad are

not in the vocabularies of BoW and GRU. However, the use

of word2vec sometimes has the side effect of overweighting

high-level semantic similarity between words. E.g., beagle in

the third row is found to be closer to dog than to hound, and

woman in the fourth row is found to be more close to man

than to lady in the word2vec space. In this case, the resultant

Word2VisualVec vector is less discriminative than its BoW

counterpart. Since GRU is good at modeling long-term word

dependency, it performs the best in the last two rows, where

the captions are more narrative.

Which visual feature? Table I and II show performance

of image caption retrieval on Flickr8k and Flickr30k, re-

spectively. As the ConvNets go deeper, predicting the corre-

sponding visual features by Word2VisualVec improves. This

result is encouraging as better performance can be expected

from the continuous progress in deep learning features. Table

III shows performance of video caption retrieval on MSVD,

where the more compact GoogLeNet-shuffle feature tops the

performance when combined with multi-scale sentence vector-

ization. Although MSVD has more visual / sentence pairs than

Flickr8k, it has a much less number of 1,200 visual examples

for training. Substituting ResNet-152 for GoogLeNet-shuffle

reduces the amount of trainable parameters by 18%, making

Word2VisualVec more effective to learn from relatively limited

examples. Ideally, the learning process shall allow the model

to automatically discover which elements in the composite

sentence vectorization layer are the most important for the

problem in consideration. This advantage cannot be properly

leveraged when training examples are in short supply. In such

a case, using word2vec instead of the composite vectorization

is preferred, resulting in a Word2VisualVec with 73% less

parameters when using ResNet-152 (60% less parameters

when using CaffeNet or C3D) and thus easier to train. A

similar phenomenon is observed on the image data, when

given only 3k image-sentence pairs for training (see Fig. 3).

Word2VisualVec with word2vec is more suited for small-scale

training data regimes.

Given a fixed amount of training pairs, having more visual

examples might be better for Word2VisualVec. To verify this

conjecture, we take from the Flickr30k training set a random

subset of 3k images with one sentence per image. We then

incrementally increase the amount of image / sentence pairs

for training, using the following two strategies. One is to

increase the number of sentences per image from 1 to 2, 3,

4, and 5 with the number of images fixed, while the other is
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TABLE IV
CAPTION RANKS BY WORD2VISUALVEC WITH DISTINCT SENTENCE

VECTORIZATION STRATEGIES. LOWER RANK MEANS BETTER

PERFORMANCE.

Query image Ground-truth caption and its ranks

A rottweiler running.

BoW→857 word2vec→84 GRU→841

A quad sends dirt flying into the air.

BoW→41 word2vec→5 GRU→28

A white-footed beagle plays with a tennis ball on a
garden path.

BoW→7 word2vec→22 GRU→65

A man in a brown sweater and a woman smile for
their video camera.

BoW→3 word2vec→43 GRU→16

A young man wearing swimming goggles wearing a
blue shirt with a pirate skull on it.

BoW→422 word2vec→105 GRU→7

A dark-haired young woman, number 528, wearing
red and white, is preparing to throw a shot put.

BoW→80 word2vec→61 GRU→1

to let the amount of images increase to 6k, 9k, 12k and 15k

with the number of sentences per image fixed to one. As the

performance curves in Fig. 3 show, given the same amount of

training pairs, adding more images results in better models.

The result is also instructive for more effective acquisition of

training data for image and video caption retrieval.

How deep? In this experiment, we use word2vec as sen-

tence vectorization for its efficient execution. We vary the

number of MLP layers, and observe a performance peak when

using three-layers, i.e., 500-2048-2048, on Flickr8k and four-

layers, i.e., 500-2048-2048-2048, on Flickr30k. Recall that the

model is chosen in terms of its performance on the validation

set. While its learning capacity increases as the model goes

deeper, the chance of overfitting also increases. To improve

generalization we also tried l2 regularization on the network

weights. This tactic brings a marginal improvement, yet in-

troduces extra hyper parameters. So we did not go further in

that direction. Overall the three-layer Word2VisualVec strikes

the best balance between model capacity and generalization

ability, so we use this network configuration in what follows.

How fast? We implement Word2VisualVec using Keras

with theano backend. The three-layer model with multi-scale

3K 6K 9K 12K 15K

Number of image-sentence pairs for training

35

40

45

50

(R
@

1
+

R
@

5
+

R
@

1
0

)/
3

Word2VisualVec (word2vec), more sentences

Word2VisualVec (word2vec), more images

Word2VisualVec (multi-scale), more sentences

Word2VisualVec (multi-scale), more images

Fig. 3. Performance curves of two Word2VisualVec models on the Flickr30k
test set, as the amount of image-sentence pairs for training increases. For both
models, adding more training images gives better performance compared to
adding more training sentences.

sentence vectorization takes about 1.3 hours to learn from the

30k image-sentence pairs in Flickr8k on a GeoForce GTX

1070 GPU. Predicting visual features for a given sentence

is swift, at an averaged speed of 20 milliseconds. Retrieving

captions from a pool of 5k sentences takes 8 milliseconds per

test image. Based on the above evaluations we recommend

Word2VisualVec that uses multi-scale sentence vectorization,

and predicts the 2,048-dim ResNet-152 feature when adequate

training data is available (over 2k training images with five

sentences per image) or the 1,024-dim GoogLeNet-shuffle

feature when training data is more scarce.

B. Word2VisualVec versus word2vec

Although our model is meant for caption retrieval, it es-

sentially generates a new representation of text. How mean-

ingful is this new representation as compared to word2vec?

To answer this question, we take all the 5K test sen-

tences from Flickr30k, vectorizing them by word2vec and

Word2VisualVec, respectively. The word2vec model was

trained on Flickr tags as described in Section III-A. For a fair

comparison, we let Word2VisualVec use the same word2vec as

its first layer. Fig. 4 presents t-SNE visualizations of sentence

distributions in the word2vec and Word2VisualVec spaces,

showing that sentences describing the same image stay more

close while sentences from distinct images are more distant

in the latter space. Recall that sentences associated with the

same image are meant for describing the same visual content.

Moreover, since they were independently written by distinct

users, the wording may vary across the users, requiring a

text representation to capture shared semantics among distinct

words. Word2VisualVec better handles such variance in cap-

tions as illustrated in the first two examples in Fig. 4(e).

The last example in Fig. 4(e) shows failures of both models,

where the two sentences (#5 and #6) are supposed to be

close. Large difference between their subject (teenagers versus

people) and object (shirt versus paper) makes it difficult for
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1

2

1

2

3. A jockey with a red helmet

is riding a white horse, and a

jockey with an orange helmet

is riding a brown horse.

3
3

4

4

5 . Overhead shot of 2

teenagers both looking at

a shirt being held up by

one of them.

6. Two people looking a

piece of paper standing

on concrete.

5

6

5

6

4. Two jockeys on horses are

racing down a track.

(a) (b)

(e)

1. Six kids splash in

water.

2. Kids play in the

water.

(c) (d)

Fig. 4. Word2VisualVec versus word2vec. For the 5k test sentences from Flickr30k, we use t-SNE [65] to visualize their distribution in (a) the word2vec
space and (b) the Word2VisualVec space obtained by mapping the word2vec vectors to the ResNet-152 features. Histograms of intra-cluster (i.e., sentences
describing the same image) and inter-cluster (i.e., sentences from different images) distances in the two spaces are given in (c) and (d). Bigger colored dots
indicate 50 sentences associated with 10 randomly chosen images, with exemplars detailed in (e). Together, the plots reveal that different sentences describing
the same image stay closer, while sentences from different images are more distant in the Word2VisualVec space. Best viewed in color.

Word2VisualVec to predict similar visual features from the

two sentences. Actually, we find in the Word2VisualVec space

that the sentence nearest to #5 is “A woman is completing

a picture of a young woman” (which resembles subjects,

i.e., teenager versus young woman and action, i.e., holding

paper or easel) and the one to #6 is “Kids scale a wall as two

other people watch” (which depicts similar subjects, i.e., two

people and objects, i.e., concrete versus wall). This example

shows the existence of large divergence between manually

written descriptions of the same visual content, and thus the

challenging nature of the caption retrieval problem.

Note that the above comparison is not completely fair as

word2vec is not intended for fitting the relevance between

image and text. By contrast, Word2VisualVec is designed to

exploit the link between the two modalities, producing a new

representation of text that is well suited for image and video

caption retrieval.

C. Word2VisualVec for multi-modal querying

Fig. 5 presents an example of Word2VisualVec’s learned

representation and its ability for multi-modal query com-

position. Given the query image, its composed queries are

obtained by subtracting and/or adding the visual features of

the query words, as predicted by Word2VisualVec. A deep

dream visualization [66] is performed on an average (gray)

image guided by each composed query. Consider the query in

the second row for instance, where we instruct the search to

replace bicycle with motorbike via a textual specification. The
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- bicycle

+- bicycle motorbike

Composed query

(a) (b) (c)

Deep dream Nearest images from Flickr30k test

+- street woods

Police on motorcycle, in turning

land, waiting at stoplight.

A group of men in red and black

jackets waits on motorcycles.

A crowded sidewalk in the inner

city of an Asian country.

People look on as participants in

a marathon pass by.

Six people ride mountain bikes

through a jungle environment.

Two male hikers inspect a log by

the side of a forest path.

Fig. 5. Word2VisualVec allows for multi-modal query composition. (a) For each multi-modal query we visualize its predicted visual feature in (b) and
show in (c) the nearest images and their sentences from the Flickr30k test set. Note the change in emphasis in (b), better viewed digitally in close-up.

predicted visual feature of word bicycle is subtracted (effect

visible in first row) and the predicted visual feature of word

motorbike is added. Imagery of motorbikes are indeed present

in the dream. Hence, the nearest retrieved images emphasize

on motorbikes in street scenes.

D. Comparison to the State-of-the-Art

Image caption retrieval. We compare a number of

recently developed models for image caption retrieval

[4]–[7], [42], [48], [67]. All the methods, including ours,

require image-sentence pairs to train. They all perform caption

retrieval on a provided set of test sentences. Note that the

compared methods have no reported performance on the

ResNet-152 feature. We have tried the VGGNet feature as

used in [4], [5], [42] and found Word2VisualVec less effective.

This is not surprising as the choice of the visual feature

is an essential ingredient of our model. While it would be

ideal to replicate all methods using the same ResNet feature,

only [6], [7] have released their source code. So we re-

train these two models with the same ResNet features we

use. Table V presents the performance of the above models

on both Flickr8k and Flickr30k. Word2VisualVec compares

favorably against the state-of-the-art. Given the same visual

feature, our model outperforms [6], [7], especially for R@1.

Notice that Plummer et al. [67] employ extra bounding-box

level annotations. Still our results are better, indicating that

we can expect further gains by including locality in the

Word2VisualVec representation. As all the competitor models

use joint subspaces, the results justify the viability of directly

using the deep visual feature space for image caption retrieval.

TABLE V
STATE-OF-THE-ART FOR IMAGE CAPTION RETRIEVAL. ALL NUMBERS

ARE FROM THE CITED PAPERS EXCEPT FOR [6], [7], BOTH RE-TRAINED

USING THEIR CODE WITH THE SAME RESNET FEATURES WE USE.
WORD2VISUALVEC OUTPERFORMS RECENT ALTERNATIVES.

Flickr8k Flickr30k

R@1 R@5 R@10 R@1 R@5 R@10

Ma et al. [4] 24.8 53.7 67.1 33.6 64.1 74.9

Kiros et al. [6] 23.7 53.1 67.3 32.9 65.6 77.1

Klein et al. [5] 31.0 59.3 73.7 35.0 62.0 73.8

Lev et al. [48] 31.6 61.2 74.3 35.6 62.5 74.2

Plummer et al. [67] – – – 39.1 64.8 76.4

Wang et al. [42] – – – 40.3 68.9 79.9

Vendrov et al. [7] 27.5 56.5 69.2 41.3 71.0 80.8

Word2VisualVec 36.3 66.4 78.2 45.9 71.9 81.3

Compared with the two top-performing methods [7], [42],

the run-time complexity of the multi-scale Word2VisualVec is

O(m× s+ s× g+ (m+ s+ g)× 2048+ 2048× d), where s

indicates the dimensionality of word embedding and g denotes

the size of GRU. This complexity is larger than [7] which has

a complexity of O(m × s + s × g + g × d), but lower than

[42] which vectorizes a sentence by a time-consuming Fisher

vector encoding.

Video caption retrieval. We also participated in the NIST

TrecVid 2016 video caption retrieval task [41]. The test set

consists of 1,915 videos collected from Twitter Vine. Each

video is about 6 sec long. The videos were given to 8

annotators to generate a total of 3,830 sentences, with each

video associated with two sentences written by two different

annotators. The sentences have been split into two equal-
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sized subsets, set A and set B, with the rule that sentences

describing the same video are not in the same subset. Per

test video, participants are asked to rank all sentences in the

two subsets. Notice that we have no access to the ground-

truth, as the test set is used for blind testing by the organizers

only. NIST also provides a training set of 200 videos, which

we consider insufficient for training Word2VideoVec. Instead,

we learn the network parameters using video-text pairs from

MSR-VTT [68], with hyper-parameters tuned on the provided

TrecVid training set. By the time of TrecVid submission, we

used GoogLeNet-shuffle as the visual feature, a 1,024-dim bag

of MFCC as the audio feature, and word2vec for sentence

vectorization. The performance metric is Mean Inverted Rank

(MIR) at which the annotated item is found. Higher MIR

means better performance.

As shown in Fig. 6, with MIR ranging from 0.097 to 0.110,

Word2VideoVec leads the evaluation on both set A and set B

in the context of 21 submissions from seven teams worldwide.

Moreover, the results can be further improved by predicting

the visual-audio feature. Besides us two other teams submitted

their technical reports, scoring their best MIR of 0.076 [69]

and 0.006 [70], respectively. Given a video-sentence pair, the

model from [69] iteratively combines the video and sentence

features into one vector, followed by a fully connected layer

to predict the similarity score. The model from [70] learns an

embedding space by minimizing a cross-media distance.

Some qualitative image and video caption retrieval results

are shown in Fig. 7. Consider the last image in the top row. Its

ground-truth caption is “A man playing an accordion in front

of buildings”, while the top-retrieved caption is “People walk

through an arch in an old-looking city”. Though the ResNet

feature well describes the overall scene, it fails to capture

the accordion which is small but has successfully drawn the

attention of the annotator who wrote the ground-truth caption.

The last video in the bottom row of Fig. 7 shows “A man

throws his phone into a river”. This action is not well described

by the averagely pooled video feature. Hence, the main sources

of errors come from the cases where the visual features do not

well represent the visual content.

E. Limits of caption retrieval and possible extensions

The caption retrieval task works with the assumption that

for a query image or video, there is at least one sentence

relevant w.r.t the query. In a general scenario where the query

is unconstrained with arbitrary content, this assumption is

unlikely to be valid. A naive remedy would be to enlarge

the sentence pool. A more advanced solution is to combine

with methods that construct novel captions. In [71], [72] for

instance, a caption is formed using a set of visually relevant

phrases extracted from a large-scale image collection. From

the top-n sentences retrieved by Word2VisualVec, one can also

generate a new caption, using the methods of [71], [72]. As

this paper is to retrieve rather than to construct a caption, we

leave this for future exploration.

V. CONCLUSIONS

This paper shows the viability of resolving image and

video caption retrieval in a visual feature space exclusively.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Mean Inverted Rank

Set A

Set B

19 runs from 6 other teams

Word2VideoVec

Word2VideoVec with audio

Fig. 6. State-of-the-art for video caption retrieval in the TrecVid 2016
benchmark, showing the good performance of Word2VideoVec compared to
19 alternative approaches evaluated by the NIST TrecVid 2016 organizers
[41], which can be further improved by predicting the visual-audio feature.

We contribute Word2VisualVec, which is capable of trans-

forming a natural language sentence to a meaningful visual

feature representation. Compared to the word2vec space,

sentences describing the same image tend to stay closer,

while sentences from different images are more distant in

the Word2VisualVec space. As the sentences are meant for

describing visual content, the new textual encoding captures

both semantic and visual similarities. Word2VisualVec also

supports multi-modal query composition, by subtracting and/or

adding the predicted visual features of specific words to a

given query image. What is more the Word2VisualVec is

easily generalized to predict a visual-audio representation from

text for video caption retrieval. For state-of-the-art results, we

suggest Word2VisualVec with multi-scale sentence vectoriza-

tion, predicting the ResNet feature when adequate training data

is available or the GoogLeNet-shuffle feature when training

data is in short supply.
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2 puppies playing in a pool

2 puppies playing in a pool
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jumping hurdle
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saxophone outside a business

A guy is holding a red and white 

balloon at an indoor party

People walk through an arch in 

an old-looking city

A man hits a tree in a wood at daytime

A man hits a tree in a wood at daytime
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