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Abstract

In this paper we describe our TRECVID 2005 experiments. The
UvA-MediaMil l team particip ated in four tasks. For the detection
of camera work (runid: A CAM) we investigate the bene�t of
using a tessellation of detectors in combination with supervised
learning over a standard approach using global image informa-
tion. Experiments indicate that averageprecision results increase
drastically, especial ly for pan (+51%) and tilt (+28%). For con-
cept detection we proposea generic approach using our semantic
path�nder. Most important novelty compared to last years sys-
tem is the improved visual analysis using proto-concepts based on
Wiccest features. In addition, the path selection mechanism was
extended. Based on the semantic path�nder architecture we are
currently able to detect an unprecedented lexicon of 101 semantic
concepts in a generic fashion. We performed a largeset of exper-
iments (runid: B vA). The results show that an optimal strategy
for generic multimedia analysis is one that learns from the train-
ing set on a per-concept basis which tactic to fol low. Experiments
also indicate that our visual analysis approach is highly promis-
ing. The lexicon of 101 semantic concepts forms the basis for our
search experiments (runid: B 2 A-MM). We particip ated in au-
tomatic, manual (using only visual information), and interactive
search. The lexicon-driven retrieval paradigm aids substantially
in all search tasks. When coupled with interaction, exploiting
several novel browsing schemesof our semantic video search en-
gine, results are excellent. We obtain a top-3 result for 19 out of
24 search topics. In addition, we obtain the highestmean average
precision of all search particip ants. We exploited the technology
developed for the above tasks to explore the BBC rushes. Most
intriguing result is that from the lexicon of 101 visual-only mod-
els trained for news data 25 concepts perform reasonably well on
BBC data also.

1 Intro duction

Despite the emergenceof commercial video search engines,
such as Google [9] and Blinkx [3], multimedia retrieval is
by no meansa solved problem. In fact, present day video
search enginesrely mainly on text - in the form of closed
captions [9] or transcribed speech [3] - for retrieval. This re-
sults in disappointing performancewhen the visual content
is not re
ected in the associated text. In addition, when

the videos originate from non-English speaking countries,
such asChina or The Netherlands, querying the content be-
comeseven harder as automatic speech recognition results
are much poorer. For videos from these sources,an ad-
ditional visual analysis potentially yields more robustness.
For e�ectiv e video retrieval there is a need for multimedia
analysis; in which text retrieval is an important factor, but
not the decisive element. We advocate that the ideal mul-
timedia retrieval systemshould �rst learn a large lexicon of
concepts,basedon multimedia analysis, to be used for the
initial search. Then, the ideal system should employ simi-
larit y and interaction to re�ne the search until satisfaction.

We propose a multimedia retrieval paradigm built on
three principles: learning of a lexicon of semantic concepts,
multimedia data similarit y, and userinteraction. Within the
proposedparadigm, we explore the combination of query-
by-concept, query-by-similarit y, and interactive �ltering us-
ing advancedvisualizations of the MediaMill semantic video
search engine. To demonstrate the e�ectiv enessof our mul-
timedia retrieval paradigm, several components are evalu-
ated within the 2005NIST TRECVID video retrieval bench-
mark [16].

The organization of this paper is asfollows. First, we dis-
cussour generallearning architecture and data preparation
steps. Our system architecture for generic semantic index-
ing is presented in Section 3. We describe our approach
for camerawork indexing in Section 4. Our multimedia re-
trieval paradigm is presented in Section 5. Our explorative
work on BBC rushesis addressedin Section 6.

2 Preliminaries

The MediaMill semantic video search engineexploits a com-
mon architecture with a standardizedinput-output model to
allow for semantic integration. The conventions to describe
the modular system architecture are indicated in Fig. 1.

2.1 General Learning Architecture

We perceive of video indexing asa pattern recognition prob-
lem. We �rst need to segment a video. We opt for cam-
era shots [18], indicated by i , following the standard in
TRECVID evaluations. Given pattern x, part of a shot,
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Figure 1: Data 
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arrows indicate di�erence in data 
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the aim is to detect an index ! from shot i using proba-
bilit y pi (! jx i ). We exploit supervised learning to learn the
relation between! and x i . The training data of the multi-
media archive, together with labeled samples,are for learn-
ing classi�ers. The other data, the test data, are set aside
for testing. The generalarchitecture for supervisedlearning
in the MediaMill semantic video search enginearchitecture
is illustrated in Fig. 2.

We can choosefrom a large variety of supervisedmachine
learning approaches to obtain pi (! jx i ). For our purpose,
the method of choice should be capable of handling video
documents. To that end, ideally it must learn from a limited
number of examples,it must handle unbalanced data, and
it should account for unknown or erroneouslydetecteddata.
In such heavy demands,the Support Vector Machine (SVM)
framework [35, 4] hasproven to bea solid choice[1, 29]. The
usual SVM method provides a margin in the result. We
prefer Platt's conversion method [19] to achieve a posterior
probabilit y of the result. SVM classi�ers thus trained for ! ,
result in an estimate pi (! jx i ; ~q), where ~q are parametersof
the SVM yet to be optimized.

The in
uence of the SVM parameters on video indexing
is signi�cant [14]. We obtain good parameter settings for a
classi�er, by using an iterativ e search on a large number of
SVM parameter combinations. We measureaveragepreci-
sion performanceof all parameter combinations and select
the combination that yields the best performance,~q� . Here
we use3-fold crossvalidation [11] with 3 repetitions to pre-
vent over�tting of parameters. The result of the parameter
search over ~q is the improved model p�

i (! jx i ; ~q� ). In the
following we drop ~q� where obvious.

2.2 Data Preparation

Supervised learning requires labeled examples. In part, we
rely on the provided ground truth of the TRECVID 2005
common annotation e�ort [36]. It is extended manually to
arrive at an incomplete, but reliable ground truth for an
unprecedented amount of 101 semantic conceptsin lexicon
� S . In addition, we manually labeled a substantial part of
the training set with respect to dominant type of camera
work, i.e. pan, tilt , and/or zoom , if present.

In order to recognizeconceptsbasedon low-level visual
analysis,we annotated 15 di�eren t proto-concepts: building
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Figure 2: General architecture for supervised learning in in the
MediaMill semantic video search engine, using the conventionsof
Fig. 1.

(321), car (192), charts (52), crowd (270), desert (82), �re
(67), US-
ag (98), maps (44), mountain (41), road (143),
sky (291), smoke (64), snow (24), vegetation (242), water
(108), where the number in brackets indicates the number
of annotation samplesof that concept. We again used the
TRECVID 2005 common annotation e�ort as a basis for
selecting relevant shots containing the proto-concepts. In
those shots, we annotated rectangular regions where the
proto-concept is visible for at least 20 frames.

We split the training data a priori into four non-
overlapping training and validation sets to prevent over�t-
ting of classi�ers. Training sets A, B, and C contain 30%
percent of the 2005training data, validation set D contains
the remaining 10%. We assignall shots in the training set
randomly to either set A, B, C, or D.

3 Semantic Path�nder Indexing

The central assumption in our semantic indexing architec-
ture is that any broadcast video is the result of an author-
ing process. When we want to extract semantics from a
digital broadcast video this authoring processneedsto be
reversed. For authoring-driv en analysis we proposed the
semantic path�nder [30]. The semantic path�nder is com-
posedof three analysis steps. It follows the reverseauthor-
ing process.Each analysis step in the path detects seman-
tic concepts. In addition, one can exploit the output of an
analysisstep in the path as the input for the next one. The
semantic path�nder starts in the content analysis step. In
this analysis step, we follow a data-driven approach of in-
dexing semantics. The style analysisstep is the secondanal-
ysis step. Here we tackle the indexing problem by viewing
a video from the perspective of production. This analysis
step aids especially in indexing of rich semantics. Finally,
to enhancethe indexesfurther, in the context analysis step,
we view semantics in context. One would expect that some
concepts, like vegetation, have their emphasis on content
where the style (of the camerawork that is) and context (of
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Figure 3: The semanticpath�nder for one concept, using the con-
ventionsof Fig. 1.

conceptslike graphics) do not add much. In contrast, more
complex events, like people walking, pro�t from incremental
adaptation of the analysis to the intention of the author.
The virtue of the semantic path�nder is its abilit y to �nd
the best path of analysis steps on a per-concept basis. An
overview of the semantic path�nder is given in Fig. 3.

3.1 Content Analysis Step

We view of video in the content analysisstep from the data
perspective. In general, three data streams or modalities
exist in video, namely the auditory modalit y, the textual
modalit y, and the visual one. As speech is often the most
informativ e part of the auditory source,we focus on visual
features,and on textual featuresobtained from transcribed
speech. After modalit y speci�c data processing,we combine
features in a multimo dal representation using early fusion
and late fusion [32].

3.1.1 Visual Analysis

Modeling visual data heavily relies on qualitativ e features.
Good featuresdescribe the relevant information in an image
while reducing the amount of data representing the image.
To achieve this goal, we useWiccest featuresas intro duced
in [6]. Wiccest features combine color invariance with nat-
ural image statistics. Color invariance aims to remove ac-
cidental lighting conditions, while natural image statistics
e�cien tly represent image data.

Color invariance aims at keeping the measurements con-
stant under varying intensity, viewpoint and shading. In [7]
several color invariants are described. We use the W in-
variant that normalizes the spectral information with the
energy. This normalization makes the measurements in-
dependent of illumination changesunder uniform lighting
conditions.

When modeling scenes, edges are highly informativ e.
Edges reveal where one region ends and another begins.
Thus, an edge has at least twice the information content
then a uniformly colored patch, since an edgecontains in-
formation about all regions it divides. Besidesserving as
region boundaries, an ensemble of edgesdescribes texture
information. Texture characterizesthe material an object is
made of. Moreover, a compilation of cluttered objects can

Figure 4: An exampleof dividing an image up in overlappingre-
gions. In this particular example,the regionsizeis a 1

2 of the image
sizefor both the x-dimensionand y-dimension.The regionsare uni-
formly sampledacrossthe image with a step size of half a region.
Sampling in this manner identi�es nine overlappingregions.

be described as texture information. Therefore, a scenecan
be modeled with textured regions.

Texture is described by the distribution of edgesat a cer-
tain region in an image. Hence,a histogram of a Gaussian
derivative �lters represents the edgestatistics. Since there
are more non-edgepixels then there are edgepixels, the dis-
tribution of edgeresponsesfor natural imagesalways has a
peak around zero, i.e.: many pixels have no edgeresponses.
Additionally , the shape of the tails of the distribution is
often in-between a power-law and a Gaussiandistribution.
This speci�c distribution can be well modeled with an in-
tegrated Weibull distribution [8]. This distribution is given
by
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where r is the edge response to the Gaussian derivative
�lter and �( �) is the complete Gamma function, �( x) =R1

0 tx � 1e� 1dt. The parameter � denotes the width of the
distribution, the parameter 
 represents the 'peakness'of
the distribution, and the parameter � denotesthe origin of
the distribution.

To assessthe similarit y between Wiccest features, a
goodness-of-�t test is utilized. The measureis basedon the
integrated squarederror betweenthe two cumulativ e distri-
butions, which is obtained by a Cram�er-von Misesmeasure.
For two Weibull distributions with parameters F� , F
 and
G� , G
 a �rst order Taylor approximation of the Cram�er-
von Misesstatistic yields the log di�erence betweenthe pa-
rameters. Therefore, a measureof similarit y between two
Weibull distributions F and G is given by the ratio of the
parameters,

W 2(F; G) =

s
min(F� ; G� )
max(F� ; G� )

min(F
 ; G
 )
max(F
 ; G
 )

: (2)

The � parameter represents the mode of the distribution.
The position of the mode is in
uenced by uneven illumi-
nation and colored illumination. Hence, to achieve color
constancy the valuesfor � may be ignored.

In summary, Wiccest features provide a color invariant
texture descriptor. Moreover, the features rely heavily on
natural image statistics to compactly represent the visual
information.



3.1.2 Contextures: Regional Texture Descriptors and
their Context

The visual detectors aim to decomposean image in proto-
conceptslike vegetation, water, �re, sky etc. To achieve this
goal, an image is divided up in several overlapping rectan-
gular regions. The regionsare uniformly sampledacrossthe
image, with a step sizeof half a region. The region sizehas
to be large enoughto assessstatistical relevance,and small
enough to capture local textures in an image. We utilize
a multi-scale approach, using small and large regions. An
exampleof region sampling is displayed in �gure 4.

A visual sceneis characterized by both global as well as
local texture information. For example, a picture with an
aircraft in mid air might be described as \sky, with a hole
in it". To model this type of information, we use a proto-
concept occurrence histogram where each bin is a proto-
concept. The values in the histogram are the similarit y
responsesof each proto-concept annotation, to the regions
in the image.

We use the proto-concept occurrencehistogram to char-
acterize both global and local texture information. Global
information is described by computing an occurrence his-
togram accumulated over all regions in the image. Local
information is taken into account by constructing another
occurrencehistogram for only the responseof the best re-
gion. For each proto-concept, or bin, b the accumulated oc-
currence histogram and the best occurrencehistogram are
constructed by,

Haccumul ated (b) =
P

r 2 R ( im )

P

a2 A (b)
W 2(a; r ) ;

Hbest (b) = argmax
r 2 R ( im )

P

a2 A (b)
W 2(a; r ) ;

whereR(im ) denotesthe set of regionsin imageim , A(b)
represents the set of stored annotations for proto-concept b,
and W 2 is the Cram�er-von Mises statistic as intro duced in
equation 2.

Wedenotea proto-conceptoccurrencehistogram asa con-
texture for that image. We have chosenthis name, as our
method incorporatestexture featuresin a context. The tex-
ture featuresare given by the useof Wiccest features,using
color invariance and natural image statistics. Furthermore,
context is taken into account by the combination of both
local and global region combinations.

Contextures can be computed for di�eren t parameter set-
tings. Speci�cally , we calculate the contextures at scales
� = 1 and � = 3 of the Gaussian �lter. Furthermore, we
use two di�eren t region sizes, with ratios of 1

2 and 1
6 of

the x-dimension and y-dimensionsof the image. Moreover,
contextures are based on one image, and not based on a
shot. To generalizeour approach to shot level, we extract 1
frame per secondout of the video, and then aggregatethe
frames that belong to the sameshot. We use two ways to
aggregateframes: 1) average the contexture responsesfor
all extracted frames in a shot and 2) keep the maximum
responseof all frames in a shot. This aggregationstrategy

accounts for information about the whole shot i , and in-
formation about accidental frames,which might occur with
high camera motion. The combination of all these param-
eters yields a vector of contextures ~vi , containing the �nal
result of the visual analysis.

3.1.3 Textual Analysis

In the textual modalit y, we aim to learn the association be-
tween uttered speech and semantic concepts. A detection
system transcribes the speech into text. For the Chinese
and Arabic sourceswe exploit the provided machine trans-
lations. The resulting translation is mapped from story level
to shot level. From the text we remove the frequently oc-
curring stopwords. After stopword removal, we are ready to
learn semantics.

To learn the relation between uttered speech and con-
cepts, we connect words to shots. We make this connection
within the temporal boundariesof a shot. We derive a lex-
icon of uttered words that co-occur with ! using the shot-
basedannotations of the training data. For each concept ! ,
we learn a separatelexicon, � !

T , as this uttered word lexi-
con is speci�c for that concept. For feature extraction we
compare the text associated with each shot with � !

T . This
comparisonyields a text vector ~t i for shot i , which contains
the histogram of the words in association with ! .

3.1.4 Early Fusion

Indexing approaches that rely on early fusion �rst extract
unimodal featuresof each stream. The extracted featuresof
all streamsare combined into a single representation. After
combination of unimodal features in a multimo dal repre-
sentation, early fusion methods rely on supervised learning
to classify semantic concepts. Early fusion yields a truly
multimedia feature representation, since the features are
integrated from the start. An added advantage is the re-
quirement of one learning phaseonly. Disadvantage of the
approach is the di�cult y to combine features into a com-
mon representation. The generalschemefor early fusion is
illustrated in Fig. 5a.

We rely on vector concatenation in the early fusion
scheme to obtain a multimo dal representation. We con-
catenate the visual vector ~vi with the text vector ~t i . After
feature normalization, we obtain early fusion vector ~ei .

3.1.5 Late Fusion

Indexing approachesthat rely on late fusion also start with
extraction of unimodal features. In contrast to early fusion,
where features are then combined into a multimo dal rep-
resentation, approaches for late fusion learn semantic con-
cepts directly from unimodal features. In general, late fu-
sion schemescombine learned unimodal concept scoresinto
a multimo dal representation. Then late fusion methods rely
on supervised learning to classify semantic concepts. Late
fusion focuseson the individual strength of modalities. Uni-
modal conceptdetection scoresare fusedinto a multimo dal
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Figure 5: (a) Generalschemefor early fusion. Output of unimodal analysisis fused before a concept is learned. (b) Generalscheme
for late fusion. Output of unimodal analysisis used to learn separate scores for a concept. After fusion a �nal score is learned for the
concept. We usethe conventionsof Fig. 1.

semantic representation rather than a feature representa-
tion. A big disadvantage of late fusion schemesis its expen-
sivenessin terms of the learning e�ort, as every modalit y
requires a separate supervised learning stage. Moreover,
the combined representation requiresan additional learning
stage. Another disadvantage of the late fusion approach is
the potential loss of correlation in mixed feature space. A
generalschemefor late fusion is illustrated in Fig. 5b.

For the late fusion scheme,we concatenatethe probabilis-
tic output scoreafter visual analysis, i.e. p�

i (! j~vi ; ~q� ), with
the probabilistic score resulting from textual analysis, i.e.
p�

i (! j~t i ; ~q� ), into late fusion vector ~l i .

3.1.6 Content Path�nder

We learn 101 semantic conceptsbasedon the four vectors
resulting from analysis in the content analysis step. Thus
~vi ;~t i ;~ei ; and ~l i serve as the input for our supervised learn-
ing module, which learnsan optimized SVM model for each
semantic concept ! using 3-fold crossvalidation with 3 rep-
etitions on training set A. Thesemodels are then validated
on set D, yielding a best performing model p�

i (! j ~m i ) for all
! in � S , where ~m i 2 f ~vi ;~t i ;~ei ;~l i g.

3.2 Style Analysis Step

In the style analysis step we conceive of a video from the
production perspective. Basedon the four roles involved in
the video production process[31], this step analyzesa video
by four related style detectors. Layout detectors analyze
the role of the editor. Content detectors analyze the role
of production design. Capture detectors analyze the role
of the production recording unit. Finally, context detectors
analyze the role of the preproduction team, seeFig. 6.

3.2.1 Style Analysis

We develop detectors for all four production rolesasfeature
extraction in the style analysis step. We refer to our pre-
vious work for speci�c implementation details of the detec-
tors [31, Electronic Appendix]. We have chosento convert
the output of all style detectors to an ordinal scale,as this
allows for elegant fusion.

For the layout L the length of a camera shot is used as
a feature, as this is known to be an informativ e descrip-
tor for genre [31]. Overlayed text is another informativ e
descriptor. Its presenceis detected by a text localization
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Figure 6: Feature extraction and classi�cation in the style analysis
step, special caseof Fig. 2.



algorithm [25]. To segment the auditory layout, periods of
speech and silenceare detected basedon the provided au-
tomatic speech recognition results. We obtain a voice-over
detector by combining the speech segmentation with the
camera shot segmentation [31]. The set of layout features
is thus given by: L = f shot length, overlayed text, silence,
voice-overg.

As concernsthe content C, a frontal face detector [27] is
applied to detect people. We count the number of faces,
and for each face its location is derived [31]. In addition,
we measurethe averageamount of object motion in a cam-
era shot [29]. Based on provided speaker identi�cation we
identify each of the three most frequent speakers. Each
camera shot is checked for presenceof speech from one of
the three [31]. We also exploit the provided named entit y
recognition. The set of content features is thus given by:
C = f faces, face location, object motion, frequent speaker,
voice named entityg.

For capture T , we compute the cameradistance from the
sizeof detected faces[27, 31]. It is unde�ned when no face
is detected. In addition to camera distance, several types
of camera work are detected [2], e.g. pan, tilt, zoom, and
so on. Finally, for capture we also estimate the amount of
cameramotion [2]. The set of capture featuresis thus given
by: T = f camera distance, camera work, camera motiong.

The context S servesto enhanceor reducethe correlation
betweensemantic concepts. Detection of vegetation can aid
in the detection of a forest for example. Likewise, the co-
occurrence of a space shuttle and a bicycle in one shot is
improbable. As the performance of semantic concept de-
tectors is unknown and likely to vary betweenconcepts,we
exploit iteration to add them to the context. The rationale
here is to add concepts that are relatively easy to detect
�rst. They aid in detection performanceby increasing the
number of true positives or reducing the number of false
positives. To prevent bias from domain knowledge, we use
the performanceon validation set D of all conceptsfrom � S

in the content analysisstep as the ordering for the context.
To assign detection results for the �rst and least di�cult
concept, we rank all shot results on p�

i (! 1j ~mi ). This rank-
ing is then exploited to categorizeresults for ! 1 into one of
�v e levels. The basic set of context features is thus given
by: S = f content analysis step ! 1g.

The concatenation of f L ; C; T ; Sg for shot i yields style
vector ~si . This vector forms the input for an iterativ e classi-
�er [31] that trains a style model for each concept in lexicon
� S . We classify all ! in � S again in the style analysisstep.
We use 3-fold crossvalidation with 3 repetitions on train-
ing set B to optimize parameter settings in this analysis
step. We usethe resulting probabilit y asoutput for concept
detection in the style analysis step.

3.3 Context Analysis Step

The context analysisstep addscontext to our interpretation
of the video. Our ultimate aim is the reconstruction of the
author's intent by consideringdetectedconceptsin context.

Semantic
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Learner

Figure 7: Feature extraction and classi�cation in the context anal-
ysisstep, special caseof Fig. 2.

Both the content analysis step and the style analysis step
yield a probabilit y for each shot i and all concepts! in � S .
The probabilit y indicates whether a concept is present. We
fuse thesesemantic features of an analysis step for a shot i
into a context vector, seeFig. 7.

We considerthree paths in the context analysisstep. The
�rst path stemsdirectly from the content analysisstep. We
fusethe 101p�

i (! j ~m i ) conceptscoresinto context vector ~di .
The secondpath stemsfrom the style analysisstepwherewe
fusethe 101p�

i (! j~si ) scoresinto context vector ~pi . The third
path selects the best performer on validation set D from
either content analysis step or style analysis step. These
best performers are fused in context vector ~bi .

From thesethree vectors we learn relations betweencon-
cepts automatically. To that end the vectors serve as the
input for a supervised learning module, which associates a
contextual probabilit y p�

i (! j~ci ) to a shot i for all ! in � S ,
where ~ci 2 f ~di ; ~pi ;~bi g. To optimize parameter settings, we
use 3-fold crossvalidation with 3 repetitions on the previ-
ously unuseddata from training set C.

The output of the context analysisstep is also the output
of the entire semantic path�nder on video documents. On
the way we have included in the semantic path�nder, the re-
sults of the analysison raw data, facts derived from produc-
tion by the useof style features, and a context perspective
of the author's intent by using semantic features. For each
concept we obtain several probabilities based on (partial)
content, style, and context. We select from all possibilities
the one that maximizes averageprecision basedon perfor-
mance on validation set D. The semantic path�nder pro-
vides us with the opportunit y to decidewhether a one-shot
analysis step is best for the concept only concentrating on
(visual) content, or a two-analysisstep classi�er increasing
discriminatory power by adding production style to content,
or that a concept pro�ts most from a consecutive analysis
on content, style, and context level.

3.4 Experiments

We traversedthe entire semantic path�nder for all 101con-
cepts. The average precision performance of the seman-
tic path�nder and its sub-systems,on validation set D, are
shown in Fig. 8.

We evaluated for each concept four analysis strategies in
the content analysis step: text-only, visual-only, early fu-



Table 1: UvA-MediaMill TRECVID 2005 run comparison for all 10 benchmark concepts. The best path of the semantic path�nder is
marked in bold. Last column indicatesresultsof our visual-onlyrun.

SP-1 SP-2 SP-3 SP-4 SP-5 SP -6 Visual-only

People walking 0.199 0.172 0.154 0.179 0.101 0.103 0.031

Explosion 0.041 0.027 0.032 0.035 0.036 0.034 0.073

Map 0.142 0.16 0.135 0.123 0.099 0.127 0.138

US 
ag 0.1 0.063 0.11 0.095 0.072 0.114 0.129

Building 0.235 0.229 0.226 0.225 0.21 0.157 0.269

Watersc ape 0.201 0.198 0.137 0.164 0.124 0.136 0.166

Mountain 0.22 0.193 0.182 0.195 0.17 0.128 0.207

Prisoner 0.005 0.001 0 0.001 0.001 0.001 0.003

Sports 0.342 0.225 0.289 0.202 0.137 0.153 0.272

Car 0.213 0.192 0.182 0.201 0.196 0.199 0.233

MAP 0.1698 0.146 0.1447 0.142 0.1146 0.1152 0.1521

sion, and late fusion. Results con�rm the importance of
visual analysis for genericconcept detection. Text-analysis
yields the best approach for only 8 concepts,whereasvisual
analysisyields the best performancefor as much as 45 con-
cepts. Fusion is optimal for the remaining 48 concepts,with
a clear advantage for early fusion (33 concepts) in favor of
late fusion (15 concepts).

The style analysisstep again con�rms the importance for
inclusion of professionaltelevision production facets for se-
mantic video indexing. Especially for conceptswhich share
many similarities in their production process,like anchors,
monologues,and entertainment. For other concepts, con-
tent is more decisive, like tennis and baseball for example.
Thus some concepts are just content, whereasothers are
pure production style.

We boost concept detection performance further by the
usageof context. The path�nder again exploits variation
in performance for the various paths to select an optimal
pathway. The resultsdemonstratethe virtue of the semantic
path�nder. Conceptsare divided by the analysis step after
which they achievebestperformance. Basedon theseresults
weconcludethat an optimal strategy for genericmultimedia
analysis is one that learns from the training set on a per-
concept basiswhich tactic to follow.

3.4.1 Path�nder Runs

We submitted six paths for each benchmark concept, prior-
itized according to validation set performance. For concept
explosion for example, the optimal path (SP-1) indicates
that visual-only analysis is the best performer. However,
in most casesthe best path is a consecutive path of con-
tent, style, and context. We report the o�cial TRECVID
benchmark results in Table 1.

The results show that the path�nder mechanism is a good
way to estimate the best performing analysispath. The SP-
1 run containing the optimal path is indeed the best per-
former in 8 out of 10 cases. Overall, this is also our best
performing run. However, what strikes us most is that av-
erageprecisionresults are much lower than can be expected
basedon validation set performancereported in Fig. 8. This
may indicate that despite the use of separatetraining and

validation sets we are still over�tting the data. A point of
concernhere is the random assignment of shots to the sep-
arate training and validation sets. This may bias the clas-
si�ers as it is possiblethat similar news items from several
channelsare distributed to separatesets. For two concepts
(map and explosion) performance su�ered from misinter-
pretation of correct concepts. Had we included examples
of newsanchors with maps in the background of the studio
setting (for the map concept) and smoke (for explosion) in
our training sets,results would be higher. When looking at
the judged results, wealsofound that three concepts(water-
scape, mountain, and car) are dominated by commercials.
We do not perform well on commercial detection. This can
be explained becausewe take 1 frame per secondout of the
video in the visual analysis. Sampling in this manner will
selectdi�eren t frames for the samecommercialsthat reap-
pear on di�eren t time stampsin a video. We anticipate that
improvement in frame sampling yields increasedrobustness
for the entire path�nder.

3.4.2 Visual-only Run

Validation set performancein Fig. 8. indicates that our vi-
sual analysis step performs quite good. To determine the
contribution of the visual analysis step, we therefore sub-
mitted a visual-only run. This involved training a Support
Vector Machine on the vector of contextures as intro duced
in section3.1.1. We trained an SVM for each of the 10 con-
cept of the conceptdetection task. An experiment for recog-
nizing proto-concept was submitted by another group [37].

The visual features in the submitted visual-only run are
slightly di�eren t from the visual features in the semantic
path�nder system. This di�erence is causedby ongoingde-
velopment on the visual analysis. Speci�cally , we improved
the Weibull �t to be more robust and we added the proto-
concept car. The newer version of the visual analysis was
not incorporated in the semantic path�nder. It was not
integrated becausevisual analysis is the �rst step in the se-
mantic path. Thus, a change in the visual analysis means
that all further paths would have to be recomputed. How-
ever, for a visual-only run, the improvements were feasible
to compute.



Semantic Concept Text Analysis Visual Analysis Early Fusion Late Fusion Style Content-Context Style-Context Best-Context Optimal Path
1 aircraft 0.049 0.199 0.203 0.157 0.093 0.205 0.110 0.210 0.210
2 allawi 0.188 0.054 0.229 0.026 0.011 0.274 0.007 0.243 0.274
3 anchor 0.175 0.585 0.472 0.562 0.764 0.615 0.780 0.771 0.780
4 animal 0.209 0.189 0.216 0.181 0.316 0.330 0.301 0.417 0.417
5 arrafat 0.084 0.112 0.073 0.078 0.135 0.141 0.247 0.176 0.247
6 baseball 0.051 0.240 0.226 0.040 0.085 0.084 0.073 0.028 0.240
7 basketball 0.033 0.541 0.235 0.451 0.532 0.573 0.589 0.641 0.641
8 beach 0.002 0.005 0.005 0.002 0.036 0.009 0.011 0.010 0.036
9 bicycle 0.096 0.025 0.128 0.098 0.140 0.109 0.406 0.400 0.406
10 bird 0.201 0.716 0.379 0.454 0.487 0.717 0.462 0.678 0.717
11 boat 0.065 0.147 0.039 0.169 0.102 0.172 0.132 0.222 0.222
12 building 0.159 0.281 0.251 0.085 0.292 0.298 0.304 0.327 0.327
13 bus 0.101 0.025 0.095 0.146 0.024 0.015 0.021 0.018 0.146
14 bush_jr 0.072 0.173 0.072 0.144 0.213 0.201 0.224 0.219 0.224
15 bush_sr 0.028 0.019 0.021 0.001 0.217 0.065 0.198 0.205 0.217
16 candle 0.008 0.003 0.020 0.024 0.006 0.002 0.003 0.018 0.024
17 car 0.108 0.253 0.197 0.214 0.215 0.269 0.243 0.282 0.282
18 cartoon 0.511 0.747 0.569 0.640 0.455 0.601 0.528 0.693 0.747
19 chair 0.100 0.534 0.328 0.522 0.207 0.552 0.284 0.577 0.577
20 charts 0.209 0.275 0.440 0.384 0.321 0.456 0.322 0.463 0.463
21 clinton 0.002 0.264 0.075 0.207 0.018 0.002 0.264
22 cloud 0.034 0.237 0.101 0.156 0.126 0.228 0.128 0.172 0.237
23 corporate_leader 0.040 0.097 0.051 0.077 0.078 0.049 0.080 0.065 0.097
24 court 0.077 0.057 0.338 0.003 0.099 0.350 0.116 0.368 0.368
25 crowd 0.233 0.404 0.404 0.402 0.391 0.424 0.414 0.446 0.446
26 cycling 0.103 0.020 0.135 0.001 0.435 0.121 0.428 0.421 0.435
27 desert 0.034 0.114 0.129 0.098 0.070 0.143 0.095 0.144 0.144
28 dog 0.284 0.262 0.446 0.004 0.294 0.483 0.200 0.498 0.498
29 drawing 0.318 0.275 0.269 0.318 0.045 0.208 0.029 0.274 0.318
30 drawing_cartoon 0.403 0.288 0.293 0.405 0.093 0.442 0.219 0.443 0.443
31 duo_anchor 0.008 0.651 0.054 0.060 0.857 0.602 0.881 0.882 0.882
32 entertainment 0.257 0.268 0.325 0.193 0.684 0.496 0.693 0.700 0.700
33 explosion 0.040 0.127 0.087 0.060 0.094 0.118 0.034 0.125 0.127
34 face 0.724 0.898 0.893 0.755 0.913 0.696 0.925 0.929 0.929
35 female 0.065 0.316 0.118 0.021 0.414 0.336 0.419 0.420 0.420
36 fireweapon 0.036 0.039 0.128 0.043 0.037 0.131 0.055 0.059 0.131
37 fish 0.065 0.235 0.116 0.100 0.284 0.231 0.322 0.353 0.353
38 flag 0.096 0.165 0.121 0.157 0.135 0.182 0.145 0.184 0.184
39 flag_usa 0.077 0.185 0.141 0.175 0.137 0.190 0.162 0.215 0.215
40 food 0.016 0.071 0.068 0.030 0.172 0.138 0.187 0.216 0.216
41 football 0.026 0.188 0.088 0.033 0.252 0.196 0.330 0.351 0.351
42 golf 0.069 0.038 0.179 0.092 0.109 0.190 0.059 0.214 0.214
43 government_building 0.026 0.035 0.019 0.157 0.212 0.008 0.212 0.213 0.213
44 government_leader 0.291 0.275 0.261 0.378 0.400 0.401 0.412 0.416 0.416
45 graphics 0.169 0.354 0.358 0.340 0.363 0.445 0.402 0.472 0.472
46 grass 0.016 0.151 0.042 0.063 0.098 0.167 0.094 0.107 0.167
47 hassan_nasrallah 0.446 0.867 0.278 0.667 0.158 0.917 0.251 1.000 1.000
48 horse 0.001 0.129 0.219 0.001 0.308 0.182 0.341 0.338 0.341
49 horse_racing 0.001 0.059 0.253 0.201 0.540 0.204 0.409 0.406 0.540
50 house 0.081 0.005 0.081 0.006 0.012 0.005 0.014 0.008 0.081
51 hu_jintao 0.267 0.094 0.230 0.082 0.060 0.296 0.069 0.323 0.323
52 indoor 0.400 0.616 0.584 0.607 0.677 0.674 0.718 0.722 0.722
53 kerry 0.030 0.079 0.028 0.005 0.028 0.123 0.003 0.065 0.123
54 lahoud 0.135 0.394 0.248 0.297 0.258 0.559 0.330 0.454 0.559
55 male 0.101 0.244 0.131 0.215 0.279 0.259 0.291 0.294 0.294
56 maps 0.146 0.406 0.308 0.323 0.388 0.471 0.407 0.493 0.493
57 meeting 0.202 0.368 0.228 0.352 0.393 0.404 0.422 0.452 0.452
58 military 0.183 0.239 0.305 0.331 0.282 0.357 0.293 0.358 0.358
59 monologue 0.053 0.128 0.089 0.138 0.692 0.149 0.718 0.724 0.724
60 motorbike 0.003 0.399 0.163 0.003 0.014 0.389 0.399
61 mountain 0.041 0.299 0.181 0.203 0.228 0.347 0.250 0.331 0.347
62 natural_disaster 0.126 0.035 0.152 0.106 0.056 0.151 0.028 0.163 0.163
63 newspaper 0.068 0.526 0.433 0.454 0.497 0.525 0.497 0.529 0.529
64 nightfire 0.011 0.009 0.009 0.003 0.005 0.131 0.002 0.003 0.131
65 office 0.029 0.073 0.065 0.091 0.071 0.062 0.078 0.098 0.098
66 outdoor 0.440 0.668 0.706 0.665 0.634 0.744 0.726 0.754 0.754
67 overlayed_text 0.552 0.697 0.678 0.686 0.991 0.706 0.991 0.990 0.991
68 people 0.803 0.833 0.870 0.804 0.937 0.848 0.890 0.926 0.937
69 people_marching 0.121 0.229 0.232 0.169 0.218 0.252 0.227 0.256 0.256
70 police_security 0.017 0.007 0.015 0.009 0.019 0.017 0.018 0.022 0.022
71 powell 0.033 0.019 0.073 0.012 0.019 0.031 0.190 0.077 0.190
72 prisoner 0.011 0.008 0.077 0.003 0.011 0.088 0.013 0.088 0.088
73 racing 0.007 0.009 0.006 0.001 0.008 0.010 0.029 0.051 0.051
74 religious_leader 0.268 0.060 0.251 0.190 0.022 0.252 0.006 0.346 0.346
75 river 0.167 0.500 0.084 0.252 0.017 0.025 0.061 0.120 0.500
76 road 0.120 0.239 0.219 0.219 0.230 0.268 0.252 0.277 0.277
77 screen 0.110 0.066 0.126 0.075 0.073 0.154 0.080 0.149 0.154
78 sharon 0.003 0.008 0.210 0.037 0.008 0.199 0.002 0.151 0.210
79 sky 0.180 0.499 0.498 0.494 0.482 0.537 0.497 0.551 0.551
80 smoke 0.084 0.330 0.272 0.282 0.219 0.374 0.208 0.353 0.374
81 snow 0.066 0.036 0.101 0.028 0.084 0.299 0.142 0.056 0.299
82 soccer 0.037 0.533 0.365 0.455 0.510 0.578 0.512 0.636 0.636
83 splitscreen 0.080 0.616 0.287 0.591 0.819 0.677 0.757 0.795 0.819
84 sports 0.132 0.296 0.257 0.320 0.423 0.459 0.466 0.529 0.529
85 studio 0.412 0.653 0.630 0.674 0.746 0.718 0.780 0.781 0.781
86 swimmingpool 0.002 0.001 0.001 0.178 0.012 0.181 0.175 0.181
87 table 0.083 0.135 0.140 0.083 0.203 0.107 0.176 0.197 0.203
88 tank 0.012 0.024 0.030 0.019 0.001 0.335 0.001 0.001 0.335
89 tennis 0.219 0.644 0.617 0.691 0.382 0.763 0.420 0.764 0.764
90 tony_blair 0.750 0.254 0.688 0.256 0.005 0.059 0.021 0.751 0.751
91 tower 0.015 0.023 0.083 0.020 0.068 0.062 0.073 0.115 0.115
92 tree 0.013 0.178 0.187 0.110 0.097 0.189 0.145 0.151 0.189
93 truck 0.040 0.035 0.049 0.022 0.051 0.062 0.066 0.068 0.068
94 urban 0.205 0.270 0.291 0.297 0.285 0.320 0.331 0.356 0.356
95 vegetation 0.071 0.224 0.198 0.188 0.204 0.236 0.210 0.240 0.240
96 vehicle 0.135 0.281 0.273 0.278 0.286 0.326 0.315 0.343 0.343
97 violence 0.233 0.291 0.338 0.348 0.387 0.451 0.440 0.485 0.485
98 walking_running 0.224 0.327 0.328 0.354 0.414 0.410 0.421 0.464 0.464
99 waterbody 0.077 0.275 0.203 0.237 0.251 0.305 0.289 0.346 0.346
100 waterfall 0.001 0.001 0.008 0.118 0.009 0.042 0.256 0.256
101 weather 0.461 0.240 0.508 0.483 0.555 0.579 0.560 0.548 0.579
MAP 0.143 0.254 0.231 0.224 0.263 0.300 0.282 0.352 0.382
TRECVID MAP 0.101 0.246 0.203 0.197 0.245 0.296 0.259 0.320 0.322

Figure 8: Validation set averageprecisionperformancefor 101 semanticconceptsusingsub-systemsof the semanticpath�nder. The best
path for eachconcept is marked with gray cells. Empty cells indicate impossibility to learn models,due to lack of annotated examplesin
the training sub-setused.



Table 2: Validation set averageprecisionperformance for 3 types
of camerawork using severalversionsof our camerawork detector.

P an Tilt Zo om MAP

Late Fusion 0.862 0.786 0.862 0.837

Late Fusion + Selected Con text 0.859 0.752 0.866 0.826

Late Fusion + Con text 0.856 0.656 0.856 0.789

Early Fusion 0.703 0.558 0.783 0.681

Global 0.569 0.613 0.813 0.665

Global + Con text 0.591 0.562 0.792 0.648

Early Fusion + Con text 0.616 0.461 0.765 0.614

The results of our visual-run re
ect the importance of vi-
sual analysis. For four concepts(explosion, US 
ag, build-
ing, car) we outperform the path�nder system. This im-
provement might beattributed to the useof improvedvisual
features and to the fact that we use the entire training set
in SVM-training. However, since the visual analysis step
is embedded in the path�nder system, the visual analysis
should never perform better. Therefore we believe that re-
sults of the path�nder system will improve when the new
features are included.

4 Camera Work

For the detection of camera work we start with an exist-
ing implementation basedon spatiotemporal image analy-
sis [34, 12]. Given a set of global intensity imagesfrom shot
i , the algorithm �rst extract spatiotemporal images. On
these imagesa direction analysis is applied to estimate di-
rection parameters. Theseparameters form the input for a
supervised learning module to learn three types of camera
work. We modi�ed the algorithm in various ways. We su-
perimposeda tessellation of 8 regions on each input frame
to decreasethe e�ect of local disturbances. Parametersthus
obtained are exploited using an early fusion and late fusion
approach. In addition we explored whether the 101concept
scoresobtained from the semantic path�nder aid in detec-
tion of camerawork.

4.1 Experiments

Experiments on validation set D indicate that averagepre-
cision results increasedrastically, especially for pan (+51%)
and tilt (+28%), seeTable 2. The best approach is a late fu-
sion schemewithout the usageof context. Relative to other
participants we performedquite good in precision,but quite
bad in terms of recall. Results indicate that the basede-
tector is too conservative. However, it also shows that any
global image basedcamerawork detector has the potential
to pro�t from a tessellation of region-baseddetectors.

5 Lexicon-driven Retrieval

We propose a lexicon-driven retrieval paradigm to equip
users with semantic accessto multimedia archives. The

aim is to retrieve from a multimedia archive S, which is
composedof n unique shots f s1; s2; : : : ; sn g, the best possi-
ble answer set in responseto a user information need. To
that end, we use the 101 conceptsin the lexicon as well as
the 3 typesof camerawork for our automatic, manual, and
interactive search systems.

5.1 Automatic Search

Our automatic search engine uses only topic text as in-
put [10], as we postulate that it is unreasonableto expect a
user to provide a video search system with example videos
in a real world scenario. We rely purely on text and the lex-
icon of 101 semantic concept detectors that we have devel-
oped using the semantic path�nder, seeSection3, to search
through the video collection. We developed our search sys-
tem using the video data, topics, and ground truths from
the 2003and 2004TRECVID evaluations as a training set.

5.1.1 Indexing Components

Our automatic search system incorporates regular TFIDF-
based indices for standard retrieval using the bfx-bfx [24]
formula, Latent Semantic Indexing [5] for text retrieval
with implicit query expansion,and 101the di�eren t seman-
tic concept indices for query-by-concept. Each index was
matched to one or more concepts,or synsets in the Word-
Net [13] lexical databaseon an individual basis, according
to whether the concept directly matches the content of the
detectors. For example,the detector for the conceptbaseball
�nds shots of baseballgames,and theseshots invariably in-
clude baseball players, baseball equipment, and a baseball
diamond, so these concepts are also matched. Additional
synsetsare added to WordNet for semantic concepts that
do not have a direct WordNet equivalent.

5.1.2 Automatic Query Interface Selection

We perform the standard stopping and stemming proce-
dureson the topic text (using the SMART stop list [23] with
the addition of the words �nd and shots; and the Porter
stemming algorithm [20] respectively). In addition, we per-
form part-of-speech tagging and chunking using the Tree-
Tagger [26]. This grammatical information is usedto iden-
tify two di�eren t query categorizations: complex vs. simple
queriesand generalvs. speci�c queries. Any topic contain-
ing more than one noun chunk is classi�ed as complex, as
it refers to more than one object, while requestscontaining
only a single noun chunk are classi�ed as simple. If a re-
quest contains a name(a proper noun) it refersto a speci�c
object, rather than a general category, so we categorizeall
requestscontaining proper nouns as speci�c requests,and
all others as general requests.

Subsequently , we extract the WordNet words in the topic
text through dictionary lookup of noun chunks and nouns.
We identify the correct synset for WordNet words with
multiple meanings through disambiguation. We evaluated



a number of disambiguation strategies using the Word-
Net::Similarit y [17] resource, and found that for the pur-
posesof our system, the best approach was to choose the
most commonly occurring meaningof a word. Then we look
for related semantic concept index synsetsin the hypernym
and hyponym trees of each of the topic synsets. If an index
synset is found, we calculate the similarit y betweenthe two
synsetsusing the Resnik similarit y measure[21].

Finally, queries are formed. We create both a stemmed
and an unstemmed TFIDF query using all of the topic
terms. We create an extra TFIDF query on proper nouns
only for speci�c topics, and a query on all nouns only for
general topics. For the LSI index we create also a query
using all of the topic terms, and in addition we create an
additional query using proper nouns only for speci�c top-
ics, and all nouns for general topics. Finally, we select the
concept index with the highest Resnik similarit y to a topic
synset as the best match, and query on this concept.

5.1.3 Combining Query Results

We use a tiered approach for result fusion, �rst fusing the
text results from the TFIDF and LSI searchesindividually ,
then fusing the resultant two sets, and �nally combining
them with the results from the semantic concept search.
We use weighted Borda fusion to combine results, and de-
veloped the weights through optimization experiments on
the training set. We use results from unstemmed searches
to boost stemmedresults for simple topics, as thesebene�t
from using the exact spelling to search on text. We also
boost text searcheswith a search on proper nouns for spe-
ci�c topics, as proper nouns are a good indicator of result
relevance.

When combining text results with concept results, we
use two measuresdeveloped speci�cally for WordNet by
Resnik [21]: concept information content and similarit y
(previously mentioned). The information content measure
is a measureof the speci�cit y of a concept { as a concept
becomesmore abstract, the information content decreases.
When the matching index concepthashigh information con-
tent, and the words in the concept do not, we give priorit y
to the conceptresults. Likewise,when the matched concept
index is very similar to the topic, then we give the concept
search a very high weighting.

5.2 Manual Search

Our manual search approach investigatesthe power of lex-
icon driven retrieval used in a visual-only setting. We put
the principle of lexicon driven retrieval to the test by using
only the 101 concepts in answering the queries. Further-
more, we test the hypothesis that visual information, this
year, is signi�cantly more important than textual informa-
tion. To test the impact of visual information, we use no
other modalit y whatsoever, and rely only on visual features.
This entails training a Support Vector Machine on the vec-
tor of contextures as intro duced in section3.1.1. This SVM

is trained for every one of the 101 conceptswith the whole
development set asa training set. This lexicon of 101visual
conceptsis subsequently usedin answering the queries. For
each query, we manually selectone or two conceptsthat �t
the question, and usethe outcome of thesedetectors as our
�nal answer to the question.

5.3 Interactive Search

Our interactive search systemsstoresthe probabilities of all
detected conceptsand types of camera work for each shot
in a database. In addition to learning, the paradigm also
facilitates multimedia analysis at a similarit y level. In the
similarit y component, 2 similarit y functions are applied to
index the data in the visual and textual modalit y. It re-
sults in 2 similarit y distancesfor all shots, which are stored
in a database. The MediaMill search engine o�ers users
an accessto the stored indexes and the video data in the
form of 106 query interfaces; i.e. 2 query-by-similarit y in-
terfaces, 101 query-by-concept interfaces and 3 query-by-
camerawork interfaces. The query interfacesemphasizethe
lexicon-driven nature of the paradigm. Each query interface
acts as a ranking operator � i on the multimedia archive S,
where i 2 f 1; 2; : : : ; 106g. The search engine stores results
of each ranking operator in a ranked list � i , which we denote
by:

� i = � i (S) : (3)

The search enginehandlesthe query requests,combines the
results, and displays them to an interacting user. Within
the paradigm, we perceive of interaction as a combination
of querying the search engine and selecting relevant re-
sults using one of many display visualizations. A schematic
overview of the retrieval paradigm is given in Fig. 9.

To support browsing with advanced visualizations the
data is further processed. The high-dimensional feature
space is projected to the 2D visualization space to allow
for visual browsing. Clusters, and representativ es for each
cluster, are identi�ed to support hierarchical browsing. Fi-
nally, semantic threads are identi�ed, to allow for fast se-
mantic browsing. For interactive search, users map top-
ics to query-by-multimo dal-conceptor query-by-keyword to
create a set of candidate results to explore. When there is
a one-to-one relation between the query and the concept,
a rank-time browsing method is employed. In other cases,
the set forms the starting point for visual, hierarchical, or
semantic browsing. The browsing methods are supported
by advancedvisualization and active learning tools.

5.3.1 Multimedia Similarit y Indexing

After all the concepts are detected, the low level features
are usually ignored. We believe, however, that these fea-
tures are still valuable in adding information to the results
of query-by-concept search. Except for speci�c concepts
such as person X (Allawi, Bush, Blair ), USA 
ag , most of
provided conceptshave generalmeaning like sport , animal,
maps, drawing. Theseconceptscan be classi�ed further into
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Figure 9: The lexicon-drivenparadigm for interactive multimedia
retrieval combineslearning, similarity, and interaction. It learns to
detect a lexicon of 101 semanticconceptstogether with 3 typesof
camera work. In addition, it computes 2 similarity distances. A
search engine then presents2 interfaces for query-by-similarity, 3
interfaces for query-by-camera-work, and 101 interfaces for query-
by-concept. Basedon interaction a user may re�ne search results
until an acceptablestandard is reached.

sub-concepts.For instance, the map conceptsmay contain
mapsin weather forecast,or a map of a country in a newsre-
port. Hence,we allow usersto distinguish query-by-concept
results further basedon low level features.

There are di�eren t options for selecting low-level fea-
tures, either using colors, textures, shapesor combinations
of those. We usethe visual concept featuresfrom the visual
analysis step of the semantic path�nder, seeSection 3.1.1.
We exploit the same15 proto-concepts,but now with 6 dif-
ferent parameter setsfor each shot. Thosevaluesare repre-
sented as a feature vector per shot. All the shots with their
corresponding feature vectorsbuilt up a 90 dimensional fea-
ture space.

Obtaining the best performanceon retrieving images,not
only depends on the features, but also on the selection of
an appropriate similarit y function. The aim is to choose
the best distance function that is able to return the max-
imum number of relevant images in its nearest neighbors.
Basedon experimental results we choosethe L 2 measureas
a distance function.

5.3.2 Combining Query Results

Combination by Linear Weighting To reorder ranked
lists of results, we �rst determine the rank r ij of shot sj

over the various � i . Denoted by:

r ij = � i (sj ) : (4)

We de�ne a weight function w(�) that computesthe weight
of sj in � i basedon r ij . This linear weight function gives
a higher weight to shots that are retrieved in the top of � i

and gradually reducesto 0. This function is de�ned as:

w(r ij ) =
n � r ij + 1

n
: (5)

We aggregatethe results for each shot sj by adding the
contribution from each ranked list � i . We then usethe �nal
ranking operator � � to rank all shots from S in descending
order basedon this new weight. This combination method
yields a �nal ranked list of results � � , de�ned as:

� � = � �

0

@

(
mX

i

w(r ij )

)

j =1 ;2;:::;n

1

A ; (6)

where m indicates the number of selectedquery interfaces.

Combination by Semantic Threads The generatedcon-
cept probabilities more or lessdescribe the content of each
shot. However, sincethere are only a limited number of cat-
egoriesfor detection, a problem ariseswhen a shot doesn't
�t into any category, i.e. each individual concept detector
returned a near-zerovalue. All shotswith all conceptvalues
below a threshold could simply be removed. However some
detectorsproducelow-valueresultsbut the top-rankedshots
are still correct. This needsto be taken into account when
combining shots. We use a round-robin pruning procedure
to ensurethat at least a top-N shots from each concept de-
tector is included, even when that detector has very low
valuescomparedto other detectors.

Each remaining shot now contains at least one detected
concept. With this information a distance measurement
between shots can be created. But how do we measure
distance betweenconcept vectors? If we assumeequal dis-
tancesbetweenconcepts,wecanconstruct a distancematrix
made up from the similarit y Spq betweenshots p and q us-
ing well-known distance metrics such as Euclidean distance
or histogram intersection. Given the computed distancebe-
tweenshots, it is possibleto �nd groupsof related shotsus-
ing clustering techniques. Currently we useK -meansclus-
tering.

Now that clustersof related shotsexist the task of forming
a single coherent line of shots from each cluster must be
examined. We apply a shortest path algorithm sothat shots
that are next to each other usually have a very low distance
to each other, which meansthat shotswith similar semantic
content are near each other.

5.4 Display of Results

For e�ectiv e interaction an interface for communicating be-
tween the user and the system is needed. We consider two
issuesthat are required for an e�ectiv e interface:

(1) For query speci�cation, support should be given to
explore the collection in search of good examples as the
user seldomhas a good exampleat his/her disposal.



Figure 10: Interfacesof the MediaMill semanticvideo search engine. On the left the CrossBrowser showing results for tennis. On top
the SphereBrowser,displaying severalsemanticthreads. Bottom right: active learning using a semanticcluster-basedvisualizationin the
GalaxyBrowser.

Most existing systems browse key frames in sequence
(left-righ t, top-down) [28]. Hence,relations betweenframes
are not taken into account. For e�ectiv e interaction this
may be unappropriate as the user can not bene�t from the
inherent structure found in video collections. Therefore,

(2) In the visualization, relations between key frames
should be taken into account to allow selection of several
frames by one user action.

For these reasons,visualization of key frames including
support for browsing and exploring is essential in an inter-
active search system. We explored three advanced visual-
izations.

5.4.1 CrossBrowser

To visualize query-by-concept results we proposea Cross-
Browser. The browser displays two orthogonal dimensions.
The horizontal one is the time-thread, using the original
TRECVID shot sequence.The vertical dimension contains
the ranked list of query results. The GUI gives the user a
cross layout of nearby shots on the screen. It exploits the
observation that semantically similar shots tend to cluster
in the time dimension. The resulting browser is visible in
Fig. 10.

5.4.2 GalaxyBrowser

To speedup the search within the time limitation, we want
to support the user with a system that they are able to se-
lect more than onekey frame in onemouseaction. It can be
assumedthat the key framesrelevant to a search topic share
similar features. Hence,they should be closeto each other
in the feature space. Therefore, visualization basedon the
similarit y betweenthem will make the search easierassimi-
lar imagesare grouped together in a speci�c location of the
search space.Hence,lessnavigation and interaction actions
will be needed. We proposethe GalaxyBrowser, which in-
tegratesadvancedsimilarit y basedvisualization with active
learning.

The similarit y basedvisualization of [15] is the basis for
our retrieval. In brief, we have pointed out that for an
optimal visualization system, three requirements have to
obeyed: overview,structure preservation and visibility . The
�rst requirement ensuresthat the set displayed will be able
to represent the whole collection, the so called represen-
tativ e set. For user interaction, the collection should be
projected to the display space. Hence, the secondrequire-
ment tries to preserve the relations between key frames
in the original feature space. The �nal requirement keeps
the content of displayed key frames feasiblefor interaction.



These are con
icting requirements. For example, to sat-
isfy the overview requirement, the number of representativ e
key frames should be increased. Becauseof the �xed size
of the display space, the more key frames the higher the
chance of overlap, the visibilit y requirement hencewill be
violated. Moreover, while preserving the visibilit y images
are spread out from each other, original relations between
them are changedi.e. structure is not preserved. Therefore,
cost functions for each requirement and balancing functions
betweenthem are proposed.

Activ e learning algorithms mostly usesupport vector ma-
chines (SVM) as a feedback learning base [38, 33]. In in-
teractive search, using this approach, the system�rst shows
some images and asks the user to label those as positive
and/or negative. The learning is either basedon both pos-
itiv e and negative examples(known as two-classSVM) or
on positive/negative onesonly (known as one-classSVM).
Theseexamplesareusedto train the SVM to learn classi�ers
separating positive and negative examples. The processis
repeated until the performance satis�es given constraints.
We have done a comparison between the two approaches,
the results turn out that one-classSVM generally performs
better than the two-class,as well as faster in returning the
result. We concentrate on the use of one-classSVM for
learning the relevancefeedback.

The combination of the two techniques is drawn into one
scheme (see Fig. 11). The o�ine stage contains feature
extraction and similarit y function selection. The ISOSNE
from [15] is applied to project the collection from the high
dimensionalspaceto the visualization space.The next step
will decidewhich set of key frames will be usedas a repre-
sentativ e one. To do so, we employ k-means algorithm to
cluster key frames into a �xed number of groups. A set of
key frames selectedfrom di�eren t groups is the represen-
tativ e set of the collection. Information of each key frame
belonging to a certain group, and its position in the visual-
ization spaceis stored as o�ine data.

In the interactive stage,query results are input for start-
ing up the search. First, the set of top k key frames from
the query results is displayed. The user then usesthe sys-
tem to explore the collection and �nd relevant key frames.
Particularly , if the currently displayed set contains any pos-
itiv e one, the user selectsthat key frame and goes into the
corresponding cluster with the expectation of �nding more
similar ones. With the advantage of similarit y based vi-
sualization, instead of clicking on an individual key frame
for labeling, the systemsupports the userwith mousedrag-
ging to draw the area of key frames in the samecategory.
This meansthat when the user �nds a group of relevant key
frames, he/she draws a rectangle around those and marks
them all as positive examples. Therefore, our system can
reduce the number of actions from the user with the same
amount of information for relevancefeedback. In casethere
is no positivekey frame in the current set, the userthen asks
the system to display another set, which contains the next
k key frames from the query results. Key frames which are
selectedastraining examplesor displayed beforewill not be

Figure 11: Schemeof an interactive search in the GalaxyBrowser
with the combination of active learning and similarity basedvisual-
ization.

shown again.
In the learning step, when a certain number of training

examples are provided, the SVM trains the support vec-
tors. We use the well-known SVM library developed by
Chang and Lin [4], which provides a one-classimplemen-
tation. After the learning, a set of images closest to the
border is returned. The processis repeated until a certain
constraint is satis�ed such asnumber of iterations, time lim-
itation, or simply that the user does not want to give any
more feedback. At that point, the system will return the
�nal result containing key frames with maximum distances
to the border as they are assumedhaving high probabilities
to be relevant to the search topic.

5.4.3 SphereBrowser

To visualize the thread structure a so called Sphere-
Browser [22] was developed. The browser displays two or-
thogonal dimensions. The horizontal oneis the time-thread,
using the original TRECVID shot sequence. The vertical
dimension contains for each shot cluster-threads of seman-
tically similar footage. The GUI gives the user a a spheri-
cal layout of nearby shots on the screen,and the user can
jump to any shown shot with transition animations between
movements so that the browser givesthe user the feeling he
is looking at one side of a giant turnable sphere of video
material. Using the mouse and arrow keys the user can
then navigate either through time or through related shots,
selecting relevant shots when found. Also selecting (parts
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Condoleeza Rice (149)

Iyad Allawi (150)

Omar Karami (151)

Hu Jintao (152)

Tony Blair (153)

Mahmoud Abbas (154)

graphic map of Iraq, Bagdhad marked  (155)

two visible tennis players on the court (156)

people shaking hands (157)

helicopter in flight (158)

George W.  Bush entering or leaving a vehicle (159)

something on fire with flames and smoke visible (160)

people with banners or signs (161)

people entering or leaving a building (162)

a meeting with a large table and people (163)

a ship or boat (164)

basketball players on the court (165)

one or more palm trees (166)

an airplane taking off (167)

a road with one or more cars (168)

one or more military vehicles (169)

a tall building (170)

a goal being made in a soccer match (171)

office setting (172)

Others
MediaMill CrossBrowser
MediaMill GalaxyBrowser
MediaMill SphereBrowser
MediaMill MixedBrowser
MediaMill Manual Search
MediaMill Automatic Search
MediaMill Text-only

Figure 12: Comparison of automatic, manual, and interactive search results for 24 topics. Results for the usersof the lexicon-driven
retrieval paradigm are indicated with special markers.

of) entire threads is possible. Smooth transition animations
exist to enablethe user to have a better intuitiv e feeling of
wherehe is browsing in the data set. The resulting browser
is shown in Fig. 10.

5.5 Experiments

5.5.1 Automatic Search

We submitted two runs for automatic search, one baseline
run using the �nal text search strategy only, and one full
run incorporating text and semantic concepts. As can be
seenin Fig. 12 the combined semantic and text run out-
performed the text run on nearly all counts. We did best
for those topics that had a clear mapping to the semantic
concept indices, i.e. tennis for topic 156, meeting for topic
163 (achieving the best result for this topic) and basketball
for topic 165. In somecasesthe concept weighting strategy
was not optimal, for example for topic 158. In this case
we detected the aircraft index, but the concept results were
given a weighting of 0 in the result fusion becausethe infor-
mation content of the concept helicopter was calculated to
be much higher than the information content of the concept
aircraft. If we had utilized the aircraft detector in this case,
we would have achieved an averageprecision of 0.17, which
is higher than the best evaluated averageprecision of 0.14.

We have demonstrated that automatic search using only
text as input is a realistic task. We perform better than
the median for a number of topics, and even achieve the
best score for one topic. Postulating that all other sys-
tems incorporate multimo dal examplesin their search, this
is a signi�cant result. The performance of our search en-
gine is best when one or more related indices are present;

we expect that the results of our system will improve as
we add more semantic concept indices, using our semantic
path�nder strategy.

5.5.2 Manual Search

We submitted onerun for manual search wherewe only use
the 101conceptsin the lexicon to answer the queries. More-
over, we restrict ourselvesto using only visual information.
For thirteen topics we scoreabove the median. Speci�cally ,
for two queries, i.e. vehicle with 
ames (160) and tennis
players (156) we perform the best of all manual runs, and
for two other queries, i.e. people with banners (161) and
basketball players (165) we are secondbest. For ten queries
we scorebelow the median, three of those are not covered
by our lexicon, and seven are person-x type queries. We
perform badly for person-x queriesbecausethe featuresde-
scribe visual scenelayout, consequently , names and faces
are not modeled. For the remaining fourteen topics there
is only one i.e. boat (164) where we score below the me-
dian. Compared to our automatic search text baseline,we
perform worseon eight queries. Of those eight queries, the
text baselineperforms better for all person-x queries, and
for one other query (164). Consequently , a visual-only ap-
proach outperformsthe text baselinein 16queries,including
the out-of-lexicon queries.

Webelieveour results support the lexicon-driven retrieval
approach and show the importance of visual analysis. De-
spite the obvious disadvantages of using only visual infor-
mation, we outperform the text baseline,and even scorethe
best of all manual runs in two queries.
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Figure 13: Overviewof all search runs submitted to TRECVID 2005, ranked according to mean averageprecision. Userswho exploited
the proposedparadigm are indicated with special markers.

5.5.3 Interactive Search

We submitted four runs for interactive search. Three users
focussedon using only onebrowser. The fourth usersmixed
all browsers. Results in Fig. 12 indicate that for most search
topics, usersof the proposedparadigm for interactive multi-
media retrieval scoreabove average. Furthermore, usersof
our approach obtain a top-3 averageprecision result for 19
out of 24 topics. Best performanceis obtained for 7 topics.
Best results are obtained with the CrossBrowser.

Depending on the search topic, the proposed Galaxy-
Browser aids users in searching for the relevant subset of
the collection. As the features used are visual based, the
systemworks well in caserelevant imagesof a certain topic
sharevisual similarit y, e.g. queriesrelated to tennis or car.
However, when topics have large variety in visual settings,
for instanceperson x topics, visual featureshardly yield ad-
ditional information to aid the user in the interactive search
process. To our knowledge, no existing features work well
in thesecases.

Two search strategies were discovered during the inter-
active retrieval task using the SphereBrowser. There were
topics for which multiple cluster threadsyieldedgood results
for that topic, such as Tennis (156), People with banners or
signs(161), Meeting (163) and Tall building (170). For these
topics only the relevant parts of the threads neededto be se-
lected. Another selectionmethod was found in queriessuch
asAirplane takeo� (167) and O�c e setting (172). Herethere
wereonly a limited number of consecutive valid shotsvisible
in each thread, but becauseof the combination of both time
and cluster threads there was always another valid but not
yet selectedshot visible. For these queries, selection was
done by hopping from one valid result to another. Also a
number of topics werenot answerableby the SphereBrowser
becauseof lack of nearby shots. Theseinclude person x top-
ics 149, 151, and 153.

To gain insight in the overall quality of our lexicon-driven
retrieval paradigm. We compare the results of our users
with all other usersthat participated in the retrieval tasksof
the 2005TRECVID benchmark. We visualized the results
for all submitted search runs in Fig. 13. The results are
state-of-the-art.

6 Exploration of BBC Rushes

The BBC Rushesconsist of raw material used to produce
a video. Since there is little to no speech, this material is
very suitable for visual-only indexing. We �rst segmented
the video's using our shot segmentation algorithm [2]. Then
we applied our best performing cameramotion detector (see
Section 4) on the BBC rushesusing the models trained for
the news data. To further investigate the robustness of
our visual features, we performed visual-only concept de-
tection on the BBC rushes data, without re-training the
visual models. The visual models are the sameas used in
the visual only feature task (Section 3.4) and in the manual
search task (Section 5.2). The detectors thus learned on
news data are subsequently evaluated on the BBC rushes
videos. Obviously, not all 101 concepts are useful, since
they are trained on broadcast news. However, 25 concepts
transcend the news domain and someperform surprisingly
well on the BBC rushes: aircraft, bird, boat, building, car,
charts, cloud, crowd, face, female, food, government build-
ing, grass,meeting, mountain, outdoor, overlayed text, sky,
smoke, tower, tree, urban, vegetation, vehicle, water body.
We developed a version of the MediaMill semantic video
search enginetailored to the BBC rushersbasedon the com-
puted indexes. While still primitiv e in terms of utilit y, the
search engineallows usersto explore the collection in a sur-
prising manner. The results again con�rm the importance
of robust visual features. Hence, for this task much is to



be expected from improved visual analysis yielding a large
lexicon of semantic concepts.
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