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ABSTRACT

This paper introduces spatio-temporal interactivity proposals for

video surveillance. Rather than focusing solely on actions per-

formed by subjects, we explicitly include the objects that the sub-

jects interact with. To enable interactivity proposals, we introduce

the notion of interactivityness, a score that reflects the likelihood

that a subject and object have an interplay. For its estimation, we

propose a network containing an interactivity block and geometric

encoding between subjects and objects. The network computes

local interactivity likelihoods from subject and object trajectories,

which we use to link intervals of high scores into spatio-temporal

proposals. Experiments on an interactivity dataset with new evalu-

ation metrics show the general benefit of interactivity proposals as

well as its favorable performance compared to traditional temporal

and spatio-temporal action proposals.
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1 INTRODUCTION

The goal of this paper is to generate spatio-temporal proposals that

capture the interaction between subjects and objects in surveillance

videos. Spatio-temporal proposals in videos are generally focused

on actions [15, 17, 21, 41, 49], i.e., centered around subjects only. The

objects with which actions might interact are generally ignored or

only used implicitly. In surveillance settings, interactions between

subjects and objects are key, because they denote important events

to analyze. Think about a person entering a car or loading gear

into a trunk. Since surveillance videos may contain several events

that happen simultaneously, localizing the temporal extent of an

interactivity is insufficient; spatial localization is mandatory. We

aim to explicitly capture subjects performing actions, and the ob-

jects with which they interact, in space and time. We focus on the

proposal generation step, where a video is split into spatio-temporal

segments, upon which detection algorithms can be applied.
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Figure 1: Interactivity proposals encapsulate a subject and

object trajectory with the same start and end time. In this

paper we define, generate and evaluate this new type of pro-

posals for video surveillance.

To arrive at spatio-temporal interactivity proposals, we take

inspiration from objectness [1] and actionness [8, 44]. These ap-

proaches estimate the likelihood of object presence in a spatial

region or action presence in a spatio-temporal region. Based on

the likelihood, object or action proposals can be generated. Subse-

quently, such proposals are scored by classifiers to obtain object

or action detections. Here, we take this line of work further and

introduce interactivityness. Rather than estimating the individual

likelihoods of objects or subjects performing an action, we estimate

when and where subjects and objects are jointly occurring and

are also in interaction. Akin to objectness and actionness, we use

interactivityness to obtain interactivity proposals, which we define

as pairs of subject and object trajectories with the same start and

end time, see Figure 1.

We make three contributions in this paper. First, we introduce

the new task of spatio-temporal interactivity proposal generation in

surveillance videos. Second, we introduce an interactivity network.

This network estimates the interactivityness between a subject

and object using an interactivity module that models the context

around subjects and objects, as well as a geometric encoding that

models the spatial relations of the pair. Third, we set up an inter-

activity proposal evaluation, including a dataset distilled from the

ActEV surveillance benchmark [2] and interactivity evaluation met-

rics. Experiments on this evaluation show the effectiveness of our

approach, outperforming existing approaches from the temporal

and spatio-temporal action proposal literature. We will make the

dataset, evaluation protocols, and code publicly available.



2 RELATEDWORK

2.1 Action proposals

Temporal action proposals. Proposal methods for temporal ac-

tion localization form an active research topic [4, 10, 12, 13, 25, 27,

32, 51, 51]. Escorcia et al. [10] utilize LSTMs on extracted CNN

features to capture temporal information. Buch et al. [4] adopt

the C3D network architecture as a feature extractor with a gated

recurrent unit to capture long-term temporal information. Gao et

al. [13] collect proposal candidates through a sliding window, which

utilizes unit-level information for training. For each proposal, the

average unit representation is adopted as proposal representation.

Afterwards, temporal regression is performed on the unit-level to

refine the start and end times of the proposals. Zhao et al. [51] gen-

erate actionness for each frame and group continuous frames with

high actionness as proposals. All temporal action proposal methods

use whole frames as input. In outdoor surveillance settings, many

action and interactions can occur at the same time, hence using

whole frames as input is not precise enough. Therefore, we target

interactivity proposals in both space and time.

Spatio-temporal action proposals. Spatio-temporal action pro-

posals target the spatio-temporal locations of subjects in videos [15,

17, 21, 30, 41, 49]. One common manner to obtain spatio-temporal

action proposals is by clustering local voxels or dense trajectories

in a hierarchical manner [21, 30, 41]. Yu et al. [49] generate generic

action proposals in unconstrained videos by linking subject detec-

tions over time. He et al. [17] propose a tupelet proposal network for

action detection, which adopts Faster RCNN [33] to collect boxes

with high action scorse. They link the highest scoring boxes to ob-

tain tubelet proposals. Gleason et al. [15] generate spatio-temporal

cuboid proposals by clustering detected boxes in spatio-temporal

regions, followed by jittering to collect more proposals for better

recall. Where current spatio-temporal proposal methods focus on

actions only, we target spatio-temporal proposals of both subjects

and objects. More concretely, where a spatio-temporal action pro-

posal is described by a single tube, a spatio-temporal interactivity

proposal is described by two tubes with the same start and end

time. The tubes represent a subject and an object that should be in

interaction.

2.2 Visual human-object interaction

A wide range of works have investigated the relationship between

humans (subjects) and objects [5, 11, 14, 48, 50] in images. Gkioxari et

al. [14] learn to predict an action-specific density over object lo-

cations using detected subjects. Chao et al. [5] capture interaction

information in images by measuring relative location information

between boxes. Xu et al. [48] utilize semantic regularities for human-

object interaction detection in images with knowledge graphs. Gao

et al. [11] propose an instance-centric attention module that learns

to dynamically highlight regions in an image conditioned on the

appearance of each instance. Prest et al. [31] previously studied

human-object interaction in actor-centric videos, such as Drinking

and Smoking. In this setting, the person boxes generally cover the

object boxes. In the surveillance domain, we aim for proposals of

interactivities with unique boxes for persons and objects by focus-

ing on the surveillance domain. Wang et al. [43] also investigate

interactions in videos, but do so for agent-object animations, while

we focus on interactivity detections by proposals.

2.3 Video Surveillance

Recognition in video surveillance is a long-standing challenge [6, 23,

24, 28, 40, 42, 46, 52]. Surveillance settings are often indoor with an

explicit focus on subjects, as exemplified by the recent benchmark

of Zhao et al. [52]. The works of Maguell et al. [36, 37] relates to our

work as they focus on tracking loitering activities across multiple

surveillance cameras. Our work focuses on capturing interactivity

on single surveillance camera, without considering the explicit

interactivity class.

The works of Walker et al. [42] and Misra et al. [28] also relate

to our work in that both tackle object localization in space and

time. In this work, we focus on outdoor surveillance videos with

the ActEv benchmark [2] and we focus on jointly capturing the

spatio-temporal localization of subjects and objects in interaction.

For spatio-temporal action detection, several datasets have been

introduced, such as AvA [16], UCF-Sports [34], and J-HMDB51 [22].

Current datasets are commonly focused on human-centric ac-

tions in non-surveillance domains. Only the annotations of subjects

is provided, while the spatio-temporal annotations of objects are

absent. Hence, we will not consider these datasets for our experi-

ments. Instead, we will set up an interactivity proposal evaluation,

including a dataset distilled from the ActEV surveillance video

benchmark [2] and interactivity evaluation metrics.

3 METHOD

In order to obtain interactivity proposals from an input video, our

approach consists of three components: 1). obtaining interactivity

candidates, 2). computing interactivityness, and 3). generating in-

teractivity proposals. The overview of our method is sketched in

Figure 2. We will describe each component in detail next.

3.1 Obtaining interactivity candidates

We first generate an over-complete set of interactivity candidates,

where each candidate denotes a pair of subject and object trajec-

tories that potentially interact. Due to the possibly overwhelming

number of subjects and objects in a surveillance video, evaluating

all possible subject and object pairs is infeasible. Physically, a sub-

ject can only interact with an object when they are close enough

at some point in time. Hence, in most cases, the interactivity only

happens when the subject and the object are in close contact with

each other.

Suppose we have obtained 𝑁 subject trajectories and𝑀 object

trajectories in a video. Each trajectory has consecutive bounding

boxes, e.g. , the subject trajectory 𝑡𝑠 = {𝑏1𝑠 , 𝑏
2
𝑠 , ..., 𝑏

𝑛
𝑠 } has 𝑛 boxes

and the object trajectory 𝑡𝑜 = {𝑏1𝑜 , 𝑏
2
𝑜 , ..., 𝑏

𝑚
𝑜 } has𝑚 boxes. A box

𝑏 ∈ R4 is denoted by the leftmost, topmost, rightmost, and bot-

tommost coordinates. For each frame 𝑓 in the video, we calculate

the Intersection over Union (IoU) between subject box 𝑏
𝑓
𝑠 ∈ 𝑡𝑠 and

object box 𝑏
𝑓
𝑜 ∈ 𝑡𝑜 . If they overlap with each other, i.e., , their IoU

score is larger than zero at any point in time, we deem the pair as a

potential interactivity. In addition, we compute a union box that



Figure 2: Method overview. During testing, we first obtain interactivity candidates by detecting and tracking subjects and

objects in a surveillance video. For each frame of each subject-object pair, we input a subject-, object- and union-box to our

interactivity network and obtain their interactivityness. Finally, we group continuous regions with high interactivityness to

generate spatio-temporal interactivity proposals.

tightly unifies the subject and object boxes as follows:

𝑏
𝑓
𝑢 =

(
min(𝑏

𝑓
𝑠 [0], 𝑏

𝑓
𝑜 [0]), min(𝑏

𝑓
𝑠 [1], 𝑏

𝑓
𝑜 [1]),

max(𝑏
𝑓
𝑠 [2], 𝑏

𝑓
𝑜 [2]), max(𝑏

𝑓
𝑠 [3], 𝑏

𝑓
𝑜 [3])

)
.

(1)

We add the union boxes to the subject-object pairs and obtain 𝑘 in-

teractivity candidates, each consisting of a triplet of spatio-temporal

trajectories, e.g. for temporal length 𝑘 candidate 𝑐 is denoted as

𝑐 = {(𝑏1𝑢 , 𝑏
1
𝑠 , 𝑏

1
𝑜 ), (𝑏

2
𝑢 , 𝑏

2
𝑠 , 𝑏

2
𝑜 ), ..., (𝑏

𝑘
𝑢 , 𝑏

𝑘
𝑠 , 𝑏

𝑘
𝑜 )}.

This procedure is performed for test videos to obtain an initial

pool of candidates. During training, we use ground truth trajectories

of subjects and objects that are known to interact. The interactivity

label itself is ignored, only the trajectories are used.

3.2 Interactivity network

Given a subject-object pair from our candidate pool, we need to

detect whether this pair has any interactivity. If so, we also want

to know when it starts and ends. Here we train a binary classifier

to estimate the interactivity likelihoods, called interactivityness,

for each triplet of boxes in each frame of the pair. The frame-level

interactivityness scores will be used to generate our final spatio-

temporal interactivity proposals.

The main idea of our method is to capture interaction informa-

tion to aid recognition. We achieve the goal in two ways: (1) We

propose the interactivity block, an attention mechanism to compute

interactions between the subject, and union box features. The union

box provides spatial contextual information, which is beneficial to

recognize interactivity. (2) We encode the geometric relation be-

tween the subject and object. The relative positions of subjects and

objects change over time and therefore provide useful information.

Interactivity block. In surveillance videos, the subjects and ob-

jects are usually small due to the high camera position. So the

context information around subject and object is important to cap-

ture. At the same time, the network should focus on the subject and

object during feature extraction. Therefore, the interactivity block

should use union features to support subject and object features. In-

spired by the non-local operation in action recognition [45], we de-

sign an interactivity block to capture small region features (namely

subjects and objects) and context region feature (their union). We

use two interactivity blocks: one to capture the attention between

the subject features and the union features, and one for the atten-

tion between the object features and the union features. From the

above we know a subject-object pair is composed of continuous

triplet boxes 𝑐 = {(𝑏1𝑢 , 𝑏
1
𝑠 , 𝑏

1
𝑜 ), (𝑏

2
𝑢 , 𝑏

2
𝑠 , 𝑏

2
𝑜 ), ..., (𝑏

𝑘
𝑢 , 𝑏

𝑘
𝑠 , 𝑏

𝑘
𝑜 )}. For each

frame, the three boxes are first fed to a backbone convolutional

neural network to extract features. For frame 𝑓 , we obtain three

box features: union box features 𝐹
𝑓
𝑢 , subject box features 𝐹

𝑓
𝑠 and

object box features 𝐹
𝑓
𝑜 . The three features then form the input to

the interactivity block. Let 𝐹
𝑓
𝑐 = (𝐹

𝑓
𝑠 , 𝐹

𝑓
𝑜 , 𝐹

𝑓
𝑢 ) denote the combined

feature set, then the two individual blocks are given as:

IB𝑠 (𝐹
𝑓
𝑐 ) = 𝑐1 (𝑠𝑚(𝑐2 (𝐹

𝑓
𝑠 )

𝑇 × 𝑐3 (𝐹
𝑓
𝑢 )) × 𝑐4 (𝐹

𝑓
𝑢 )) + 𝐹

𝑓
𝑠 , (2)

IB𝑜 (𝐹
𝑓
𝑐 ) = 𝑐1 (𝑠𝑚(𝑐2 (𝐹

𝑓
𝑠 )

𝑇 × 𝑐3 (𝐹
𝑓
𝑢 )) × 𝑐4 (𝐹

𝑓
𝑢 )) + 𝐹

𝑓
𝑜 . (3)

Here 𝑐1, 𝑐2, 𝑐3, 𝑐4 are convolutional layers with kernel size 1×1

and 𝑠𝑚 denotes the softmax function. The output dimensions of

𝑐1, 𝑐2, 𝑐3, 𝑐4 are 512. We also incorporate Dropout [39], Rescaling,

Layer Normalization [3] and matrix transposition operations. The

two interactivity blocks’ convolutional layers share weights during

training. The two blocks are combined as follows:

IB(𝑝) = IB𝑠 (𝑝) + IB𝑜 (𝑝) . (4)

The details of the interactivity blocks are illustrated in Figure 3.

Interactivity block operations do not change the dimensionality of

input feature. The dimensionality of input features 𝐹𝑠 , 𝐹𝑜 , 𝐹𝑢 are all

R
𝐶×𝐻×𝑊 , the output feature IB(𝑝) remains the same.

With the interactivity block, we force the network to focus on

both the subject and the object. At the same time, useful contextual



Figure 3: Interactivity block details. The two interactivity

blocks share convolution layer weights with each other. The

input are subject box feature 𝑓𝑠 , object box feature 𝑓𝑜 and

union box feature 𝑓𝑢 . Here ⊕ denotes element-wise sum and

⊗ denotes matrix product. LN is short for Layer Normaliza-

tion.

information is provided. The output of the function IB(𝑝) is fed to

an average pooling layer with kernel size 2, resulting in 𝐹
𝑓
𝑝 ∈ R𝐶 .

Geometric location encoding. The aim of geometric location

encoding is to capture the relative distance between the subject

and object. Inspired by object detection in [20], we encode the

relative geometric location in a subject-object pair using Eq. 5.

For ease of notation, we now write each box using the topleft

coordinate and width and height, i.e., the subject box in 𝑓 is denoted
as (𝑥𝑠 , 𝑦𝑠 ,𝑤𝑠 , ℎ𝑠 ) and the object box as (𝑥𝑜 , 𝑦𝑜 ,𝑤𝑜 , ℎ𝑜 ), we compute

the following geometry location features 𝐹
𝑓
𝑔 ∈ R8:

𝐹
𝑓
𝑔 =

[
log (

|𝑥𝑠 − 𝑥𝑜 |

𝑤𝑠
), log (

|𝑦𝑠 − 𝑦𝑜 |

ℎ𝑠
), log (

𝑤𝑠

𝑤𝑜
),

log (
ℎ𝑠
ℎ𝑜

), log (
|𝑥𝑜 − 𝑥𝑠 |

𝑤𝑜
), log (

|𝑦𝑜 − 𝑦𝑠 |

ℎ𝑜
),

log (
𝑤𝑜

𝑤𝑠
), log (

ℎ𝑜
ℎ𝑠

)
]
.

(5)

We then concatenate 𝐹
𝑓
𝑝 and 𝐹

𝑓
𝑔 and score the feature:

𝑠 = 𝜎
( [
𝐹
𝑓
𝑝 ; 𝐹

𝑓
𝑔

] )
, (6)

where 𝜎 denotes the sigmoid classification and [; ] denotes the

concatenate operation along channel dimension to get a represen-

tation of dimensionality 𝐶 + 8.

Intearctivityness. The aim of the classification head is to output

an interactivityness, a score that indicates the possibility of inter-

action happening in this triplet of boxes. During training, we first

rely on a temporal sliding window along subject-object pairs to

generate spatio-temporal interactivity proposal candidates. Then

we calculate the temporal Intersection over Union (tIoU) between

proposal candidates and ground truths. We collect two types of

proposal samples: (1) positive proposals, i.e., those overlap with the

closest ground truth with at least 0.5 tIoU; (2) negative proposals,

i.e., those that do not overlap with any ground truth. Due to the

sparsity of ground truth proposals, the number of negative pro-

posals is much higher than the number of positive proposals. We

adopt the weighted cross-entropy loss function to deal with this

class imbalance:

L = −𝜔𝑦
(
𝑦 log(𝑠) + (1 − 𝑦) log(1 − 𝑠)

)
, (7)

where 𝑠 denotes the interactivityness output from Eq. 6, 𝑦 the

ground truth label, and 𝜔𝑦 the class-dependent weight used for

balancing the positive and negative samples.

3.3 Interactivity proposal generation

For a subject-object pair, our network provides an interactivity

score per frame. To generate spatio-temporal interactivity proposals,

we rely on the 1D-watershed algorithm [35]. The main idea is to

find continuous temporal segments with high interactivityness to

generate proposals. The watershed algorithm was originally used

as a segmentation method and later for temporal action proposal

generation [51]. We first feed the boxes from the automatically

computed candidate pairs to obtain frame-level interactivityness.

Then, we regard the interactivityness score as a 1D terrain with

heights and basins. This method floods water on this terrain with

different “levels” (𝛾 ), resulting in a series of “basins” filledwithwater,
named by 𝐺 (𝛾). Each obtained basin corresponds to a segment

with high interactivityness. Starting from the initial basins, we

merge consecutive basins until their length is above a temporal

threshold 𝜏 . We uniformly sample 𝜏 and 𝛾 with step 0.05. By using

multiple values for the two thresholds, multiple sets of regions are

generated. We average the interactivityness for each region as the

proposal score. We repeat this procedure for all selected pairs of

subjects and objects. Finally, we apply non-maximum suppression

on all generated proposals to remove redundant proposals. The

final output is a set of spatio-temporal interactivity proposals for a

video.

4 EXPERIMENTAL SETUP

4.1 KIEV dataset

To accommodate the new task of spatio-temporal interactivity pro-

posals, we have distilled a subset from the NIST TRECVID ActEV

(Activities in Extended Video) dataset, a collection of surveillance

videos with spatio-temporal annotations for objects and subject [2].

ActEV is an extension of the VIRAT dataset [29]. Since not all ac-

tions in ActEV are interactions, we leverage a subset of ActEV that

explicitly focuses on interactivities and call this the KIEV (Key Inter-

activities in Extended Video) dataset. KIEV includes high-resolution

surveillance videos that are 1080p or 720p. In KIEV, the subject is a

person and the object could be a person, vehicle or door. We select

nine key interactivities from ActEV, namely Closing, Closing Trunk,

Entering, Existing, Loading, Opening, Opening Trunk, Unloading and

Person Person Interaction. Note that we do not use the interactivity

labels in our approach, we are class-agnostic and are merely inter-

ested in recognizing their spatio-temporal locations. The training



Figure 4: Histogram of vIoU between subject trajectory and

object trajectory in interactivity proposal instances of KIEV.

For all interactivity instances, the subjects overlap with the

objects. Most overlap with vIoU from 0 to 0.2. This enforces

our choice of generating interactivity candidates based on

overlap.

set has a duration of 2 hours and 17 minutes, divided over 51 long

videos. The average size of bounding boxes in the training set is

264×142, only 2.6% of the pixels in any given image. The validation

set has a duration of 1 hour and 47 minutes, divided over 47 long

videos.

4.2 Implementation details

Object detection and tracking. We use Faster R-CNN [33] with

a ResNet-101 [19] backbone with dilated convolutions and feature

pyramids [26] for person and vehicle detection. We use the model

provided by [7]. The model is trained on the ActEV training set [2].

We apply this model on the unseen KIEV validation frames to obtain

vehicle and person boxes. We rely on the Deep SORT tracking

algorithm [47], to generate person and vehicle trajectories. During

the tracking procedure, we use the boxes and Region of Interest

[18] features from the detection model to link detected subjects and

objects into trajectories.

Subject-object pairing. When pairing subjects and objects, we

temporally extend each pair with three seconds in both directions.

The temporal context is beneficial for recognizing interactivities.

We also remove pairs whose duration is shorter than one second.

Interactivity network. We use the BN-Inception model provided

by [51] as the feature extraction backbone. The model is pre-trained

on ImageNet [9]. The interactivity network is inserted before the

global average pooling layer.We use the features after the global_pool

layer, whose dimensionality is 1024×7×7. After spatially pooling

the feature from the interactivity network, we concatenate them

with the geometric features and obtain a 1032-dimensional rep-

resentation. The backbone, interactivity network, and interactiv-

ityness classifier are jointly optimized on the KIEV training set.

All boxes are resized to 224 × 224 to meet the input dimension of

BN-Inception. We train our model for 100 epochs using Adam with

learning rate 1e-5, exponential decay rate 0.9, decay rate 0.999, and

weight decay 5e-4. We follow [51] to set other parameters.

Proposal generation. A 1D Gaussian filter with kernel size 3 is

applied to smooth the interactivityness sequence. We then apply

non-maximum suppression with temporal overlap threshold 0.7 to

filter out overlapping proposals.

Code. The dataset, evaluation protocols, and code are available at

https://github.com/shanshuo/Interactivity_Proposals.

4.3 Evaluation metrics

We consider three evaluation metrics, which measure the temporal,

spatial, and spatio-temporal proposal quality.

Average Temporal Recall. The first metric, Average Temporal

Recall (ATR), measures the temporal alignment between proposals

and ground truth interactivities. This metric is commonly used for

temporal action proposals, e.g. [12, 13, 51]. A proposal is a true

positive if its temporal intersection over union (tIoU) with a ground

truth is greater than or equal to a given threshold. ATR is the mean

of all recall values using tIoU between 0.5 to 0.9 (inclusive) with

a step size of 0.05. AN is defined as the total number of proposals

divided by the number of videos in the validation set. We report

ATR25, ATR50, as well as the AUC (Area Under Curve) to see how

well the proposal method works across all thresholds for number

of proposals per video.

Average Spatial Recall. The second metric, Average Spatial Re-

call (ASR), is adapted from the AVA dataset [16]. We compare pre-

dicted boxes in each framewith ground truth boxes. If their overlaps

are above a threshold of 0.5, we regard the predicted box as a true

positive. We evaluate frame by frame to get the final recall.

Spatio-Temporal Recall. The third metric, Spatio-Temporal Re-

call, evaluates the spatio-temporal quality of an interactivity, in-

spired by [38]. To match a predicted interactivity proposal (𝑡
𝑝
𝑠 , 𝑡

𝑝
𝑜 )

to a ground truth interactivity (𝑡
𝑔
𝑠 , 𝑡

𝑔
𝑜 ), we require that the bounding-

box trajectories overlap s.t. vIoU(𝑡
𝑝
𝑠 , 𝑡

𝑔
𝑠 ) ≥ 0.5 and vIoU(𝑡

𝑝
𝑜 , 𝑡

𝑔
𝑜 ) ≥

0.5 and the proposal is not closer to another unmatched ground

truth interactivity. The term vIoU refers to the voluminal Inter-

section over Union and is calculated as vIoU = (tube of overlap) /

(tube of union). We report the spatio-temporal recall for the top 25

proposals (STR25) and top 50 proposals (STR50).

5 RESULTS

We consider three experiments: (i) we ablate the effectiveness of

our interactivity networks, (ii) we assess the effect of automatic

trackers over ground truth spatial locations, and (iii) we compare

to other proposal methods.

5.1 Ablating the interactivity network

In the first experiment, we evaluate the two core components of

our interactivity network: the interactivity block and the geometric

encoding. The baseline method does not contain these two compo-

nents. For the baseline we sum the subject feature, object feature

and union feature obtained from CNN backbone together. Then

we input the summed feature into classifier. We use the Average



Average Temporal Recall

interactivity

block

geometric

encoding
ATR25 ATR50 AUC

6.9 14.2 6.9

� 10.9 15.7 10.1

� 10.6 15.5 9.6

� � 12.4 19.0 11.3

Table 1: Ablating the interactivity network based on tempo-

ral average recall (%). Both the interactivity block and the

geometric encoding aid the proposal quality. Their combi-

nation works best. The results prove the efficiency of our

method.

Figure 5: Ablating the interactivity network by increasing

retrieved proposals.Whenusing both the interactivity block

and the geometry encoding we obtain best average recall.

Temporal Recall as the evaluation metric. We rely on ground truth

person and vehicle tubes as the subject and object trajectories to

eliminate the influence of the tracker.

Interactivity block. Table 1 shows the effect of the interactivity

block on the quality of the temporal interactivity proposal. We re-

port the ATR25, ATR50, and AUC. The interactivity block improves

ATR25 by 4 percent points, ATR50 by 1.5 and AUC by 3.2. This re-

sult indicates the interactivity block is an important element of the

approach; capturing context around subjects and objects matters.

Geometry encoding. In Table 1, we also show the effect of the

geometric encoding, as well as its combination with the interactiv-

ity block. After adding geometry encoding the AR25 is improved

by 3.7, AR50 by 1.3, and AUC by 2.7. Combining the interactivity

block with the geometric encoding is most beneficial and results

in improvements on all three metrics. Evidently, encoding the geo-

metric relations between subjects and objects aids the quality of

interactivity proposals. Figure 5 shows the Temporal Average Re-

call as a function of the average number of retrieved proposals per

video. The interactivity block and the geometric encoding improve

Tracker Temporal Spatio-Temporal

ATR25 ATR50 AUC STR25 STR50

ground truth 12.4 19.0 11.3 20.0 23.3

automatic 11.6 17.6 10.8 6.3 7.8

Table 2: Effect of automatic tracks on temporal and spatio-

temporal proposal quality. For temporal recall, switching

from ground truth to automatic trajectories has minimal ef-

fect on performance. For spatio-temporal recall, the scores

naturally have a larger drop. Automatic tracks are robust

enough for temporal proposal quality, but not for spatio-

temporal quality.

the proposal quality scores. For their combination, the largest im-

provements are obtained when more proposals are generated. We

conclude that the interactivity block and geometric encoding are

important components of our method and we will report further

experiments with their combination.

5.2 Effect of automatic tracks

Next, we evaluate the effect of using automatic tracks for subjects

and objects on the interactivity proposal quality. We report both

the temporal proposal quality (ATR) and spatio-temporal quality

(STR) and show results in Table 2.

When evaluating the temporal dimension only, we find that

automatic tracks are competitive with ground truth subject and

object tubes. Indicating our method is temporally robust to noise

in the spatial locations of subjects and objects. Table 2 also shows

the spatio-temporal proposal quality is directly impacted by the

switch from ground truth to automatic tracks. This is not surprising,

since the spatio-temporal evaluation metric is very strict in its

spatial evaluation; both the subject and object boxes need sufficient

overlap. In Figure 6, we show a number of example proposals when

using automatic trackers for the subject and object trajectories.

The qualitative results indicate the difficult nature of the problem

of finding spatio-temporal interactivities. Due to occlusions and

tiny object sizes, there are some missed detection of interactivity

in this dataset, as visualized in Figure 6c. Improved detection will

positively affect interactivity proposal generation.

5.3 Comparison to prior work

In the third experiment, we compare our approach to several base-

lines from both the temporal and spatio-temporal action proposal

literature, to show that proposing spatio-temporal interactivity

locations can not be achieved by existing action proposal methods.

Baselines. We compare to two temporal proposal baselines and

one spatio-temporal baseline. The first temporal proposal baseline is

TAG from Zhao et al. [51], which proposes temporal regions based

on actionness grouping. The second temporal proposal baseline is

TURN-TAP from Gao et al. [13], which is based on sliding windows.

The spatio-temporal baseline is by Gleason et al. [15], who introduce

a spatio-temporal proposal cuboid approach for actions. For a fair

comparison, the input object boxes are the same as our approach.



(a) Successful cases.

(b) Imperfect case.

(c) Failed cases.

Figure 6: Qualitative results. (a). The top two examples show successful cases, where the proposal highly overlaps in space

and time with the ground truth. From top to bottom the interactivities are Entering, Exiting, Closing, Entering and Person

Person Interaction. Note that we do not output labels. Here the labels are only for clarifying. The bottom two examples show

failure cases, (b). occlusion and (c). small object sizes either result in a low interactivityness or even missed subject and object

trajectories. These failure cases highlight the difficult nature of finding interactivities in outdoor settings.



Method ATR25 ATR50 AUC

Zhao et al. [51] 0.0 0.0 0.0

Gleason et al. [15] 1.4 1.6 1.2

Gao et al. [13] 8.1 12.4 7.4

This paper 11.6 17.6 10.8

Table 3: Temporal comparison of our interactivtyness pro-

posals versus regular action proposals. Our method outper-

forms alternatives.

Figure 7: Temporal comparison of interactivtyness propos-

als versus regular action proposals under varying number of

retrieved proposals. Modeling interactivityness rather than

activity is beneficial.

Temporal comparison. Since temporal action proposal methods

only provide the start and end times, we first compare our propos-

als to all baselines using the temporal quality metrics. The results

are shown in Table 3 and Figure 7. Our approach performs better

than all baselines. In comparison to the best scoring baseline of

Gao et al. [13], our method improves the ATR25 by 3.5, the AR50
by 5.2, and the AUC by 3.4. The approaches of Zhao et al. [51] and

Geo et al. [13] fail to generate efficient proposals in this setting

because they take the whole frame as input. Since interactivities are

only a small part of the video spatially, their representations hardly

capture the precise interactions, as expected. These temporal action

localization methods fail to solve the interactivity proposal prob-

lem. They are capable of localizing temporal boundaries but ignore

spatial boundaries. Our approach operates locally in space, which

allows for a better estimation of interactivities in time. The ap-

proach of Gleason et al. [15] does operate locally in space, but does

not explicitly capture contextual and geometric relations between

subjects and objects, which results in lower recall scores.

Spatio-temporal comparison. In Table 4, we also compare our

approach to Gleason et al. [15] with respect to the spatio-temporal

proposal quality. The results show that spatially, the baseline ob-

tains an ASR of 8.4, while we reach a score of 61.5, a considerable

Method ASR STR25 STR50

Gleason et al. [15] 8.4 0.0 0.0

This paper 61.5 4.8 6.3

Table 4: Spatio-temporal comparison of our interactivity-

ness proposals versus a regular action proposal in terms of

Recall (%). Explicitly modeling interactivity results in better

spatio-temporal localization.

gain. Furthermore, the spatio-temporal recall at both 25 and 50

proposals per video is 0 for the baseline, compared to 4.8 and 6.3 for

our approach. The reason for this gap in performance is because

the baseline generates cuboid-style proposals, leading to coarse

spatial localization of subjects and objects. The cuboid-style pro-

posals have low IoUs compared to trajectory-style ground truths.

In our evaluation, we care about a precise dynamic alignment in

space and time for subjects and objects. Our approach yields more

accurate spatio-temporal interactivity proposals, be it the overall

spatio-temporal recall is modest. Compared to Gleason et al. [15] we

conclude that our approach is better equipped to find interactivities

more precisely in space and time.

6 CONCLUSION

This paper introduces interactivity proposals for video surveillance.

Rather than focusing on the actions of the subject only, our pro-

posals capture the interplay between subjects and objects in space

and time. To that end, we propose a network to compute interac-

tivityness between subjects and objects from which we generate

class-agnostic proposals. We evaluate the proposals on an interac-

tivity dataset with new overlap metrics, where experiments show

the improvement of our approach over traditional temporal and

spatio-temporal action proposal methods. Overall, the results are

far from perfect, indicating the challenging nature of the problem.

To encourage further progress on recognizing interactivity propos-

als we make the dataset split, evaluation metrics, and code publicly

available.
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