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Abstract

In this paper we describe our TRECVID 2005 experiments. The
UvA-MediaMil | team particip ated in four tasks. For the detection
of camera work (runid: A_CAM) we investigate the benet of
using a tesselation of detectors in combination with supervised
learning over a standard approach using glokal image informa-
tion. Experiments indicate that average precision resultsincrease
drastically, especially for pan (+51%) and tilt (+28%). For con-
cept detection we propose a generic approach using our semantic
path nder. Most important novelty compared to last years sys-
tem is the improved visual analysis using proto-concepts based on
Wiccest features. In addition, the path selection mechanism was
extendal. Based on the semantic path nder architecture we are
currently ableto detect an unprecedented lexicon of 101 semantic
conceptsin a generic fashion. We performed a large set of exper-
iments (runid: B_vA). The results showthat an optimal strategy
for generic multimedia analysis is one that learns from the train-
ing seton a per-concept basis which tactic to follow. Experiments
also indicate that our visual analysis approach is highly promis-
ing. The lexicon of 101 semantic concepts forms the basis for our
sarch experiments (runid: B_2_A-MM). We particip ated in au-
tomatic, manual (using only visual information), and interactive
sarch. The lexicon-driven retrieval paradigm aids substantially
in all sarch tasks. When coupled with interaction, exploiting
sevearl novel browsing schemesof our semantic video search en-
gine, results are excellent. We obtain a top-3 result for 19 out of
24 search topics. In addition, we obtain the highestmean average
precision of all search particip ants. We exploited the technology
developd for the alove tasks to explore the BBC rushes. Most
intriguing result is that from the lexicon of 101 visual-only mod-
els trained for news data 25 concepts perform reasonably well on
BBC data also.

1 Intro duction

Despite the emergenceof commercial video seard engines,
such as Google [9] and Blinkx [3], multimedia retrieval is
by no meansa solved problem. In fact, presert day video
seard enginesrely mainly on text - in the form of closed
captions [9] or transcribed speed [3] - for retrieval. This re-
sults in disappointing performancewhen the visual content
is not re ected in the assaiated text. In addition, when

the videos originate from non-English speaking courtries,
such asChina or The Netherlands, querying the cortent be-
comeseven harder as automatic speed recognition results
are much poorer. For videos from these sources,an ad-
ditional visual analysis potentially yields more robustness.
For e ectiv e video retrieval there is a need for multimedia
analysis;in which text retrieval is an important factor, but
not the decisive elemen. We advocate that the ideal mul-
timedia retrieval systemshould rst learn a large lexicon of
concepts,basedon multimedia analysis, to be usedfor the
initial seard. Then, the ideal system should employ simi-
larity and interaction to re ne the seard until satisfaction.

We propose a multimedia retrieval paradigm built on
three principles: learning of a lexicon of semariic concepts,
multimedia data similarity, and userinteraction. Within the
proposed paradigm, we explore the combination of query-
by-concept, query-by-similarit y, and interactive ltering us-
ing advancedyvisualizations of the MediaMill semartic video
seard engine. To demonstrate the e ectiv enessof our mul-
timedia retrieval paradigm, seweral componerts are evalu-
ated within the 2005NIST TRECVID videoretrieval bench-
mark [16].

The organization of this paper is asfollows. First, we dis-
cussour generallearning architecture and data preparation
steps. Our system architecture for generic semartic index-
ing is preseried in Section 3. We describe our approad
for camerawork indexing in Section4. Our multimedia re-
trieval paradigm is presered in Section5. Our explorative
work on BBC rushesis addressedin Section 6.

2 Preliminaries

The MediaMill semaric video seard engineexploits a com-
mon architecture with a standardizedinput-output modelto
allow for semariic integration. The corvertions to describe
the modular system architecture are indicated in Fig. 1.

2.1 General Learning Architecture

We perceiwe of video indexing asa pattern recognition prob-
lem. We rst needto segmen a video. We opt for cam-
era shots [18], indicated by i, following the standard in
TRECVID evaluations. Given pattern x, part of a shot,
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Figure 1. Data ow conventionsas usedin this paper. Dierent
arrows indicate di erence in data ows.

the aim is to detect an index ! from shot i using proba-
bility pi (! jxi). We exploit supervisedlearning to learn the
relation between! and x;. The training data of the multi-
media archive, together with labeled samples,are for learn-
ing classi ers. The other data, the test data, are set aside
for testing. The generalarchitecture for supervisedlearning
in the MediaMill semartic video seard engine architecture
is illustrated in Fig. 2.

We can choosefrom a large variety of supervised machine
learning approaches to obtain p;(! jxj). For our purpose,
the method of choice should be capable of handling video
documerts. Tothat end,ideally it must learn from alimited
number of examples,it must handle unbalanced data, and
it should account for unknown or erroneouslydetected data.
In such heavy demands,the Support Vector Machine (SVM)
framework [35, 4] hasprovento bea solid choice[l, 29]. The
usual SVM method provides a margin in the result. We
prefer Platt's conversion method [19] to achieve a posterior
probability of the result. SVM classi ers thus trained for ! ,
result in an estimate p; (! jx;; ), where ¢ are parameters of
the SVM yet to be optimized.

The in uence of the SVM parameterson video indexing
is signi cant [14]. We obtain good parameter settings for a
classi er, by using an iterativ e seart on a large number of
SVM parameter combinations. We measureaverage preci-
sion performance of all parameter conmbinations and select
the combination that yields the best performance,g . Here
we use 3-fold crossvalidation [11] with 3 repetitions to pre-
vent over tting of parameters. The result of the parameter
seard over ¢ is the improved model p; (! jxi; & ). In the
following we drop ¢ where obvious.

2.2 Data Preparation

Supervised learning requires labeled examples. In part, we
rely on the provided ground truth of the TRECVID 2005
common annotation e ort [36]. It is extended manually to
arrive at an incomplete, but reliable ground truth for an
unprecedened amount of 101 semaric conceptsin lexicon

s. In addition, we manually labeled a substartial part of
the training set with respect to dominant type of camera
work, i.e. pan, tilt, and/or zocom , if presen.

In order to recognizeconceptsbasedon low-level visual
analysis,we annotated 15 di erent proto-concepts: building
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Figure 2: Generalarchitecture for supervised leaning in in the
MediaMill semantic video seach engine, using the conventionsof
Fig. 1.

(321), car (192), charts (52), crowd (270), desert (82), re
(67), US-ag (98), maps (44), mountain (41), road (143),
sky (291), smoke (64), snow (24), vegetation (242), water
(108), where the number in brackets indicates the number
of annotation samplesof that concept. We again usedthe
TRECVID 2005 common annotation e ort as a basis for
selecting relevant shots cortaining the proto-concepts. In
those shots, we annotated rectangular regions where the
proto-concept is visible for at least 20 frames.

We split the training data a priori into four non-
overlapping training and validation setsto prevent over t-
ting of classi ers. Training setsA, B, and C contain 30%
percert of the 2005training data, validation setD contains
the remaining 10%. We assignall shotsin the training set
randomly to either setA, B, C, or D.

3 Semantic Path nder Indexing

The certral assumption in our semaric indexing architec-
ture is that any broadcastvideo is the result of an author-
ing process. When we want to extract semariics from a
digital broadcast video this authoring processneedsto be
reversed. For authoring-driven analysis we proposed the
semaric path nder [30]. The semariic path nder is com-
posedof three analysis steps. It follows the reverseauthor-
ing process. Each analysis step in the path detects seman-
tic concepts. In addition, one can exploit the output of an
analysisstep in the path asthe input for the next one. The
semaric path nder starts in the content analysis step. In
this analysis step, we follow a data-driven approacd of in-
dexing semartics. The style analysisstepis the secondanal-
ysis step. Here we tackle the indexing problem by viewing
a video from the perspective of production. This analysis
step aids especially in indexing of rich semartics. Finally,
to enhancethe indexesfurther, in the context analysis step,
we view semairics in context. One would expect that some
concepts, like vegetation, have their emphasison content
wherethe style (of the camerawork that is) and context (of



|

Context
Analysis Step

v

Select best
of multiple \
paths after

validation

Style L.
Analysis Step [T

Content | | _
Analysis Step H
i

v
v

Figure 3: The semanticpath nder for one concept, usingthe con-
ventions of Fig. 1.

conceptslike graphics) do not add much. In contrast, more
complex everts, like people walking, prot from incremertal
adaptation of the analysis to the intention of the author.
The virtue of the semartic path nder is its ability to nd
the best path of analysis stepson a per-conceptbasis. An
overview of the semartic path nder is givenin Fig. 3.

3.1 Content Analysis Step

We view of video in the content analysisstep from the data
perspective. In general, three data streams or modalities
exist in video, namely the auditory modality, the textual
modality, and the visual one. As speed is often the most
informativ e part of the auditory source,we focus on visual
features, and on textual featuresobtained from transcribed
speet. After modality speci ¢ data processingwe combine
features in a multimo dal represenation using early fusion
and late fusion [32].

3.1.1 Visual Analysis

Modeling visual data heavily relies on qualitativ e features.
Good featuresdescribe the relevant information in animage
while reducing the amount of data represeiing the image.
To adhieve this goal, we use Wiccest features as intro duced
in [6]. Wiccest features combine color invariance with nat-
ural image statistics. Color invariance aims to remove ac-
cidertal lighting conditions, while natural image statistics
e cien tly represen image data.

Color invariance aims at keepingthe measuremets con-
stant under varying intensity, viewpoint and shading. In [7]
seweral color invariants are described. We use the W in-
variant that normalizesthe spectral information with the
energy This normalization makes the measuremets in-
dependert of illumination changesunder uniform lighting
conditions.

When modeling scenes, edges are highly informativ e.
Edges reveal where one region ends and another begins.
Thus, an edge has at least twice the information content
then a uniformly colored patch, since an edge cortains in-
formation about all regionsit divides. Besidesserving as
region boundaries, an ensenble of edgesdescribes texture
information. Texture characterizesthe material an object is
made of. Moreover, a compilation of cluttered objects can

Figure 4. An exampleof dividing an image up in overlappingre-
gions. In this particular example,the regionsizeis a 3 of the image
sizefor both the x-dimensionand y-dimension. The regionsare uni-
formly sampledacrossthe image with a step size of half a region.
Samplingin this manneridenti es nine overlappingregions.

be described astexture information. Therefore, a scenecan
be modeled with textured regions.

Texture is described by the distribution of edgesat a cer-
tain region in an image. Hence, a histogram of a Gaussian
derivative lters represeits the edgestatistics. Sincethere
are more non-edgepixels then there are edgepixels, the dis-
tribution of edgeresponsesfor natural imagesalways has a
peakaround zero,i.e.: many pixels have no edgeresponses.
Additionally , the shape of the tails of the distribution is
often in-between a power-law and a Gaussiandistribution.
This speci c distribution can be well modeled with an in-
tegrated Weibull distribution [8]. This distribution is given
by

1r
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where r is the edge responseto the Gaussian derivative
ﬂgler and ( ) is the complete Gamma function, ( x) =
o t* 'e 'dt. The parameter denotesthe width of the
distribution, the parameter represens the 'peakness'of
the distribution, and the parameter denotesthe origin of
the distribution.

To assessthe similarity between Wiccest features, a
goodness-of- t test is utilized. The measureis basedon the
integrated squarederror betweenthe two cumulativ e distri-
butions, which is obtained by a Cramer-von Misesmeasure.
For two Weibull distributions with parametersF , F and
G , G a rst order Taylor approximation of the Cramer-
von Mises statistic yields the log di erence betweenthe pa-
rameters. Therefore, a measureof similarity betweentwo
Weibull distributions F and G is given by the ratio of the
parameters,

S

W2(F;G) =

min(F ;G ) min(F ;G )
max(F ;G ) max(F ;G )

@)

The  parameter represens the mode of the distribution.
The position of the mode is in uenced by uneven illumi-
nation and colored illumination. Hence, to achieve color
constancythe valuesfor may be ignored.

In summary, Wiccest features provide a color invariant
texture descriptor. Moreover, the features rely heavily on
natural image statistics to compactly represen the visual
information.



3.1.2 Contextures:
their Context

Regional Texture Descriptors and

The visual detectors aim to decomposean image in proto-
conceptslik e vegetation, water, re, sky etc. To achieve this
goal, an image is divided up in sewral overlapping rectan-
gular regions. The regionsare uniformly sampledacrossthe
image, with a step size of half a region. The region sizehas
to be large enoughto assesstatistical relevance,and small
enoughto capture local textures in an image. We utilize
a multi-scale approad, using small and large regions. An
example of region sampling is displayed in gure 4.

A visual sceneis characterized by both global as well as
local texture information. For example, a picture with an
aircraft in mid air might be described as\sky, with a hole
in it". To model this type of information, we use a proto-
concept occurrence histogram where ead bin is a proto-
concept. The values in the histogram are the similarity
responsesof eat proto-concept annotation, to the regions
in the image.

We usethe proto-concept occurrence histogram to char-
acterize both global and local texture information. Global
information is described by computing an occurrence his-
togram accunulated over all regionsin the image. Local
information is taken into accourt by constructing another
occurrence histogram for only the response of the best re-
gion. For ead proto-concept, or bin, b the accunulated oc-
currence histogram and the best occurrence histogram are
constructed by,

P P

Haccumul ated (B) = W2(a;r) ;
r2R(im) a2 fo(b)

Hpest (D) = argmax W2(@&;r) ;

r2R(im) a2A(b)

whereR(im) denotesthe set of regionsin imageim, A(b)
represens the set of stored annotations for proto-conceptb,
and W2 is the Cramer-von Mises statistic as introduced in
equation 2.

We denotea proto-conceptoccurrencehistogram asa con-
texture for that image. We have chosenthis name, as our
method incorporatestexture featuresin a context. The tex-
ture featuresare given by the useof Wiccest features, using
color invariance and natural image statistics. Furthermore,
cortext is taken into accourt by the combination of both
local and global region conmbinations.

Contextures can be computed for di erent parameter set-
tings. Speci cally, we calculate the corntextures at scales

= 1and = 3 of the Gaussian lter. Furthermore, we
use two dierent region sizes, with ratios of % and % of
the x-dimension and y-dimensionsof the image. Moreover,
corntextures are based on one image, and not basedon a
shot. To generalizeour approac to shot level, we extract 1
frame per secondout of the video, and then aggregatethe
framesthat belongto the sameshot. We usetwo ways to
aggregateframes: 1) averagethe contexture responsesfor
all extracted framesin a shot and 2) keep the maximum
responseof all framesin a shot. This aggregation strategy

accourts for information about the whole shot i, and in-
formation about accidertal frames, which might occur with
high cameramotion. The combination of all these param-
eters yields a vector of contextures v;, cortaining the nal
result of the visual analysis.

3.1.3 Textual Analysis

In the textual modality, we aim to learn the assaiation be-
tween uttered speet and semariic concepts. A detection
system transcribes the speed into text. For the Chinese
and Arabic sourceswe exploit the provided machine trans-
lations. The resulting translation is mapped from story level
to shot level. From the text we remove the frequertly oc-
curring stopwords. After stopword removal, we are ready to
learn semarics.

To learn the relation between uttered speed and con-
cepts, we connectwords to shots. We make this connection
within the temporal boundariesof a shot. We derive a lex-
icon of uttered words that co-occur with ! using the shot-
basedannotations of the training data. For ead concept! ,
we learn a separatelexicon, !, asthis uttered word lexi-
con is speci ¢ for that concept. For feature extraction we
comparethe text ass@iated with ead shot with . This
comparisonyields a text vector tj for shot i, which contains
the histogram of the words in assaiation with ! .

3.1.4 Early Fusion

Indexing approachesthat rely on early fusion rst extract
unimodal featuresof ead stream. The extracted featuresof
all streamsare combined into a single represenation. After
combination of unimodal features in a multimo dal repre-
senrtation, early fusion methods rely on supervised learning
to classify semarnic concepts. Early fusion yields a truly
multimedia feature represenation, since the features are
integrated from the start. An added advantage is the re-
quirement of one learning phaseonly. Disadvantage of the
approad is the dicult y to combine featuresinto a com-
mon represenation. The generalschemefor early fusion is
illustrated in Fig. 5a.

We rely on vector concatenation in the early fusion
scheme to obtain a multimo dal represertation. We con-
catenate the visual vector ¥ with the text vector t;. After
feature normalization, we obtain early fusion vector €;.

3.1.5 Late Fusion

Indexing approachesthat rely on late fusion also start with
extraction of unimodal features. In cortrast to early fusion,
where features are then combined into a multimo dal rep-
reseration, approades for late fusion learn semaric con-
cepts directly from unimodal features. In general, late fu-
sion schemescomnbine learned unimodal conceptscoresinto
a multimo dal represenation. Then late fusion methods rely
on supervised learning to classify semartic concepts. Late
fusion focuseson the individual strength of modalities. Uni-
modal conceptdetection scoresare fusedinto a multimo dal
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Figure 5. (a) Generalschemefor ealy fusion. Output of unimodal analysisis fused befare a conceptis leaned. (b) Generalscheme
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concept. We usethe conventionsof Fig. 1.

semartiic represenation rather than a feature represerta-
tion. A big disadvantage of late fusion schemesis its expen-
sivenessin terms of the learning e ort, as every modality
requires a separate supervised learning stage. Moreover,
the combined represertation requiresan additional learning
stage. Another disadvantage of the late fusion approad is
the potential lossof correlation in mixed feature space. A
generalschemefor late fusion is illustrated in Fig. 5b.

For the late fusion scheme,we concatenatethe probabilis-
tic output scoreafter visual analysis,i.e. p; (! jw ;& ), with
the probabilistic scoreresulting from textual analysis, i.e.
p; (! jti; &), into late fusion vector T;.

3.1.6 Content Path nder

We learn 101 semartic conceptsbasedon the four vectors
resulting from analysisin the content analysis step. Thus
v;ti;e; and T; serwe asthe input for our supervised learn-
ing module, which learns an optimized SVM model for eat
semariic concept! using 3-fold crossvalidation with 3 rep-
etitions on training set A. Thesemodels are then validated
on set D, yielding a best performing model p; (! jm;) for all
I in s,wherem; 2 fv;t;¢e;%g.

3.2 Style Analysis Step

In the style analysis step we conceiwe of a video from the
production perspective. Basedon the four rolesinvolved in
the video production procesg[31], this step analyzesa video
by four related style detectors. Layout detectors analyze
the role of the editor. Content detectors analyze the role
of production design. Capture detectors analyze the role
of the production recording unit. Finally, context detectors
analyze the role of the preproduction team, seeFig. 6.

3.2.1 Style Analysis

We dewvelop detectorsfor all four production rolesasfeature
extraction in the style analysis step. We refer to our pre-
vious work for speci ¢ implementation details of the detec-
tors [31, Electronic Appendix]. We have chosento corvert
the output of all style detectorsto an ordinal scale,as this
allows for elegart fusion.

For the layout L the length of a camerashot is used as
a feature, as this is known to be an informativ e descrip-
tor for genre [31]. Overlayed text is another informative
descriptor. Its presenceis detected by a text localization
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Figure 6: Feature extraction and classi cation in the style analysis
step, special caseof Fig. 2.



algorithm [25]. To segmen the auditory layout, periods of
speeth and silenceare detected basedon the provided au-
tomatic speed recognition results. We obtain a voice-over
detector by combining the speed segmemation with the
camerashot segmemation [31]. The set of layout features
is thus given by: L = fshot length, overlayal text, silence,
voice-over.

As concernsthe content C, a frontal face detector [27] is
applied to detect people. We count the number of faces,
and for ead faceits location is derived [31]. In addition,
we measurethe averageamount of object motion in a cam-
era shot [29]. Basedon provided spealer identi cation we
identify ead of the three most frequent speakers. Each
camerashot is cheded for presenceof speed from one of
the three [31]. We also exploit the provided named ertit y
recognition. The set of content features is thus given by:
C =ffaces, face location, object motion, frequent speaker,
voice named entityg.

For capture T, we compute the cameradistance from the
size of detected faces[27, 31]. It is unde ned when no face
is detected. In addition to cameradistance, seweral types
of camerawork are detected [2], e.g. pan, tilt, zoom, and
soon. Finally, for capture we also estimate the amourt of
cameramotion [2]. The set of capture featuresis thus given
by: T = fcamera distance, camera work, camera motiong.

The context S servesto enhanceor reducethe correlation
betweensemariic concepts. Detection of vegetation can aid
in the detection of a forest for example. Likewise,the co-
occurrence of a space shuttle and a bicycle in one shot is
improbable. As the performance of semaric concept de-
tectors is unknown and likely to vary betweenconcepts,we
exploit iteration to add them to the context. The rationale
here is to add conceptsthat are relatively easyto detect
rst. They aid in detection performanceby increasingthe
number of true positives or reducing the number of false
positives. To prevert bias from domain knowledge, we use
the performanceon validation setD of all conceptsfrom ¢
in the cortent analysis step asthe ordering for the context.
To assign detection results for the rst and least di cult
concept, we rank all shot results on p; (! 1jm;). This rank-
ing is then exploited to categorizeresults for ! ; into one of
v e levels. The basic set of corntext featuresis thus given
by: S = fcontent analysisstep! ;0.

The concatenation of fL;C, T;Sg for shot i yields style
vector ;. This vector forms the input for an iterativ e classi-
er [3]] that trains a style model for ead conceptin lexicon

s. Weclassifyall ! in g againin the style analysis step.
We use 3-fold crossvalidation with 3 repetitions on train-
ing set B to optimize parameter settings in this analysis
step. We usethe resulting probability asoutput for concept
detection in the style analysis step.

3.3 Context Analysis Step

The context analysisstep addscortext to our interpretation
of the video. Our ultimate aim is the reconstruction of the
author's intent by consideringdetected conceptsin context.
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Figure 7: Feature extraction and classi cation in the context anal-
ysis step, special caseof Fig. 2.

Both the content analysis step and the style analysis step
yield a probability for ead) shoti and all concepts! in 5.
The probability indicates whether a conceptis presern. We
fuse these semartic featuresof an analysis step for a shot i
into a context vector, seeFig. 7.

We considerthree paths in the context analysisstep. The
rst path stemsdirectly from the content analysisstep. We
fusethe 101p, (! jm;) conceptscoresinto corntext vector df.
The secondpath stemsfrom the style analysisstep wherewe
fusethe 101p, (! jsi) scoresinto cortext vector ;. The third
path selectsthe best performer on validation set D from
either content analysis step or style analysis step. These
best performers are fusedin context vector .

From thesethree vectors we learn relations betweencon-
cepts automatically. To that end the vectors sene as the
input for a supervised learning module, which assiates a
contextual probability p; (! j&) to ashoti for all ! in g,
where€ 2 fdi;p;Bg. To optimize parameter settings, we
use 3-fold crossvalidation with 3 repetitions on the previ-
ously unuseddata from training set C.

The output of the context analysisstep is alsothe output
of the ertire semartic path nder on video documerts. On
the way we have included in the semartic path nder, the re-
sults of the analysison raw data, facts derived from produc-
tion by the use of style features, and a cortext perspective
of the author's intent by using semartic features. For eat
concept we obtain seeral probabilities basedon (partial)
content, style, and context. We selectfrom all possibilities
the one that maximizes average precision basedon perfor-
mance on validation set D. The semaric path nder pro-
vides us with the opportunity to decidewhether a one-shot
analysis step is best for the concept only concerrating on
(visual) cortent, or a two-analysisstep classi er increasing
discriminatory power by adding production style to cortent,
or that a conceptprots most from a consecutive analysis
on cortent, style, and cortext level.

3.4 Experiments

We traversedthe entire semartic path nder for all 101 con-
cepts. The average precision performance of the seman-
tic path nder and its sub-systems,on validation set D, are
shaown in Fig. 8.

We evaluated for ead conceptfour analysis strategiesin
the corntent analysis step: text-only, visual-only, early fu-



Table 1: UvA-MediaMill TRECVID 2005 run compaison for all 10 benchmak concepts. The best path of the semantic path nder is

marked in bold. Last column indicatesresults of our visual-onlyrun.

SP-1 SP-2 SP-3 SP-4 SP-5 SP -6 Visual-only
People walking 0.199 0.172 0.154 0.179 0.101 0.103 0.031
Explosion 0.041 0.027 0.032 0.035 0.036 0.034 0.073
Map 0.142 0.16 0.135 0.123 0.099 0.127 0.138
US ag 0.1 0.063 0.11 0.095 0.072 0.114 0.129
Building 0.235 0.229 0.226 0.225 0.21 0.157 0.269
Watersc ape 0.201 0.198 0.137 0.164 0.124 0.136 0.166
Mountain 0.22 0.193 0.182 0.195 0.17 0.128 0.207
Prisoner 0.005 0.001 0 0.001 0.001 0.001 0.003
Sports 0.342 0.225 0.289 0.202 0.137 0.153 0.272
Car 0.213 0.192 0.182 0.201 0.196 0.199 0.233
MAP 0.1698 0.146 | 0.1447 | 0.142 | 0.1146 | 0.1152 0.1521

sion, and late fusion. Results conrm the importance of
visual analysis for generic concept detection. Text-analysis
yields the bestapproad for only 8 concepts,whereasvisual
analysisyields the best performancefor as much as 45 con-
cepts. Fusionis optimal for the remaining 48 concepts,with
a clear advantage for early fusion (33 concepts)in favor of
late fusion (15 concepts).

The style analysis step again con rms the importance for
inclusion of professionaltelevision production facetsfor se-
mantic video indexing. Especially for conceptswhich share
many similarities in their production process,like anchors,
monologues,and entertainment. For other concepts, con-
tent is more decisiwe, like tennis and baseball for example.
Thus some concepts are just corntent, whereasothers are
pure production style.

We boost concept detection performance further by the
usageof cortext. The path nder again exploits variation
in performance for the various paths to selectan optimal
pathway. The results demonstratethe virtue of the semartic
path nder. Conceptsare divided by the analysis step after
which they achieve best performance. Basedon theseresults
we concludethat an optimal strategy for genericmultimedia
analysis is one that learns from the training set on a per-
conceptbasiswhich tactic to follow.

3.4.1 Pathnder Runs

We submitted six paths for each benchmark concept, prior-
itized accordingto validation set performance. For concept
explosion for example, the optimal path (SP-1) indicates
that visual-only analysis is the best performer. However,
in most casesthe best path is a consecutive path of con-
tent, style, and context. We report the o cial TRECVID

bencdhmark results in Table 1.

The results show that the path nder mecanismis a good
way to estimate the best performing analysispath. The SP-
1 run containing the optimal path is indeed the best per-
former in 8 out of 10 cases. Overall, this is also our best
performing run. Howewer, what strikesus most is that av-
erageprecisionresults are much lower than can be expected
basedon validation setperformancereported in Fig. 8. This
may indicate that despite the use of separatetraining and

validation setswe are still over tting the data. A point of
concernhereis the random assignmen of shotsto the sep-
arate training and validation sets. This may bias the clas-
siers asit is possiblethat similar newsitems from seweral
channelsare distributed to separatesets. For two concepts
(map and explosion) performance su ered from misinter-

pretation of correct concepts. Had we included examples
of newsandhors with mapsin the badkground of the studio
setting (for the map concept) and smoke (for explosion)in

our training sets, results would be higher. When looking at
the judged results, we alsofound that three concepts(water-
scape, mountain, and car) are dominated by commercials.
We do not perform well on commercial detection. This can
be explained becausewe take 1 frame per secondout of the
video in the visual analysis. Sampling in this manner will

selectdi erent framesfor the samecommercialsthat reap-
pearondierent time stampsin avideo. We anticipate that

improvemert in frame sampling yields increasedrobustness
for the entire path nder.

3.4.2 Visual-only Run

Validation set performancein Fig. 8. indicates that our vi-
sual analysis step performs quite good. To determine the
cortribution of the visual analysis step, we therefore sub-
mitted a visual-only run. This involved training a Support
Vector Machine on the vector of contextures as introduced
in section3.1.1. We trained an SVM for ead of the 10 con-
cept of the conceptdetection task. An experimert for recog-
nizing proto-concept was submitted by another group [37].

The visual featuresin the submitted visual-only run are
slightly dierent from the visual features in the semartic
path nder system. This di erence is causedby ongoingde-
velopmert on the visual analysis. Speci cally, we improved
the Weibull t to be more robust and we added the proto-
concept car. The newer version of the visual analysis was
not incorporated in the semaric path nder. It was not
integrated becausevisual analysisis the rst stepin the se-
mantic path. Thus, a changein the visual analysis means
that all further paths would have to be recomputed. How-
ever, for a visual-only run, the improvemerts were feasible
to compute.



Semantic Concept Text Analysis | Visual Analysis Early Fusion Late Fusion Style Contem-Cnntext_I Style-Context | Best-Context | Optimal Path
1 aircraft 0.049] 0.199 0.203] 0.157; 0.093 0.205 0.110 0.210; 0.210
2 allawi 0.188] 0.054 0.229] 0.026! 0.011 0.274 0.007| 0.243; 0.274
3 anchor 0.175] 0.585! 0.472] 0.562; 0.764 0.615] 0.780] 0.771 0.780
4 animal 0.209 0.189 0.216 0.181 0.316 0.330 0.301 0.417, 0.417
5 arrafat 0.084] 0.112 0.073] 0.078; 0.135 0.141] 0.247| 0.176; 0.247
6 baseball 0.051] 0.240 0.226] 0.040: 0.085 0.084 0.073] 0.028; 0.240
7 basketball 0.033] 0.541 0.235] 0.451 0.532 0.573] 0.589] 0.641 0.641
8 beach 0.002 0.005 0.005 0.002 0.036 0.009 0.011 0.010 0.036
9 bicycle 0.096 0.025 0.128] 0.098; 0.140 0.109] 0.406| 0.400: 0.406
10  bird 0.201] 0.716 0.379] 0.454 0.487 0.717| 0.462] 0.678; 0.717
11 boat 0.065] 0.147 0.039] 0.169; 0.102 0.172] 0.132] 0.222 0.222
12 building 0.159 0.281 0.251 0.085 0.292 0.298 0.304 0.327 0.327
13  bus 0.101] 0.025 0.095] 0.146; 0.024 0.015 0.021] 0.018; 0.146
14 bush_jr 0.072] 0.173 0.072] 0.144 0.213 0.201] 0.224, 0.219; 0.224
15 bush_sr 0.028] 0.019 0.021] 0.001! 0.217 0.065 0.198| 0.205! 0.217
16 candle 0.008 0.003 0.020 0.024 0.006 0.002 0.003 0.018 0.024
17  car 0.108 0.253; 0.197| 0.214 0.215 0.269] 0.243] 0.282; 0.282
18 cartoon 0.511 0.747 0.569] 0.640; 0.455 0.601] 0.528] 0.693; 0.747
19  chair 0.100] 0.534 0.328] 0.522 0.207 0.552] 0.284] 0.577, 0.577
20 charts 0.209 0.275 0.440 0.384 0.321 0.456 0.322 0.463 0.463
21 clinton 0.002] 0.264 0.075] 0.207 0.018 0.002 0.264
22  cloud 0.034] 0.237 0.101] 0.156 0.126 0.228] 0.128] 0.172 0.237
23  corporate_leader 0.040 0.097 0.051 0.077 0.078 0.049 0.080 0.065 0.097
24 court 0.077 0.057 0.338 0.003 0.099 0.350 0.116 0.368 0.368
25 crowd 0.233] 0.404 0.404] 0.402 0.391 0.424] 0.414] 0.446 0.446
26 cycling 0.103] 0.020 0.135] 0.001! 0.435 0.121] 0.428] 0.421 0.435
27 desert 0.034] 0.114 0.129] 0.098! 0.070 0.143] 0.095] 0.144 0.144
28 dog 0.284 0.262 0.446 0.004 0.294 0.483 0.200 0.498 0.498
29 drawing 0.318] 0.275 0.269] 0.318; 0.045 0.208 0.029] 0.274 0.318
30 drawing_cartoon 0.403] 0.288 0.293] 0.405; 0.093 0.442] 0.219] 0.443 0.443
31  duo_anchor 0.008 0.651 0.054 0.060: 0.857 0.602] 0.881] 0.882 0.882
32  entertainment 0.257 0.268 0.325 0.193 0.684 0.496 0.693 0.700 0.700
33  explosion 0.040] 0.127 0.087] 0.060: 0.094 0.118 0.034] 0.125] 0.127
34 face 0.724] 0.898 0.893] 0.755; 0.913 0.696| 0.925] 0.929 0.929
35 female 0.065 0.316 0.118 0.021 0.414 0.336 0.419 0.420; 0.420
36 fireweapon 0.036 0.039 0.128 0.043 0.037 0.131 0.055 0.059 0.131
37 fish 0.065 0.235 0.116 0.100: 0.284 0.231] 0.322] 0.353; 0.353
38 flag 0.096 0.165! 0.121] 0.157, 0.135 0.182] 0.145] 0.184 0.184
39 flag_usa 0.077 0.185 0.141 0.175 0.137 0.190 0.162 0.215; 0.215
40 food 0.016 0.071 0.068 0.030 0.172 0.138 0.187 0.216 0.216
41 football 0.026] 0.188 0.088] 0.033; 0.252 0.196 0.330] 0.351 0.351
42 golf 0.069] 0.038 0.179] 0.092! 0.109 0.190| 0.059] 0.214 0.214
43 government_building 0.026 0.035 0.019 0.157 0.212 0.008 0.212 0.213; 0.213
44 government_leader 0.291 0.275 0.261 0.378 0.400 0.401 0.412 0.416 0.416
45  graphics 0.169] 0.354 0.358] 0.340: 0.363 0.445| 0.402] 0.472 0.472
46 grass 0.016] 0.151. 0.042] 0.063! 0.098 0.167| 0.094] 0.107; 0.167
47  hassan_nasrallah 0.446 0.867 0.278 0.667 0.158 0.917 0.251 1.000 1.000
48  horse 0.001] 0.129 0.219] 0.001! 0.308 0.182] 0.341] 0.338; 0.341
49 horse_racing 0.001] 0.059 0.253] 0.201! 0.540 0.204] 0.409] 0.406! 0.540
50 house 0.081] 0.005! 0.081] 0.006! 0.012 0.005 0.014] 0.008! 0.081
51 hu_jintao 0.267 0.094 0.230 0.082 0.060 0.296 0.069 0.323; 0.323
52 indoor 0.400] 0.616: 0.584] 0.607: 0.677 0.674| 0.718] 0.722, 0.722
53  kerry 0.030] 0.079 0.028] 0.005! 0.028 0.123| 0.003] 0.065! 0.123
54 lahoud 0.135] 0.394 0.248] 0.297 0.258 0.559] 0.330] 0.454 0.559
55 male 0.101 0.244 0.131 0.215 0.279 0.259 0.291 0.294 0.294
56 maps 0.146] 0.406 0.308] 0.323; 0.388 0.471] 0.407| 0.493; 0.493
57 meeting 0.202] 0.368 0.228] 0.352 0.393 0.404| 0.422] 0.452; 0.452
58 military 0.183] 0.239 0.305] 0.331 0.282 0.357] 0.293] 0.358; 0.358
59 monologue 0.053 0.128 0.089 0.138 0.692 0.149 0.718 0.724 0.724
60 motorbike 0.003] 0.399 0.163] 0.003! 0.014 0.389] 0.399
61 mountain 0.041] 0.299 0.181] 0.203; 0.228 0.347| 0.250] 0.331] 0.347
62 natural_disaster 0.126] 0.035; 0.152] 0.106! 0.056 0.151] 0.028] 0.163; 0.163
63 newspaper 0.068 0.526 0.433 0.454 0.497 0.525 0.497 0.529 0.529
64 nightfire 0.011 0.009: 0.009] 0.003! 0.005 0.131] 0.002] 0.003; 0.131
65 office 0.029] 0.073 0.065] 0.091! 0.071 0.062] 0.078] 0.098; 0.098
66  outdoor 0.440] 0.668: 0.706 0.665! 0.634 0.744 0.726] 0.754 0.754
67 overlayed_text 0.552 0.697 0.678 0.686 0.991 0.706 0.991 0.990 0.991
68 people 0.803] 0.833 0.870] 0.804 0.937 0.848 0.890] 0.926 0.937
69 people_marching 0.121] 0.229 0.232] 0.169; 0.218 0.252] 0.227| 0.256 0.256
70  police_security 0.017] 0.007: 0.015] 0.009: 0.019 0.017| 0.018] 0.022; 0.022
71 powell 0.033 0.019 0.073 0.012 0.019 0.031 0.190 0.077 0.190
72 prisoner 0.011 0.008: 0.077] 0.003! 0.011 0.088 0.013] 0.088; 0.088
73 racing 0.007| 0.009: 0.006 0.001! 0.008 0.010] 0.029] 0.051; 0.051
74 religious_leader 0.268| 0.060: 0.251] 0.190: 0.022 0.252] 0.006 0.346 0.346
75  river 0.167 0.500 0.084 0.252 0.017 0.025 0.061 0.120 0.500
76 road 0.120] 0.239 0.219] 0.219; 0.230 0.268| 0.252] 0.277, 0.277
77 screen 0.110 0.066! 0.126] 0.075; 0.073 0.154] 0.080] 0.149; 0.154
78 sharon 0.003] 0.008: 0.210; 0.037 0.008 0.199] 0.002] 0.151; 0.210
79  sky 0.180 0.499 0.498 0.494 0.482 0.537 0.497 0.551 0.551
80 smoke 0.084] 0.330 0.272] 0.282 0.219 0.374] 0.208] 0.353; 0.374
81 snow 0.066 0.036! 0.101] 0.028: 0.084 0.299] 0.142] 0.056 0.299
82 soccer 0.037] 0.533 0.365 0.455 0.510 0.578] 0.512] 0.636 0.636
83  splitscreen 0.080 0.616 0.287 0.591 0.819 0.677 0.757 0.795 0.819
84  sports 0.132] 0.296 0.257| 0.320: 0.423 0.459] 0.466| 0.529 0.529
85 studio 0.412] 0.653; 0.630] 0.674 0.746 0.718] 0.780] 0.781 0.781
86  swimmingpool 0.002 0.001 0.001 0.178 0.012 0.181] 0.175 0.181
87 table 0.083 0.135 0.140 0.083 0.203 0.107 0.176 0.197 0.203
88 tank 0.012] 0.024 0.030] 0.019; 0.001 0.335] 0.001] 0.001! 0.335
89 tennis 0.219] 0.644 0.617] 0.691! 0.382 0.763] 0.420] 0.764 0.764
90 tony_blair 0.750 0.254 0.688 0.256 0.005 0.059 0.021 0.751 0.751
91 tower 0.015 0.023 0.083 0.020 0.068 0.062 0.073 0.115 0.115
92 tree 0.013] 0.178 0.187] 0.110 0.097 0.189] 0.145] 0.151] 0.189
93 truck 0.040] 0.035; 0.049] 0.022 0.051 0.062] 0.066 0.068! 0.068
94 urban 0.205 0.270 0.291 0.297 0.285 0.320 0.331 0.356 0.356
95  vegetation 0.071] 0.224 0.198 0.188 0.204 0.236 0.210 0.240 0.240
96 vehicle 0.135] 0.281 0.273] 0.278 0.286 0.326 0.315] 0.343; 0.343
97  violence 0.233] 0.291 0.338] 0.348 0.387 0.451] 0.440] 0.485; 0.485|
98  walking_running 0.224 0.327 0.328 0.354 0.414 0.410 0.421 0.464 0.464
99  waterbody 0.077| 0.275 0.203] 0.237 0.251 0.305 0.289] 0.346 0.346
100 waterfall 0.001] 0.001! 0.008] 0.118 0.009] 0.042] 0.256 0.256
101 weather 0.461] 0.240 0.508] 0.483; 0.555 0.579] 0.560] 0.548 0.579
MAP 0.143 0.254 0.231 0.224 0.263 0.300 0.282 0.352 0.382
TRECVID MAP 0.101] 0.246 0.203) 0.197] 0.245 0.296] 0.259] 0.320) 0.322

Figure 8: Validation set averageprecisionperformancefor 101 semanticconceptsusing sub-systemf the semanticpath nder. The best
path for eachconceptis marked with gray cells. Empty cellsindicate impossibility to learn models, due to lack of annotated examplesin
the training sub-setused.



Table 2: Validation set averageprecision performance for 3 types
of camerawork using severalversionsof our camerawork detector.

Pan Tilt Zo om MAP
Late Fusion 0.862 0.786 0.862 0.837
Late Fusion + Selected Context 0.859 0.752 0.866 0.826
Late Fusion + Context 0.856 0.656 0.856 0.789
Early Fusion 0.703 | 0.558 0.783 0.681
Global 0.569 | 0.613 0.813 0.665
Global + Context 0.591 0.562 0.792 0.648
Early Fusion + Context 0.616 0.461 0.765 0.614

The results of our visual-run re ect the importance of vi-
sual analysis. For four concepts(explosion, US ag, build-
ing, car) we outperform the path nder system. This im-
provemert might beattributed to the useof improved visual
features and to the fact that we usethe ertire training set
in SVM-training. Howewer, since the visual analysis step
is embedded in the path nder system, the visual analysis
should never perform better. Therefore we believe that re-
sults of the path nder system will improve when the new
features are included.

4 Camera Work

For the detection of camerawork we start with an exist-
ing implementation basedon spatiotemporal image analy-
sis[34, 12]. Given a set of global intensity imagesfrom shot
i, the algorithm rst extract spatiotemporal images. On
theseimagesa direction analysisis applied to estimate di-
rection parameters. These parametersform the input for a
supervised learning module to learn three types of camera
work. We modi ed the algorithm in various ways. We su-
perimposeda tessellation of 8 regionson ead input frame
to decreasehe e ect of local disturbances. Parametersthus
obtained are exploited using an early fusion and late fusion
approad. In addition we explored whether the 101 concept
scoresobtained from the semartic path nder aid in detec-
tion of camerawork.

4.1 Experiments

Experimerts on validation set D indicate that averagepre-
cision results increasedrastically, especially for pan (+51%)
andtilt (+28%), seeTable2. The bestapproad is a late fu-
sion schemewithout the usageof context. Relative to other
participants we performed quite good in precision, but quite
bad in terms of recall. Results indicate that the basede-
tector is too consenative. Howewer, it also shows that any
global image basedcamerawork detector has the potential
to prot from a tessellation of region-baseddetectors.

5 Lexicon-driven Retrieval

We propose a lexicon-driven retrieval paradigm to equip
users with semartic accessto multimedia archives. The

aim is to retrieve from a multimedia archive S, which is

ble answer set in responseto a user information need. To
that end, we usethe 101 conceptsin the lexicon as well as
the 3 typesof camerawork for our automatic, manual, and
interactive seart systems.

5.1 Automatic Seach

Our automatic seart engine usesonly topic text as in-
put [10], aswe postulate that it is unreasonableto expect a
userto provide a video seard systemwith example videos
in areal world scenario. We rely purely on text and the lex-
icon of 101 semaric conceptdetectors that we have devel-
oped using the semartic path nder, seeSection3, to searh
through the video collection. We deweloped our seard sys-
tem using the video data, topics, and ground truths from
the 2003and 2004 TRECVID evaluations asa training set.

5.1.1 Indexing Components

Our automatic seard system incorporates regular TFIDF-

basedindices for standard retrieval using the bfx-bfx [24]
formula, Latent Semarnic Indexing [5] for text retrieval
with implicit query expansion,and 101the di erent seman-
tic concept indices for query-by-concept. Each index was
matched to one or more concepts,or synsetsin the Word-
Net [13] lexical databaseon an individual basis, according
to whether the conceptdirectly matchesthe content of the
detectors. For example,the detector for the conceptbaselall
nds shots of baseballgames,and theseshotsinvariably in-
clude baseball players, baseball equipmert, and a baseball
diamond, so these conceptsare also matched. Additional

synsetsare added to WordNet for semariic conceptsthat

do not have a direct WordNet equivalert.

5.1.2 Automatic Query Interface Selection

We perform the standard stopping and stemming proce-
dureson the topic text (using the SMART stop list [23] with
the addition of the words nd and shots; and the Porter
stemming algorithm [20] respectively). In addition, we per-
form part-of-speet tagging and chunking using the Tree-
Tagger[26]. This grammatical information is usedto iden-
tify two di erent query categorizations: complexvs. simple
gueriesand generalvs. speci ¢ queries. Any topic cortain-
ing more than one noun chunk is classi ed as complex, as
it refersto more than one object, while requestscorntaining
only a single noun chunk are classi ed as simple. If a re-
guestcortains a name (a proper noun) it refersto a specic
object, rather than a general category, so we categorizeall
requestscortaining proper nouns as speci ¢ requests, and
all others as generalrequests.

Subsequetly, we extract the WordNet words in the topic
text through dictionary lookup of noun chunks and nouns.
We identify the correct synset for WordNet words with
multiple meaningsthrough disambiguation. We evaluated



a number of disambiguation strategies using the Word-
Net::Similarity [17] resource, and found that for the pur-
posesof our system, the best approach was to choosethe
most commonly occurring meaningof a word. Then we look
for related semariic conceptindex synsetsin the hypernym
and hyponym trees of eadh of the topic synsets. If an index
synsetis found, we calculate the similarity betweenthe two
synsetsusing the Resnik similarity measure[21].

Finally, queriesare formed. We create both a stemmed
and an unstemmed TFIDF query using all of the topic
terms. We create an extra TFIDF query on proper nouns
only for specic topics, and a query on all nouns only for
general topics. For the LSI index we create also a query
using all of the topic terms, and in addition we create an
additional query using proper nouns only for specic top-
ics, and all nouns for generaltopics. Finally, we selectthe
conceptindex with the highest Resnik similarity to a topic
synsetasthe best match, and query on this concept.

5.1.3 Combining Query Results

We use a tiered approadc for result fusion, rst fusing the
text results from the TFIDF and LS| seardesindividually,
then fusing the resultant two sets, and nally combining
them with the results from the semariic concept seard.
We use weighted Borda fusion to combine results, and de-
veloped the weights through optimization experiments on
the training set. We use results from unstemmed seardes
to boost stemmedresults for simple topics, asthesebene t
from using the exact spelling to seard on text. We also
boost text searheswith a seard on proper nouns for spe-
ci c topics, as proper nouns are a good indicator of result
relevance.

When combining text results with concept results, we
use two measuresdeveloped speci cally for WordNet by
Resnik [21]: concept information content and similarity
(previously mertioned). The information content measure
is a measureof the speci city of a concept{ as a concept

becomesmore abstract, the information content decreases.

When the matching index concepthashigh information con-
tent, and the words in the conceptdo not, we give priority
to the conceptresults. Likewise,whenthe matched concept
index is very similar to the topic, then we give the concept
seard a very high weighting.

5.2 Manual Seach

Our manual seart approad investigatesthe power of lex-
icon driven retrieval usedin a visual-only setting. We put
the principle of lexicon driven retrieval to the test by using
only the 101 conceptsin answering the queries. Further-
more, we test the hypothesisthat visual information, this
yeatr, is signi cantly more important than textual informa-
tion. To test the impact of visual information, we use no
other modality whatsoever, and rely only on visual features.
This entails training a Support Vector Machine on the vec-
tor of contextures asintroducedin section3.1.1. This SVM

is trained for every one of the 101 conceptswith the whole
dewvelopmern setasa training set. This lexicon of 101visual
conceptsis subsequetly usedin answering the queries. For
ead query, we manually selectone or two conceptsthat t
the question, and usethe outcome of these detectors as our
nal answer to the question.

5.3

Our interactive seard systemsstoresthe probabilities of all
detected conceptsand types of camerawork for ead shot
in a database. In addition to learning, the paradigm also
facilitates multimedia analysis at a similarity level. In the
similarity componert, 2 similarity functions are applied to
index the data in the visual and textual modality. It re-
sults in 2 similarity distancesfor all shots, which are stored
in a database. The MediaMill seard engine o ers users
an accessto the stored indexesand the video data in the
form of 106 query interfaces;i.e. 2 query-by-similarity in-
terfaces, 101 query-by-concept interfaces and 3 query-by-
camerawork interfaces. The query interfacesemphasizethe
lexicon-driven nature of the paradigm. Each query interface
acts asa ranking operator ; on the multimedia archive S,
wherei 2 f1;2;:::;1069. The seard engine stores results
of eadh ranking operator in arankedlist ;, which we denote

by:

Interactive Search

i= i(S): ®)

The seart enginehandlesthe query requests,combinesthe
results, and displays them to an interacting user. Within
the paradigm, we perceiwe of interaction as a combination
of querying the seard engine and selecting relevant re-
sults using one of many display visualizations. A schematic
overview of the retrieval paradigm is givenin Fig. 9.

To support browsing with advanced visualizations the
data is further processed. The high-dimensional feature
spaceis projected to the 2D visualization spaceto allow
for visual browsing. Clusters, and represenativ es for eat
cluster, are identi ed to support hierarchical browsing. Fi-
nally, semaric threads are identi ed, to allow for fast se-
mantic browsing. For interactive seard, users map top-
ics to query-by-multimo dal-conceptor query-by-keyword to
create a set of candidate results to explore. When there is
a one-to-onerelation betweenthe query and the concept,
a rank-time browsing method is employed. In other cases,
the set forms the starting point for visual, hierarchical, or
semartic browsing. The browsing methods are supported
by advancedvisualization and active learning tools.

5.3.1 Multimedia Similarity Indexing

After all the conceptsare detected, the low level features
are usually ignored. We believe, however, that these fea-
tures are still valuable in adding information to the results
of query-by-concept searth. Except for specic concepts
such as person X (Allawi, Bush, Blair ), USA ag, most of
provided conceptshave generalmeaning like sport, animal,
maps drawing. Theseconceptscan be classi ed further into
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Figure 9: The lexicon-drivenparadigm for interactive multimedia
retrieval combinesleaning, similarity, and interaction. It learns to
detect a lexicon of 101 semantic conceptstogether with 3 types of
camerawork. In addition, it computes 2 similarity distances. A
seach engine then presents?2 interfaces for query-by-similarity, 3
interfacesfor query-by-camera-vork, and 101 interfacesfor query-
by-concept. Basedon interaction a user may re ne seach results
until an acceptablestandad is reached.

sub-concepts. For instance, the map conceptsmay contain
mapsin weatherforecast,or a map of a courtry in a newsre-
port. Hence,we allow usersto distinguish query-by-concept
results further basedon low level features.

There are dierent options for selecting low-level fea-
tures, either using colors, textures, shapesor combinations
of those. We usethe visual conceptfeaturesfrom the visual
analysis step of the semartic path nder, seeSection 3.1.1.
We exploit the same15 proto-concepts, but now with 6 dif-
ferent parameter setsfor eat shot. Those valuesare repre-
sented as a feature vector per shot. All the shotswith their
corresponding feature vectors built up a 90 dimensionalfea-
ture space.

Obtaining the best performanceon retrieving images,not
only depends on the features, but also on the selection of
an appropriate similarity function. The aim is to choose
the best distance function that is able to return the max-
imum number of relevant imagesin its nearest neighbors.
Basedon experimental results we choosethe L, measureas
a distance function.

5.3.2 Combining Query Results

Combination by Linear Weighting To reorder ranked
lists of results, we rst determine the rank r;; of shot s;
over the various ;. Denoted by:

(4)

ri = i(s) :

We de ne a weight function w( ) that computesthe weight
of s; in ; basedon rj . This linear weight function gives
a higher weight to shotsthat are retrieved in the top of ;
and gradually reducesto 0. This function is de ned as:

n rij+1_

w(rj) = 0

(5)
We aggregatethe results for ead shot s; by adding the
contribution from ead rankedlist ;. We then usethe nal
ranking operator  to rank all shotsfrom S in descending
order basedon this new weight. This combination method

yields a nal ranked list of results , de ned as:
0 ( ) 1
= @ w(rij ) A (6)
i j=1;2:0n

where m indicates the number of selectedquery interfaces.

Combination by Semantic Threads The generatedcon-
cept probabilities more or lessdescribe the content of each
shot. However, sincethere are only a limited number of cat-
egoriesfor detection, a problem ariseswhen a shot doesn't
t into any category, i.e. ead individual concept detector
returned a near-zerovalue. All shotswith all conceptvalues
below a threshold could simply be removed. However some
detectorsproducelow-value results but the top-ranked shots
are still correct. This needsto be taken into accourt when
combining shots. We use a round-robin pruning procedure
to ensurethat at leasta top-N shots from ead conceptde-
tector is included, even when that detector has very low
valuescomparedto other detectors.

Each remaining shot now cortains at least one detected
concept. With this information a distance measuremen
between shots can be created. But how do we measure
distance between concept vectors? If we assumeequal dis-
tancesbetweenconcepts,we can construct a distance matrix
made up from the similarity Spq betweenshots p and g us-
ing well-known distance metrics such as Euclidean distance
or histogram intersection. Giventhe computed distance be-
tweenshots, it is possibleto nd groups of related shots us-
ing clustering techniques. Currently we use K -meansclus-
tering.

Now that clustersof related shotsexist the task of forming
a single coherent line of shots from ead cluster must be
examined. We apply a shortest path algorithm sothat shots
that are next to ead other usually have a very low distance
to ead other, which meansthat shotswith similar semariic
cortent are near ead other.

5.4 Display of Results

For e ectiv e interaction an interface for communicating be-
tweenthe user and the systemis needed. We considertwo
issuesthat are required for an e ectiv e interface:

(1) For query speci cation, support should be given to
explore the collection in seard of good examples as the
user seldomhas a good exampleat his/her disposal.



Figure 10: Interfacesof the MediaMill semanticvideo seach engine. On the left the CrossBravser shaving results for tennis. On top
the SphereBravser, displaying severalsemanticthreads. Bottom right: active learning using a semantic cluster-basedvisualizationin the

GalaxyBravser.

Most existing systems browse key frames in sequence 5.4.2 GalaxyBrowser

(left-right, top-down) [28]. Hence,relations betweenframes
are not taken into accourt. For e ectiv e interaction this
may be unappropriate asthe usercan not benet from the
inherent structure found in video collections. Therefore,

(2) In the visualization, relations between key frames
should be taken into accourt to allow selection of seweral
frames by one user action.

For these reasons,visualization of key frames including
support for browsing and exploring is essetial in an inter-
active seard system. We explored three advanced visual-
izations.

5.4.1 CrossBrowser

To visualize query-by-concept results we proposea Cross-
Browser. The browser displays two orthogonal dimensions.
The horizontal one is the time-thread, using the original
TRECVID shot sequence.The vertical dimension contains
the ranked list of query results. The GUI givesthe usera
crosslayout of nearby shots on the screen. It exploits the
obsenation that semariically similar shotstend to cluster
in the time dimension. The resulting browser is visible in
Fig. 10.

To speedup the seard within the time limitation, we want
to support the userwith a systemthat they are able to se-
lect more than onekey frame in onemouseaction. It canbe
assumedthat the key framesrelevant to a seard topic share
similar features. Hence,they should be closeto ead other
in the feature space. Therefore, visualization basedon the
similarity betweenthem will make the seard easieras simi-
lar imagesare grouped together in a speci ¢ location of the
seard space.Hence,lessnavigation and interaction actions
will be needed. We proposethe GalaxyBrowser, which in-
tegrates advancedsimilarity basedvisualization with active
learning.

The similarity basedvisualization of [15] is the basis for
our retrieval. In brief, we have pointed out that for an
optimal visualization system, three requiremerts have to
obeyed: overview, structure preservation and visibility . The
rst requiremert ensuresthat the set displayed will be able
to represent the whole collection, the so called represen-
tative set. For user interaction, the collection should be
projected to the display space. Hence,the secondrequire-
mernt tries to presene the relations between key frames
in the original feature space. The nal requiremert keeps
the content of displayed key frames feasiblefor interaction.



These are conicting requiremerts. For example, to sat-
isfy the overview requiremert, the number of represenativ e
key frames should be increased. Becauseof the xed size
of the display space,the more key frames the higher the
chance of overlap, the visibilit y requiremert hencewill be
violated. Moreover, while preserving the visibility images
are spread out from ead other, original relations between
them are changedi.e. structure is not presened. Therefore,
cost functions for ead requiremert and balancing functions
betweenthem are proposed.

Activ e learning algorithms mostly usesupport vector ma-
chines (SVM) as a feedbak learning base[38, 33]. In in-
teractive seard, using this approad, the system rst shaws
someimages and asks the user to label those as positive
and/or negative. The learning is either basedon both pos-
itiv e and negative examples (known as two-classSVM) or
on positive/negative onesonly (known as one-classSVM).
Theseexamplesare usedto train the SVM to learn classi ers
separating positive and negative examples. The processis
repeated until the performance satis es given constraints.
We have done a comparison between the two approades,
the results turn out that one-classSVM generally performs
better than the two-class,as well asfaster in returning the
result. We concerrate on the use of one-classSVM for
learning the relevancefeedbad.

The combination of the two techniquesis drawn into one
scheme (see Fig. 11). The oine stage contains feature
extraction and similarity function selection. The ISOSNE
from [15] is applied to project the collection from the high
dimensional spaceto the visualization space. The next step
will decidewhich set of key frameswill be usedas a repre-
sertative one. To do so, we employ k-meansalgorithm to
cluster key framesinto a xed number of groups. A set of
key frames selectedfrom di erent groups is the represen-
tativ e set of the collection. Information of ead key frame
belongingto a certain group, and its position in the visual-
ization spaceis stored asoine data.

In the interactive stage, query results are input for start-
ing up the seard. First, the set of top k key frames from
the query results is displayed. The userthen usesthe sys-
tem to explore the collection and nd relevant key frames.
Particularly, if the currently displayed set contains any pos-
itiv e one, the user selectsthat key frame and goesinto the
corresponding cluster with the expectation of nding more
similar ones. With the advantage of similarity based vi-
sualization, instead of clicking on an individual key frame
for labeling, the systemsupports the userwith mousedrag-
ging to draw the area of key framesin the same category.
This meansthat whenthe user nds a group of relevant key
frames, he/she draws a rectangle around those and marks
them all as positive examples. Therefore, our system can
reducethe number of actions from the user with the same
amourt of information for relevancefeedba&. In casethere
is no positive key frame in the current set, the userthen asks
the systemto display another set, which contains the next
k key framesfrom the query results. Key frameswhich are
selectedastraining examplesor displayed beforewill not be
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Figure 11: Schemeof an interactive seach in the GalaxyBravser
with the combination of active learning and similarity basedvisual-
ization.

shown again.

In the learning step, when a certain number of training
examples are provided, the SVM trains the support vec-
tors. We use the well-known SVM library deweloped by
Chang and Lin [4], which provides a one-classimplemen-
tation. After the learning, a set of images closestto the
border is returned. The processis repeated until a certain
constraint is satis ed such asnumber of iterations, time lim-
itation, or simply that the user doesnot want to give any
more feedbak. At that point, the system will return the
nal result containing key frameswith maximum distances
to the border asthey are assumedhaving high probabilities
to berelevant to the seard topic.

5.4.3 SphereBrowser

To visualize the thread structure a so called Sphere-
Browser [22] was dewveloped. The browser displays two or-
thogonal dimensions. The horizontal oneis the time-thread,
using the original TRECVID shot sequence. The vertical
dimension contains for ead shot cluster-threads of seman-
tically similar footage. The GUI givesthe user a a spheri-
cal layout of nearby shots on the screen,and the user can
jump to any shavn shot with transition animations between
movemerns sothat the browser givesthe userthe feeling he
is looking at one side of a giant turnable sphere of video
material. Using the mouse and arrow keys the user can
then navigate either through time or through related shots,
selecting relevant shots when found. Also selecting (parts
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Figure 12: Compaison of automatic, manual, and interactive seach results for 24 topics. Resultsfor the usersof the lexicon-driven

retrieval paradigm are indicated with special markers.

of) ertire threads is possible. Smooth transition animations
exist to enablethe userto have a better intuitiv e feeling of
where he is browsing in the data set. The resulting browser
is shown in Fig. 10.

5.5 Experiments
5.5.1 Automatic Seach

We submitted two runs for automatic seard, one baseline
run using the nal text seard strategy only, and one full
run incorporating text and semaric concepts. As can be
seenin Fig. 12 the combined semaric and text run out-
performed the text run on nearly all counts. We did best
for those topics that had a clear mapping to the semartic
conceptindices, i.e. tennis for topic 156, meeting for topic
163 (achieving the best result for this topic) and basketfall
for topic 165. In somecasesthe conceptweighting strategy
was not optimal, for example for topic 158. In this case
we detectedthe aircraft index, but the conceptresults were
given a weighting of 0 in the result fusion becausethe infor-
mation content of the concept helicopter was calculated to
be much higher than the information content of the concept
aircraft. If we had utilized the aircraft detector in this case,
we would have achieved an averageprecision of 0.17, which
is higher than the best evaluated averageprecision of 0.14.
We have demonstrated that automatic seard using only
text as input is a realistic task. We perform better than
the median for a number of topics, and even achieve the
best score for one topic. Postulating that all other sys-
tems incorporate multimo dal examplesin their seard, this
is a signi cant result. The performance of our seart en-
gine is best when one or more related indices are presen;

we expect that the results of our system will improve as
we add more semariic conceptindices, using our semartic
path nder strategy.

5.5.2 Manual Seach

We submitted onerun for manual seard where we only use
the 101 conceptsin the lexiconto answer the queries. More-
over, we restrict ourselvesto using only visual information.

For thirteen topics we scoreabove the median. Speci cally,

for two queries, i.e. vehicle with ames (160) and tennis
players (156) we perform the best of all manual runs, and
for two other queries, i.e. people with banners (161) and
basketlall players (165) we are secondbest. For ten queries
we score below the median, three of those are not covered
by our lexicon, and sewen are person-x type queries. We
perform badly for person-x queriesbecausethe featuresde-
scribe visual scenelayout, consequetly, names and faces
are not modeled. For the remaining fourteen topics there
is only one i.e. boat (164) where we score below the me-
dian. Comparedto our automatic seard text baseline,we
perform worse on eight queries. Of those eight queries,the
text baseline performs better for all person-x queries, and
for one other query (164). Consequetly, a visual-only ap-
proach outperformsthe text baselinein 16 queries,including

the out-of-lexicon queries.

We believe our results support the lexicon-drivenretrieval
approac and show the importance of visual analysis. De-
spite the obvious disadvantages of using only visual infor-
mation, we outperform the text baseline,and even scorethe
best of all manual runs in two queries.
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5.5.3 Interactive Search

We submitted four runs for interactive seard. Three users
focussedon using only onebrowser. The fourth usersmixed
all browsers. Resultsin Fig. 12 indicate that for most searh
topics, usersof the proposedparadigm for interactive multi-

media retrieval scoreabove average. Furthermore, usersof
our approac obtain a top-3 averageprecisionresult for 19
out of 24 topics. Best performanceis obtained for 7 topics.
Best results are obtained with the CrossBrowser.

Depending on the seard topic, the proposed Galaxy-
Browser aids usersin searding for the relevant subset of
the collection. As the features used are visual based, the
systemworks well in caserelevant imagesof a certain topic
sharevisual similarity, e.g. queriesrelated to tennis or car.
However, when topics have large variety in visual settings,
for instance person x topics, visual featureshardly yield ad-
ditional information to aid the userin the interactive searh
process. To our knowledge, no existing features work well
in these cases.

Two seard strategies were discovered during the inter-
active retrieval task using the SphereBravser. There were
topics for which multiple cluster threadsyielded good results
for that topic, such as Tennis (156), People with banners or
signs(161), Meeting (163) and Tall building (170). For these
topics only the relevant parts of the threads neededto be se-
lected. Another selectionmethod wasfound in queriessuch
asAirplane takeo (167)andO ¢ esetting (172). Herethere
wereonly alimited number of consecutiwe valid shotsvisible
in eadh thread, but becauseof the combination of both time
and cluster threads there was always another valid but not
yet selectedshot visible. For these queries, selection was
done by hopping from one valid result to another. Also a
number of topics werenot answerableby the SphereBravser
becauseof lack of nearby shots. Theseinclude person x top-
ics 149,151, and 153.

To gaininsight in the overall quality of our lexicon-driven
retrieval paradigm. We compare the results of our users
with all other usersthat participated in the retrieval tasks of
the 2005 TRECVID bendmark. We visualized the results
for all submitted seard runs in Fig. 13. The results are
state-of-the-art.

6 Exploration of BBC Rushes

The BBC Rushesconsist of raw material usedto produce
a video. Sincethere is little to no speed, this material is
very suitable for visual-only indexing. We rst segmeted
the video's using our shot segmemation algorithm [2]. Then
we applied our best performing cameramotion detector (see
Section 4) on the BBC rushesusing the models trained for
the news data. To further investigate the robustness of
our visual features, we performed visual-only concept de-
tection on the BBC rushes data, without re-training the
visual models. The visual models are the sameas used in
the visual only feature task (Section 3.4) and in the manual
seard task (Section 5.2). The detectors thus learned on
news data are subsequetly evaluated on the BBC rushes
videos. Obviously, not all 101 concepts are useful, since
they are trained on broadcast news. However, 25 concepts
transcend the news domain and some perform surprisingly
well on the BBC rushes: aircraft, bird, boat, building, car,
charts, cloud, crowd, face, female, food, governmert build-
ing, grass,meeting, mountain, outdoor, overlayed text, sky,
smoke, tower, tree, urban, vegetation, vehicle, water body.
We deweloped a version of the MediaMill semartic video
seard enginetailored to the BBC rushersbasedon the com-
puted indexes. While still primitiv e in terms of utilit y, the
seard engineallows usersto explore the collection in a sur-
prising manner. The results again con rm the importance
of robust visual features. Hence, for this task much is to



be expected from improved visual analysisyielding a large
lexicon of semariic concepts.
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