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ABSTRACT
Live streaming video presents new challenges for retrieval and con-
tent understanding. Its live nature means that video representations
should be relevant to current content, and not necessarily to past
content. We investigate retrieval of previously unseen queries for
live video content. Drawing from existing whole-video techniques,
we focus on adapting image-trained semantic models to the video
domain. We introduce the use of future frame representations as
a supervision signal for learning temporally aware semantic rep-
resentations on unlabeled video data. Additionally, we introduce
an approach for broadening a query’s representation within a pre-
constructed semantic space, with the aim of increasing overlap
between embedded visual semantics and the query semantics. We
demonstrate the efficacy of these contributions for unseen query
retrieval on live videos. We further explore their applicability to
tasks such as no example, whole-video action classification and
no-example live video action prediction, and demonstrate state of
the art results.
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1 INTRODUCTION
Live, streaming video is increasingly prevalent and brings new
twists on the task of video retrieval. The live nature of video streams
alters the focus of understanding: with whole videos, retrieval
systems seek to understand what the entire video is about [16,
20, 37], but in a streaming video scenario, current content reigns
supreme. Content from the distant past may be irrelevant to the
present content of the stream, and traditional pooling approaches
e.g. [17, 23, 39] are ill-suited to such tasks. We address the problem
of live video retrieval.

Just as the content of video streams may vary widely, so too can
the possible queries. It is impossible to know beforehand what will
be featured within a stream, and what users may wish to find. A
hitherto unheard of natural disaster, such as “tornado in Holland”
is unlikely to have a pre-trained classifier, but streams containing
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Figure 1: High quality image-trained concepts are useful,
but lack temporal understanding. We enrich per-frame se-
mantics with temporal awareness by using future represen-
tations for supervision. The model is trained within a se-
mantic space on unlabeled video data, and can be used for
unseen query retrieval across live video streams.

such content will absolutely be of interest should it happen. Simi-
larly, semantic search within CCTV is a natural form of interaction
for non-expert users. The attributes of interest can not be prede-
termined, and acquiring annotated data for classifier training is
infeasible in a live scenario with hundreds of cameras. For these
reasons, ‘zero-example’ approaches, e.g. [12, 22, 36], are almost a
necessity for streaming video retrieval purposes.

Cappallo et al. introduce the task of live video stream retrieval
in [4]. They target very long streams, and their approach consists of
a hand-tuned temporal pooling over concept detections. In contrast,
our approach learns semantic changes over time, and acts directly
within the the semantic embedding space. We draw on the large
body of existing work for no example retrieval of whole videos
[12, 16, 36]. Many zero example video retrieval systems leverage
annotation-rich image datasets [9] to build visual semantic under-
standing. In a whole-video setting, these representations can be
pooled over the entirety of a video to generate video-level semantic
descriptors [5, 10, 13, 15, 41]. In a stream, it’s necessary for our
representation to be temporally local. As our first contribution, we
propose the use of future representations as a source of supervi-
sion for a recurrent neural network which acts directly within the
semantic space. By using only future representations, our model can
be trained off-line on abundant unlabeled video data, and subse-
quently applied to live video. An illustration of our proposed model



is given in Figure 1. Past and present frames are fed into an LSTM
trained to predict the semantic representation of future frames.

There is often a mismatch between the semantic space of a query
and the visual semantic representation. This can be partially ad-
dressed through the use of a joint embedding [35], or can be directly
learned in a supervised setting. In a no-example retrieval scenario
where the system should be responsive to the broadest possible
set of input queries, learning this mismatch directly becomes in-
tractable. As a second contribution, we learn a broader mapping of
the query within the semantic space, to increase the likelihood of
alignment with the visual semantics.

We evaluate these two contributions against competitive base-
lines and explore their properties. As a third contribution we also
demonstrate the abilities of the proposed approach on three tasks:
continuous retrieval of video streams, no example whole video
classification, and no example live action prediction.

2 RELATEDWORK
2.1 Retrieval of Videos without Examples
The bulk of work on zero-example video retrieval has used some
set of known video labels for knowledge transfer to unseen queries.
Many submissions to the Zero Example TRECVIDMultimedia Event
Detection benchmark [24] have used pre-trained video concepts
trained on large sets of video data [5, 7, 10, 14–16, 19, 36, 41]. For
example, Wu et al. [36] learn weakly-supervised video concepts
from web videos and their accompanying text descriptions. These
concepts are combined with other concept banks in a mutual em-
bedding space where distance to a query can be used to score video
relevancy. Our work uses a semantic space to relate test queries
and our visual representation, but our visual representation is built
by adding temporal awareness to image concepts and requires no
video labels of any kind.

One semantic space that has achieved strong success as a basis
for retrieval tasks is the word2vec embedding [21]. A word2vec em-
bedding is trained by attempting to predict the neighboring words
to a given input word from some text corpus. The result is a space in
which similar words lay close together. Norouzi et al. [22] applied
a word2vec semantic space to relate pre-trained image categories
to unseen class labels. Later papers adapted this approach to other
domains, such as videos [12, 38]. The sidebar describes the basic
approach used by [12, 22] to relate visual concepts to an unseen
query. [4, 12, 38] base their methods on this approach. Our work
builds on this by learning temporal qualities of visual representa-
tions within this semantic space, and proposing an alternative to
broaden the mapping of a query within the semantic space.

2.2 Looking at the future
Some recent works have looked at the problem of trying to predict
aspects of the future in video, e.g. [25, 33, 34, 40]. These works
attempt to extrapolate future motion from a single frame, and focus
on the visual representation without consideration of semantics. In
contrast, our work uses the full range of past and present frames to
attempt to predict a single future semantic representation. Closer
to our own work, Vondrick et al. [32] looked at the problem of pre-
dicting future representations of video frames extracted with CNNs.
Like the others, Vondrick et al. use only a single frame as input and

Word2vec [21] for No-Example Retrieval

Given some target query phrase, q, composed of N terms
and a set of visual concept classifiers, p(c |x) for classes
c ∈ C , [22] and subsequent works relate these two inputs as
follows. The query q is represented by the mean word2vec
vector of its terms:

ω(q) = 1
N

∑
wi ∈q

ω(wi ) (1)

where ω(·) yields a word2vec representation for a con-
stituent termwi ∈ q. Likewise, an image is placed within
the word2vec space using the average word2vec represen-
tation of high-scoring visual concepts, weighted by the
their decision scores:

ω(x) = 1∑
c ∈T p(c |x)

∑
c ∈T

p(c |x)ω(c) (2)

where T is some set of high-scoring terms to use, to avoid
dilution from a long-tail of low-confidence class predic-
tions. Once embedded, the score for an image and text term
pair, (x ,q), is calculated by the cosine similarity between
their respective word2vec representations:

score(x ,q) = sim(ω(x),ω(q)) (3)

where sim(·, ·) returns the cosine similarity.

are focusing on future prediction itself. The goal of our model is not
future prediction, but use of the future as a source of supervision
for learning our representation of the present. Vondrick et al. use a
non-semantic representation, and learn to apply their predictions
to target labels through training, while our model exists within a
semantic space and can perform retrieval on unseen queries.

2.3 Retrieval of Live Video
There has been some recent work on live video retrieval [4] and the
related task of live video action prediction [8, 29]. Prior work on
live video action detection has been limited to supervised methods
trained on labeled examples. Soomro et al. [29] perform both action
classification and spatial localization on partially seen videos. They
do not investigate temporal localization, and report on datasets with
short, single-action clips. De Geest et al. [8] look at the problem
of supervised live video action detection in television episodes,
where many different actions may happen in a single video. They
evaluate how well their algorithms work at predicting temporal
action relevancy in a video. We apply our model to the problem of
live video action prediction, but do so in a no-example setting.

Live video retrieval considers multiple concurrent video streams,
unlike live action detection which is focused on a single video.
Cappallo et al. [4] work on the task of live video stream retrieval
for unseen queries. Their approach involves temporal pooling of
an image-trained conceptbank, which is ultimately placed in a se-
mantic embedding space. Our proposed approach instead works
within the semantic embedding space itself. Their temporal pool-
ing is discovered through validation on the data set and relies on
labeled examples for the parameter setting. Our approach learns a



temporal understanding directly from unlabeled video examples,
and we demonstrate that our learned model possesses some general
applicability across video data sets.

3 METHOD
A video stream retrieval algorithm can have no knowledge of the
future, and the past becomes increasingly irrelevant. Unlike a whole
video retrieval task, the semantics of a video stream at time 0 are
of limited use for retrieval of the content at time t . Users will not
be viewing earlier content, relevant or not, and its only purpose is
to inform our interpretation of the present.

3.1 Future Supervision
Given a video stream s , with some semantic representation xt at
time t , we seek an improved representation x̂t that exists in the
same space as the xt but which is informed by x0, ...,xt−1. This
improved representation should capture knowledge of temporal
semantics that are absent in the frame-level representation xt . To
accomplish this, we exploit abundantly available unlabeled video
data to learn a model of how semantics change over time.

The future is unavailable in our targeted live video test setting,
as input is restricted to present and past video. However, the future
is a free and plentiful form of supervision during off-line training.
We learn our representation off-line on unlabeled videos for which
future frames are available. Instead of targeting some class label,
our proposed model seeks to predict a future representation of the
video, xt+∆t , with some temporal gap ∆t . For brevity, we adopt the
convention that x0..t ≡ {x0,x1, ...,xt−1,xt }, the set of frame-level
semantic representations from time 0 to time t . The goal is to learn

x̂t = p(xt+∆t |x0..t ) (4)

To learn x̂t , a recurrent neural network with LSTM units is used.
LSTMs work well when processing short sequences of informa-
tion [11]. LSTMs have had success in off-line video tasks [1], but
tend to forget distantly past inputs. This has led to temporal pooling
of LSTM outputs [42]. This weakness becomes a strength for live
video tasks, where we seek a representation which portrays only
current and recent content.

The proposed method operates within the semantic embedding
space. The model is largely independent from choices made when
constructing the visual embedding, and remains adaptable to alter-
native embedding schemes. In this paper, the model operates within
a pre-defined word2vec embedding, which has been constructed to
maximize cosine similarity between similar vocabulary terms. The
network seeks to minimize the cosine similarity loss:

L = 1 − xt+∆t x̂t
∥xt+∆t ∥∥x̂t ∥

(5)

It is important to stress that the goal of this approach is not pre-
dicting the future. The future is simply an available, reliable source
of supervision for enriching image-trained semantics with some
temporal awareness. Through operating solely within a semantic
space, our model remains responsive to novel queries, rather than
learning to be responsive to a particular set of training queries.
There is a possibility of bias in the learned representation due to
bias in the semantics of the training videos themselves, which we
explore in the experiments.

CNN CNN CNN CNN

LSTM LSTM LSTM

xt-2 xt-1 xt xt+ᵂt

Loss:
1 - sim(p(xt+ᵂt), xt+ᵂt)

Video 
Frame
(t-2)

Video 
Frame
(t-1)

Video 
Frame

(t)

Video 
Frame
(t+ᵂt)

word2vec word2vec word2vec word2vec

Input Video:

Extract Image Features:

Embed within Semantic Space:

Future Supervision:

Figure 2: Overview of training pipeline for future super-
vision. Video frames are placed within a word2vec space,
and our model enriches this representation with temporal
awareness through trying to predict future representations.
At test time, the learned representation can be used for live
video retrieval of unseen queries.

Figure 3: The mean of constituent terms might not capture
the most pertinent aspects of the query. By also learning
the space around individual terms, our model can capture
semantics that would be overlooked.

This paper targets an off-line training/live video testing para-
digm, but the model can be adapted to on-the-fly training. Instead
of predicting a future frame based on current and past frames,
the model can predict the current representation based on past
frames, p(xt |x0..t−∆t ). This adaptation could learn temporal se-
mantics specific to a single long video stream, for tasks such as
anomaly detection within surveillance footage.

3.2 Query Ambiguation
Retrieval of unseen queries generally relies on external, structured
knowledge. This knowledge often comes from textual corpora
where semantic relationships between terms can be identified based
on co-occurrence or proximity within documents. Unfortunately,
semantic gaps between visual semantics, linguistic semantics, and
the semantics of a chosen model can limit performance. Indeed,
even within a mutual embedding space, the manifestation of dif-
ferent modalities within the space may be misaligned. To alleviate
this effect, we propose a method to broaden, or “ambiguate”, the
mapping of a query within the semantic space.

Assume some vector space Ω, which seeks to model semantics
such that leash is closer to dog than to lemonade, and a related
function ω(w) which yields the representation of wordw within Ω.
To place a query within this space, prior work uses the averaged



representation of all words in the query, as described in section
2. Similarly, the embedding of video within Ω may be generated
by a weighted combination of high-scoring concept detections.
This assumes the averaged semantics of the query terms is well-
aligned with the semantics of embedded video frames. We propose
a method to learn a wider, more ambiguous query representation.
Figure 3 illustrates the intuition behind our approach. Given a query
playing accordion, the mean of the two terms may differ from the
actual region of interest (musical instruments and performances).
By covering a volume of the semantic space, rather than a point,
the overlap between the query and the embedding of a relevant
video may be increased.

Given a list of one or more words composing the target query,
{w0, ...wl } ∈ q, we construct simulated data points within the
semantic space. The simulated data consists of positively annotated
examples in the space around and between class-relevant words,
and negative annotated examples built with non-relevant terms. A
positive data point, xi is constructed using a setm+ consisting of
k ≤ l terms in or related to q:

xi = βrc +
1
k

∑
j ∈m+

ω(j) (6)

where rc is a random vector perturbation within the semantic space
and β is a scaling term for the perturbation. Negative examples are
constructed in the same manner, using m− < q. In a multi-class
setting, other test labels can be used as negative examples in a
one-vs-rest training regime. A classifier is trained on the simulated
data.

3.3 Retrieval Among Video Streams
Video streams are usually present as many concurrent streams, as in
the case of multiple surveillance cameras or large online streaming
platforms such as Twitch. To perform retrieval of one stream from
many concurrent ones, we select the highest scoring stream for the
given query.

stream = argmax
s ∈S

p(q |x̂st ) (7)

where S is the set of all concurrent video streams, and x̂st is therefore
the future-supervised representation of stream s at time t .

3.4 Adapting to Whole-Video Tasks
The representation x̂t is constructed to give a confident represen-
tation of the temporally local semantics, for live video tasks. It is
possible to adapt the model for whole-video tasks by pooling its
predictions over the entire video.

p(q |x̂video ) = max
t

sim(q, x̂t ) (8)

where sim(·, ·) gives the cosine similarity between two vectors. The
use of a max term ensures that short-term, high-confidence predic-
tions can be exploited. These short-term predictions could be lost
in a whole-video average. The motivation for query ambiguation
also holds in the whole-video case.
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Figure 4: Performance of predicting future semantic repre-
sentation. The future-supervised approach outperforms us-
ing the instantaneous representation as well as mean pool-
ing over the previous 5 seconds.

4 EXPERIMENTS
In this section, we report on several experiments investigating the
proposed approach and its efficacy, both on live video retrieval and
other no-example video tasks.

4.1 Implementation Details
Image Features Frames of input videos are extracted twice per
second. A convolutional neural network, based on the GoogLeNet
architecture [30], creates concept scores.We use a network from [20]
which generates confidence scores for 12,988 ImageNet concepts [9].
The weighted combination of the 15 highest scoring concepts are
used to embed the frame within a word2vec embedding space. The
threshold value of 15 was chosen following the analysis in [12] as
well as preliminary experimentation.

Semantic Space All experiments use a 500-dimensional skip-
gram word2vec embedding space [21]. The word2vec representa-
tion was trained on the title, description, and tags of the YFCC100M
data set [31] as described in [3].

Future Supervision The future supervised model for all ex-
periments uses a single-layer LSTM. This structure was determined
in preliminary experimentation to perform well. Training of the
model is performed with Keras [6] using its Theano backend.

An overview of the training pipeline can be seen in Figure 2.

4.2 Exp 1: Future Supervision
4.2.1 Performance with ∆t . We first investigate the effect of

future supervision on our representation. Though our goal is to
embed some temporal awareness into our understanding of the
present, it is insightful to judge the predicted representation by its
similarity to the target representation, as this is the objective the
model is trained with.

Dataset We report on ActivityNet 1.2 [2]. ActivityNet consists
of 4,819 training videos and 2,383 validation videos from 100 activity
classes. Class annotations have temporal extent, and some videos
contain multiple classes. As ActivityNet is an active challenge, the
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Figure 5: Performance of the model trained on synthetic
data constructed to emulate only short term noisy fluctu-
ation of semantics. Performance is similar to the baseline,
suggesting that the model is learning temporal properties
unique to actual video data.

labels for the official test set are not released, therefore all results
for ActivityNet are reported on the validation set.

Evaluation Performance is reported in terms of Mean Cosine
Similarity, which is a measure of how closely the vector directions
align between the ground truth semantic representation and the
predicted semantic representation.

Results In Figure 4, the performance of our trained model
on predicting xt+∆t is compared against two baselines for increas-
ing durations of ∆t . The first baseline simply uses xt as the predic-
tion for future frames, while the second performs mean pooling
over the previous 5 seconds.

At small ∆t values, simply repeating the current observation
works nearly as well as our model, as the difference between xt
and xt+∆t is small. As ∆t increases, the two diverge. Naturally, the
performance of all methods decreases, as the future grows increas-
ingly unpredictable the further from the present you travel. The
mean pooled prediction performs competitively, which suggests
that much of what our model learns is how to most effectively pool
relevant, recent information.

4.2.2 Training on Synthetic Stream Data. The proposed model
aims to be robust to short-term changes in the semantic representa-
tion, but it is also hoped that it is learning something more nuanced
about the evolution of semantics over time. To test if the model is
only learning to be robust to noise, it can be trained on synthetic
data representing static representations with increased noise.

Dataset To generate the synthetic data, a similar procedure to
query ambiguation is followed. An individual frame of the synthetic
video data is given by

xt = αrд +
1
k

∑
i ∈m

i (9)

where rд is a random noise vector in a normal distribution, α is a
weighting parameter, andm is k randomly chosen members of some
set of vectors M . M in this case is the set of 13k visual concepts,
and k varies between 1 and 20. Subsequent frames use the same

subset of M to maintain content cohesiveness, with a 2% chance
per timestep to choose a new subset ofM .

This model corresponds to a steady visual appearance with short-
term noise or variation. By training on this model, the LSTM learns
explicitly to focus only on semantics which are constant over time,
while ignoring distracting fluctuations. If the sole benefit of the
proposed model arises from this noise robustness, training on such
synthetic data should yield comparable performance to training on
real video data.

Evaluation As before, we report Mean Cosine Similarity.
Results Figure 5 shows the performance for a future-supervised

model trained off of synthetic data. The model trained on synthetic
data shows occasional improvement over the baseline, but fails
to achieve similar results to models trained on actual video data.
This suggests that a more nuanced model of how we expect video
stream semantics to behave could be useful for bootstrapping our
representation. The results show that our models trained on actual
video data learn more than mere resistance to temporal fluctuation.

4.2.3 Generality of Future-Supervised Models. We investigate
the extent to which our future-supervised representations are re-
flective of the training data set.

Datasets For testing the generality of the learned representa-
tion, we train and test our model on two video datasets in addition
to ActivityNet: the TRECVID MED 2014 TestVal set [24], and the
EVVE dataset [26]. The MED14 dataset consists of 27k web videos,
which were used in the 2014 edition of the video event retrieval
benchmark TRECVID. As such, some of the videos have been se-
lected due to containing video events such as “rock climbing” or
“wedding proposal”. The EVVE dataset consists of 3k web videos,
selected based on YouTube queries for 13 specific events, such as
“strokkur geyser” or “barcelona riots 2012”. These datasets were
chosen for their real world video of topics different from those in
ActivityNet, and for having a larger (MED) and smaller (EVVE)
number of videos than ActivityNet.

Future supervised models are trained with varying ∆t sizes on
the ActivityNet, MED14, and EVVE data sets. Test sets are removed
that consist of a random 5% of the videos for each respective data
set. The models are trained on the remaining 95% of the data. Sub-
sequently, the models are applied to each of the held out test sets.

Evaluation Results are again reported in Mean Cosine Simi-
larity between the predicted future representation and the actual
representation.

Results Figure 6 gives the results of the three models as a
function of ∆t on each of the test sets. The models trained on
ActivityNet and MED’14 perform strongest on their respective test
sets, but we see that they perform reasonably well on each other’s
data sets. For sufficiently large training sets of videos, much of what
is learned appears to generalize to other videos. The EVVE-trained
model is notable in its poor performance on the other test sets. As
a smaller data set with less variety, it appears the model does not
accumulate the knowledge necessary to generalize well.

4.3 Exp 2: Video Retrieval over Time
The quest to learn temporal semantics is useless if the representa-
tion does not help the target task of unseen query retrieval. In this
experiment, we test the performance of the proposed method for
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Figure 6: Cross-domain performance of future-supervisedmodels. ActivityNet andMED trainedmodels generalize well, while
the EVVE-trainedmodel generalizes poorly. This is likely due to the relative size and variety of the videos within the data sets.
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Figure 7: Retrieval performance of learned representation
as a function of ∆t , compared against a baseline of using
only the current frame. The future supervision improves re-
trieval performance, with a plateau for ∆t values between 5
and 15 seconds, beyond which performance begins to drop.

stream retrieval, as well as the performance of query ambiguation
to improve retrieval.

Dataset The future supervised model is trained on the train
set of ActivityNet [2], and results are reported on the validation
set. As our model does not need training labels, we use the full 100
classes as unseen test queries.

Evaluation Live video stream retrieval requires retrieval of
relevant streams among many concurrent streams. For this reason,
we evaluate our test set as though it is many concurrent videos
which all started simultaneously. Values are reported in Mean mAP
over Time [4]. Mean mAP over Time is calculated by finding the
mean average precision across all test labels at every timestep t , and
subsequently averaging these mAP values across all the timesteps.
It provides a measure of the retrieval performance of a system at
any given time during the duration of the streams.

Results Figure 7 shows the retrieval performance of a future-
supervised representation with varying values of ∆t , and without
query ambiguation. Unsurprisingly, small values of ∆t yield little
performance improvement over the baseline, as they correspond
to training our model to emulate the baseline. As ∆t increases, an
improvement is observed, which diminishes as ∆t extends into
the increasingly unknowable future. The results demonstrate that

Table 1: Retrieval performance of proposed method on Ac-
tivityNet.

Method Mean mAP over Time

Baseline 0.186
Future Supervision 0.258
Future Super. + Query Ambiguation 0.302

future supervision is a valuable supervision channel for improving
local semantic representations.

We also test the effectiveness of the query ambiguation proposed
in Section 3.2. In Table 1, the mean retrieval performance across all
classes is reported for future supervision with and without query
ambiguation. Query ambiguation yields a considerable improve-
ment over using only the mean word2vec representation. In Figure
8, the results are shown across all 100 test labels for the best per-
forming ∆t . The query ambiguation almost always outperforms the
model using the mean vector, and yields significant improvement
for some of the previously lowest performing queries. We notice
that labels like “doing karate” are particularly improved, likely due
to “doing” only dragging the mean away from the area of interest
(the region around “karate”). Similarly, “walking the dog" is greatly
improved by the ambiguation, likely because “dog" is much more
discriminative than “walking” for identifying the activity.

4.4 Exp 3: Live Action Prediction
We apply our model for stream retrieval to the challenging and new
task of no-example live action prediction. Live action prediction
seeks to identify actions as they are happening in live video.

Dataset De Geest et al. [8] introduced the TVSeries dataset
for the task of live action prediction. This dataset consists of the
first few episodes of several popular TV shows, annotated with
basic actions such as “pointing” or “picking up something”. The
episodes are split into training, validation, and testing datasets. We
train our future supervised representation on the training set, and
report results using the parameter settings for query ambiguation
that yielded best results on ActivityNet.

Evaluation To compare with De Geest et al. , we report our
results in mAP where ranking is performed along the temporal
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Table 2: Performance of no-example approach on live ac-
tion prediction on the TVSeries dataset. Also reported are
the results of [8]. Despite seeing only unlabeled videos, our
approach surpasses a per-frame supervised method.

Method mAP (within video)

Random 0.9%
Ours 2.2%

[8] CNN (Supervised) 1.9%
[8] LSTM (Supervised) 2.7%
[8] FV (Supervised) 5.2%

axis of a single video. This contrasts to the stream retrieval setting,
where the algorithm ranks concurrent streams based on relevancy.
Instead, thismeasures howwell the algorithm can rank the temporal
axis of the video in terms of relevancy.

Results In Table 2, the performance of our approach is com-
pared to the results of De Geest et al. . De Geest et al. uses a super-
vised setting, where training labels are given, and reports results
for three different approaches: one trained on the per-frame output
of a CNN with a VGG-16 [28] architecture (CNN), one which trains
an LSTM on top of the CNN features (LSTM), and one which uses
Fisher vectors on top of video descriptors (FV).

Our model, despite having seen no labeled videos, manages to
outperform a supervised model that has no temporal knowledge.
The vague nature of the class labels in the TVSeries dataset is
irrelevant with supervision, but is especially challenging for our
no-example setting. Additional description of the actions could
be an inexpensive way to improve performance. In Figure 9, we
present an example where such additional information has been
included. By extending “eat” to “eat food with utensil”, we see a
stronger response to an eating portion of the video.

4.5 Exp 4: Continuous Stream Retrieval
The motivating scenario for this task is a viewer who wants to
watch streaming video content relevant to some query, let’s say

0 10 20 30 40 50 60

seconds

0.00

0.05

0.10

0.15

0.20

p(
q|x

0
..
t)

“eat”
“eat food with utensil”

Figure 9: Possible value of added description, which fits with
our setting. A longer description yields a stronger response.

wildlife, over an extended duration. The ideal retrieval system not
only returns relevant streams, but also does not needlessly switch
among multiple relevant streams over time, as this makes a poor
viewing experience.

Dataset AN-L is a dataset proposed in [4] which consists of
ActivityNet videos concatenated into 30 minute long videos. This
creates long videos in which the content changes drastically, and
for which the annotations have temporal extent. The AN-L data
set is composed of the 100 classes of ActivityNet, which have been
divided into 40 training and validation classes, and 60 test classes.

Evaluation The Continuous Retrieval task is evaluated by the
average top-1 accuracy over time for a given query, with a penalty
for changing the prediction [4].

ZP =
д+ + r+∑

t yt
(10)

where д+ is a count of every time step where the retrieved stream
switches between t − 1 and t correctly (ie, the new stream is rel-
evant and the old one is no longer relevant), while r+ is a count
of every time step where the retrieved stream is both relevant and
consistent with the previous time step. This metric therefore counts



Table 3: Performance of proposed method on Continuous
Retrieval task on the AN-L dataset. By learning our repre-
sentation, we can capture temporal dynamics which are un-
available to the pooling approach used in [4].

Method ZP (%)

Cappallo et al. [4] 28.3

Future Supervision 31.9
Future Supervision & Query Ambiguation 36.5

transitions between simultaneously relevant streams as negative
results, and favors both accuracy and temporal consistency in re-
trieval. To compare with [4], we report results in the ZP metric on
their proposed AN-L dataset split, and using the same sampling
frequency (2 frames per second).

Results Our proposed method’s results are reported in Table
3. The future-supervised model improves over [4]’s hand-tuned
temporal pooling, suggesting that the future supervised model is
able to learn temporal cues that are missed by straightforward
pooling. Query ambiguation offers further improvement.

4.6 Exp 5: Whole Video Classification
In this experiment, we investigate how well our model can adapt to
a whole-video, no-example classification setting, using the setting
laid out by Jain et al. [12]. To isolate the effect of our method, we
also perform the method of Jain et al. , but using our features.

Dataset UCF Sports is a small action classification dataset
consisting of 150 videos of 10 sports actions, such as “golf swing”
or “diving” [27]. We report results on the test split described in [18]
and used by [12].

Evaluation We report the average classification accuracy.
Results In Table 4, we report our results for whole-video clas-

sification on UCF Sports. We see that a large portion of our im-
provement over [12] is the result of the GoogLeNet-based CNN we
use for extracting our features, instead of the AlexNet-based CNN
used by [12]. We observe further improvement by the incorporation
of future supervision and query ambiguation. As Jain et al. do not
use the training set of UCF Sports, we also report results using
the future supervised model that is trained on ActivityNet (and
therefore has not seen any training videos from UCF Sports). In
both cases, the proposed model improves performance.

In Figure 10, the performance of the proposed model is shown
as a function of percentage of video seen. We report the temporally
local class predictions as well as the performance over time of our
whole-video modification. We present two baselines: use of the
current representation xt for class prediction, as well as using the
mean representation 1

t
∑t
i=0 xi . We see that the baseline of the

current representation performs erratically over time, while the
averaged version is naturally steadier.

Our proposed method performs similarly to the baseline when
very little of the video has been seen, but ultimately improves over
the baselines. The live, temporally local predictions actually out-
perform the whole-video modification at times, but the two are
ultimately equivalent by the end of the videos. It is likely that, due to
the short length of UCF Sports videos, short-term high-confidence
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Figure 10: Classification performance on UCF Sports as a
function of percentage of video seen. We present a base-
line using only the current frame, as well as the average of
frames from time 0 to t . Jain et al. [12] require the whole
video. After only 20% of the video, the proposed model is al-
ready nearing its ultimate performance.

Table 4: Whole-video, zero-example classification on UCF
Sports.

Method Accuracy (%)

Jain et al. [12] 26.4
Jain et al. (our features) 44.6
Ours (Trained on ActivityNet) 51.1
Ours (Trained on UCF Sports) 53.2

predictions are likely to still be captured in the final LSTM repre-
sentation of the video. It is expected that for longer videos with
more variation in relevancy to the class over time, the whole-video
modification would improve over the learned representation at the
final timestep.

5 CONCLUSION
In this paper, we introduced a new method for enriching image-
based semantics with temporal awareness by exploiting future
representations as a source for supervision. Future representations
are a reliable source of temporal supervision because they only
capture the truth of how content changes over time. Furthermore,
it serves a cheap and abundant source of supervision because they
can be generated for unlabeled video, which is effectively unlimited
on modern video-sharing platforms. We explored the performance
of this learned representation on the task of no-example live video
stream retrieval, together with a query ambiguation approach for
broader coverage of the semantic space. The applicability of the
proposed model was demonstrated on a continuous retrieval task,
live action prediction, and whole-video classification.
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