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Most popular plot in computer vision

Top-5 classification error on test set

Facebook DenseNet ('17) |0
Microsoft ResNet ('15) 3.6
GoogleNet ('14) 6.7
Clarifai ('13) 11.7
AlexNet ('12) 16.4
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Many-shot learning

Annotations

What is zero-shot learning?
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Lampert et al., CVPRO9/PAMI13



We have labeled data, why bother?

Open Images: ~9,000,000 images =
Places: ~2, 500 000 images
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Classification

P Person dog, bicycle, bag, apples

W
y 5. |

AQ image

Seg



Captioning

“There are two dogs outside looking at each other.”
“Two dogs interacting at an open air produce market.”

“A woman with a dog on a leash walks by a smaller dog.”
“A couple of dogs greeting each other on a sidewalk.”

Why zero-shot learning?

* The more complex tasks we target,
the fewer annotations we have,
the more relevant zero shot learning is.

R e s a

“Man in blue jacket stealing sports bike with crowbar”

Annotation vs complexity
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Imagenet+Open Images+MS COCO

Why zero-shot learning?

* Privacy-sensitive recognition problems




Why zero-shot learning?

* When learning and inference need to be efficient

13:30-13:40 | Introduction | Efstratios Gavves TU TO RIAL
13:40-14:30 | Classification | Zeynep Akata P ROG RAM

14:30-15:00 | Localization | Efstratios Gavves

15:00-15:30 | Retrieval | Cees G.M. Snoek

15:30-16:00 | Break

16:00-16:40 | Open problems | Zeynep Akata, Efstratios Gavves

16:40-17:00 | Conclusion | Efstratios Gavves

What is this tutorial about?

Data: 1z € X /Kno/wledge tranngN

YNZ=0

Objective: [ : X' — Z

Lampert et al., CVPRO9/PAMI13
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Motivating the Importance of Side Information
Zero-Shot Learning for Image Classification

Zero-Shot Learning Models for Image Classification

Zeynep Akata

Zero-Shot Learning Tutorial, CVPR 2017 Unified Evaluation of Zero-Shot Learning Models
26 July 2017 Summary of Zero-Shot Learning for Image Classification
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Outline Data Distribution in Large-Scale Datasets
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Attributes as Side-Information

images attributes class

black-white
has tail

) zebra
lives on land

small

gray
has tail

lives in water

big

<> whale

[Lampert et.al. CVPR'09, Ferrari et.al. CVPR'09]
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Attributes as Side-Information

images attributes class
black-white
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small
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Attributes as Side-Information

images attributes class
black-white
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ives on lan [101101]
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big

- whale

[Lampert et.al. CVPR'09, Ferrari et.al. CVPR'09]



Muldimodal Embeddings for Zero-Shot Learning

IMAGE CLASS CLASS
IMAGES g ATURES ATTRIBUTES  LABELS
X X Y Y
F (Z’i, Yi, ’LU)

™ zebra
0(xi) P(yi)

[Akata et.al. CVPR'13, CVPR'15, CVPR'16 & TPAMI'16]

Wikipedia and WordNet as Side Information

Wikipedia and Wordnet: object descriptions or hierarchies

Word2Vec [Mikolov et.al. NIPS'13]
GloVe [Pennington et.al EMNLP'14]

2= [102333]

Hierarchical similarity measures

Zero-Shot Learning

images attributes

black-white
has tail
lives on land
small

black-white
no tail
lives on land
medium

gray
has tail
lives in water
big

white
has tail
lives on land
tiny

Experimental Setting

Animals with
Attributes (AWA) 50 85
[Lampert et.al. CVPR'09] cls att

Caltech UCSD-Birds
(CuB) 200 312
[Wah et.al.'11] cls att

Input Embeddings 6(z): 1K-dim GooglLeNet features
Output Embeddings ¢(y): att, w2v, glo, hie



Evaluation of Class Embeddings Evaluation of Class Embeddings

AWA CUB AWA CUB
w2v 51.2 28.4 w2v 51.2 28.4
glo 588 242 glo 58.8 242
hie 51.2 20.6 hie 51.2 20.6
att- 60.1 29.9 att- 60.1 29.9
att+ 73.9 51.7 att+ 73.9 51.7

o Attributes & Wikipedia & WordNet are complementary
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Detailed Visual Descriptions as Side Information Deep Representations of Visual Descriptions

This bird has

1 distinctive-looking
brown and white 4 ‘ N\ ==

p Stl‘ipes all over its | The beak'is yellow ar‘\?‘b‘di‘r“ﬂed and the wings are blue. |

body, and its brown
tail zticks up. [Zhang and Lecun NIPS'15]

The bird has a white
underbelly, black
feathers in the wings,
a large wingspan, and
a white beak.

I This flower has a

central white blossom

surrounded by large

pointed red petals

* which are veined and
leaflike.

Light purple petals
with orange and
black middle green
leaves

[Reed et.al. CVPR'16, ICML'16, NIPS'16]

11 12



Deep Representations of Visual Descriptions

A — fttttttttt

The beak is yellow am'éfr"\ted and the wings are blue. ‘

The beak is yellow and pointed and the wings are blue. |

[Zhang and Lecun NIPS'15]

Deep Representations vs Attributes

Zero-Shot in CUB
60 ‘ ‘ ‘
55
2
= 50 ¢
8' 45
f ==Qurs (word)
8_40 [ =-Qurs (char) ||
F35
- Attributes
30 : .

2 4 6 8 10
# of train sentences per image

[Hochreiter and Schmidhiiber'98]
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Deep Representations of Visual Descriptions

A — fttttttrtdt

The beak'is yellow arﬁo’i’r‘ited and the wings are blue.

| The beak is yellow and pointed and the wings are blue. |

[Zhang and Lecun NIPS'15] [Hochreiter and Schmidhiiber'98]

Sequential
encoding

Convolulional{

| The beak is yellow and pointed and the wings are blue. |

[Reed et.al., CVPR'16]
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Human Gaze as Side-Information

1. Comparison 2. Reset

6 sec !

14



Human Gaze as Side-Information

1. Comparison 2. Reset 3. Classification

6 sec ‘

1 sec max. 5 sec
14
Gaze Features
Location Duration Sequence Pupil Diameter
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Human Gaze as Side-Information

1. Comparison 2. Reset 3. Classification

6 sec !

1 sec max. 5 sec

il
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Gaze Embeddings

Raw gaze data

Gaze data Outlier
collection & removal

Original image Gaze points Gaze histogram (GH)

0 GH Embedding per class
22
0
0
—> 13 i
0
0
2
0
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Gaze Embeddings

Raw gaze data

Gaze data Outlier
collection removal

L . Gaze Features
Original image Gaze points with Grid (GFG)

o, GFG Embedding per class
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Gaze Embeddings and Gaze Features
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Gaze Embeddings

Raw gaze data

Gaze data Outlier
collection o removal

Gaze Features
Original image Gaze points without Grid (GFS)

6: GFS Embedding per class
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Gaze Embeddings and Gaze Features
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Gaze Embeddings for Zero-Shot Learning

CUB-VW
Random points 39.5
Bubbles [Deng et al. CVPR'13] 43.2
Bag of Words from Wikipedia 55.2
Attributes 72.9
Gaze 73.9
Attributes + Gaze 78.2

Gaze Embeddings

20

[Karessli et.al. CVPR'17]

21

Gaze Embeddings for Zero-Shot Learning

CUB-VW
Random points 39.5
Bubbles [Deng et al. CVPR'13] 43.2
Bag of Words from Wikipedia 55.2
Attributes 72.9
Gaze 73.9
Attributes + Gaze 78.2

Gaze Data — class discriminative + complements attributes

[Karessli et.al. CVPR'17]

Conclusions

Standard image classification models fail with the lack of labels

20
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Conclusions

Standard image classification models fail with the lack of labels

1. Zero-Shot Learning is a challenging task

22

Conclusions

Standard image classification models fail with the lack of labels

1. Zero-Shot Learning is a challenging task
2. Side information, e.g. attributes, is required

3. Several sources of side information exists

[Akata et.al. IEEE CVPR 2013, 2015, 2016, TPAMI 2016] [Reed et.al. IEEE
CVPR 2016, ICML 2016, NIPS 2016] [Lampert et.al. IEEE CVPR 2009,
TPAMI 2013] [Mikolov et.al. NIPS 2013, Karessli et.al. IEEE CVPR 2017]

22

Conclusions

Standard image classification models fail with the lack of labels

1. Zero-Shot Learning is a challenging task

2. Side information, e.g. attributes, is required

Outline

Zero-Shot Learning Models for Image Classification
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Zero-Shot Learning: Task Formulation

S ={(zn,yn),n = 1..N}, with y,, € V'

24

Zero-Shot Learning: Task Formulation

S = {(zn,yn),n = 1...N}, with y,, € Y*"

Training: learn f : X — ) by minimizing regularized empirical risk:

N
1
N z:l L(yn, f(zn; W)) + QW)
L(.) = loss function, Q(.) = regularization term and

f(z; W) = argmax F(z,y; W)
yey
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N
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Zero-Shot Learning: Task Formulation

S ={(zn,yn),n = 1...N}, with y,, € Y*"

Training: learn f: X — ) by minimizing regularized empirical risk:

N
1
N Z L(yn, f(xn; W)) + QW)
n=1
L(.) = loss function, Q(.) = regularization term and

flx; W) = argmax F(z,y; W)
yey

Testing: assign an image to ) C ) with max compatibility

24



Multimodal Embeddings with Linear Compatibility

IMAGE CLASS CLASS
IMAGES FEATURES ATTRIBUTES ~ LABELS
X X Y Y
F (xiv Yi, w)
. -~ zebra
9(:172) S.D(yz)
whale
0 (l‘ j ) 80.(%/ Yi
~_ ) )
F(Z’J,y],w) white
F(z,y; W) = 0(x)TWo(y)
25

Deep Visual Semantic Embeddings: DEVISE

Pairwise Ranking: Convex Objective

Z [AYn,y) + F(Tn, y; W) — F(@n, yn; W)+
yeytr

* A(yn,y) = 1if y, =y, otherwise 0
e Optimized by SGD

[Frome et.al. NIPS 2013]

26

Deep Visual Semantic Embeddings: DEVISE

Pairwise Ranking: Convex Objective

yeytr

Attribute Label Embedding: ALE

Weighted Pairwise Ranking Loss:

> [AWYn, y) + F(@n, y; W) = F (2, yn; W)+
yeytr

26
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Attribute Label Embedding: ALE Structured Joint Embedding: SJE

Weighted Pairwise Ranking Loss: ) o
Multiclass Objective:

x[A ny +Fxn; 1W _FITU an
25, o) e ) = Fenoani 0l [ (A5 9) + F(@a, 9 W) = Fl@s i W)l

* A(yn,y) = 1if y, =y, otherwise 0
° = Z;“:l a; with o; = 1/i
e Optimized by SGD

[Akata et.al. CVPR 2013 & TPAMI 2016]

27 28
Structured Joint Embedding: SJE Embarassingly Simple Zero-Shot Learning: ESZSL
Multiclass Objective: Additional Regularization Term to SJE Objective:
[m%ic (A(Yn,y) + F(zpn,y; W) — F(xp, yn; W)+ NWe)|1? + Alo() W + glIw >
yeyr
where v, A, 8 are regularization parameters
o Full weight to the top of the ranked list o Euclidean norm of projected attributes in the feature space
o Requires computing score wrt all the classifiers for each sample o Projected image feature in the attribute space are bounded
[Akata et.al. CVPR 2015 & Reed et.al. CVPR 2016] [Romera—Paredes and Torr, ICML 2015]

28 29



Semantic Autoencoder: SAE

Objective: similar to the linear auto-encoder

min|[0(z) — W6 (y)|I* + A[Wo(z) — o)l

e Learns a linear projection from 6(z) to ¢(y)

o Projection must reconstruct the original image embedding

[Kodirov et.al. CVPR 2017]

30
Latent Embeddings: LATEM
Linear compatibility Piecewise-linear compatibility
Wi
R
W.
e

Faz,y; W) = 0(x) " W;o(y)

31

Latent Embeddings: LATEM

Linear compatibility

31

Latent Embeddings: LATEM

Linear compatibility Piecewise-linear compatibility

Fa,y; W) = 0(x) "W o(y) F(z,y; W) = 0(x) T Wid(y)

A - Bl 2 PR

long and pointy beak blue plumage with brown wings

PR E Sl ZEET

brown head, light brea: sea bird with red eyes

[Xian et.al. CVPR'16]
31



Cross-Modal Transfer: CMT

Deep nonlinear embedding objective:

> llé(y) — Wi tanh(Wy.60(x))|1?

yeYIr xe Xy

o (W71, Ws): weights of the two layer neural network

o Novelty detection: to assign images to unseen or seen classes

[Socher et.al. NIPS'13]

32

Direct Attribute Prediction: DAP

Two step process

e |earn attribute classifiers

33

Direct Attribute Prediction: DAP

Two step process

Direct Attribute Prediction: DAP

Two step process
e learn attribute classifiers

e combine scores of learned
attribute classifiers

7 Plasle)
f(x) = argmax — =
c gl plag,)

[Lampert et.al. CVPR'09 & TPAMI'13]

33
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Convex Combination of Semantic Emb.: CONSE Convex Combination of Semantic Emb.: CONSE

Probability of a training image belonging to a training class: Probability of a training image belonging to a training class:
f(x,t) = arg max py(y|z) f(x,t) = arg max py,(yl|x)
yeytr yeyt'r

Combination of semantic embeddings (s) is used to assign an
unknown image to an unseen class:

1 T
7 2 per(f(@ b)), s(f (1))
i=1

e Z =t most likely label for image

e T maximum number of semantic embedding vectors

[Norouzi et.al. ICLR'14]

34 34

Synthesized Classifiers: SYNC Synthesized Classifiers: SYNC

Weighted bipartite graph (s¢.): Training (w.) and Phantom (v,.) Weighted bipartite graph (s¢.): Training (w.) and Phantom (v,.)

Objective is to minimize distortion error:

R
min ||w, — Z scrvTHg.
We

r=1

35 35



Synthesized Classifiers: SYNC

Weighted bipartite graph (s.-): Training (w.) and Phantom (v,)

Objective is to minimize distortion error:
R
: 2
min [|[we — Y Servr|5.
We
r=1
Novel class: linear combination of phantom class classifiers

[Changpinyo et.al. CVPR'16]

Summary of Presented ZSL Models

Existing ZSL models can be grouped into 4:

35
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Co-Occurrence Statistics: COSTA

-

8 SN /I
Uses co-occurrence statistics el Hr -
. == g
e of visual concepts |
™
e between seen and unseen i [
classes B N
. . L
Estimate w; to classify the unseen Dishwasher
label I: w; = )", wgs
DW= ) g WeSIk , |
=) -
+ | -
mw
- - .

[Mensink et.al. CVPR'14]

Summary of Presented ZSL Models

Existing ZSL models can be grouped into 4:
1. Linear Compatibility: ALE, DEVISE, SJE, ESZSL, SAE

36
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Summary of Presented ZSL Models Summary of Presented ZSL Models

Existing ZSL models can be grouped into 4: Existing ZSL models can be grouped into 4:
1. Linear Compatibility: ALE, DEVISE, SJE, ESZSL, SAE 1. Linear Compatibility: ALE, DEVISE, SJE, ESZSL, SAE
2. Non-linear Compatibilty: LATEM, CMT 2. Non-linear Compatibilty: LATEM, CMT

3. Two-stage Inference: DAP, CONSE

37 37

Summary of Presented ZSL Models Qutline

Existing ZSL models can be grouped into 4:
1. Linear Compatibility: ALE, DEVISE, SJE, ESZSL, SAE
2. Non-linear Compatibilty: LATEM, CMT
3. Two-stage Inference: DAP, CONSE
4. Hybrid Model: SYNC

Unified Evaluation of Zero-Shot Learning Models
[Akata et.al IEEE CVPR 2013, Frome et.al. NIPS 2013, Akata et. al. 2015,
Romera Paredes and Torr ICML 2015, , Kodirov et.al IEEE CVPR 2017, Xian
et.al. IEEE CVPR 2016, Socher et.al. NIPS 2013, , Lampert et.al. IEEE CVPR
2009 & TPAMI 2013, Norouzi et.al. ICLR 2014, Changpinyo et.al. IEEE CVPR
2016]

37 38



Zero-Shot Learning: The Good, The Bad, The Ugly

The Good: ZSL is an important direction that has gained interest

39

Zero-Shot Learning: The Good, The Bad, The Ugly

The Good: ZSL is an important direction that has gained interest
The Bad: No unified evaluation protocol exists

The Ugly: Test Classes overlap with ImageNet 1K

39

Zero-Shot Learning: The Good, The Bad, The Ugly

The Good: ZSL is an important direction that has gained interest

The Bad: No unified evaluation protocol exists

Benchmark on Attribute Datasets and ImageNet

Dataset Size |V |Vt |Vts|
SUN 14K v 580 + 65 72
CuB 11K 200 100 + 50 50
AWAL1 30K 50 27 + 13 10
AWA2* 37K 50 27 + 13 10
aPY 15K 32 15+5 12

39
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Benchmark on Attribute Datasets and ImageNet

Dataset Size |V |V |Vts|
SUN 14K 717 580 + 65 72
CuB 11K 200 100 + 50 50
AWA1 30K 50 27 + 13 10
AWA2* 37K 50 27 4+ 13 10
aPY 1.5K 32 15+ 5 12
ImageNet Split |Vts]

ImageNet 21K - V"

20345

Within 2/3 hops from ' 1509/7678
Most populated classes 500/1K/5K
Least populated classes 500/1K /5K

40

Ranking Models on Attribute Datasets

SJE [3.4]
ESZSL [4.2]
LATEM [4.5]
SYNC [5.3]
DAP [7.3]
SAE [8.4]
CMT [8.5]
CONSE [8.6]

42

ZSL Results wrt Data Splits on AWA
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Benchmark of ZSL on ImageNet

Top-1 Acc. (in %)
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Conclusions

Benchmark of Zero-Shot Learning

1. Zero-Shot Learning has attracted lots of attention

Conclusions

Benchmark of Zero-Shot Learning

1. Zero-Shot Learning has attracted lots of attention
2. We propose a unified evaluation procedure

3. Comprehensive evaluation of 12 models on 6 datasets

[Xian et.al. IEEE CVPR 2017 & ArXiv 2017]

44
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Conclusions

Benchmark of Zero-Shot Learning

1. Zero-Shot Learning has attracted lots of attention

2. We propose a unified evaluation procedure

Outline

Summary of Zero-Shot Learning for Image Classification
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Summary of ZSL for Image Classification

1. Large-scale image classification fails with lack of data
[Akata et.al. TPAMI'14]

Summary of ZSL for Image Classification

1. Large-scale image classification fails with lack of data
[Akata et.al. TPAMI'14]

2. Structured Joint Embeddings tackles lack of visual data
[Akata et.al. CVPR'13, Akata et.al. TPAMI'16]

3. Attributes, text and gaze provide side information
[Akata et.al. CVPR'15 & CVPR'16, Xian et.al. CVPR'16 &
CVPR'17, Karessli et.al. CVPR'17]

46
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Summary of ZSL for Image Classification

1. Large-scale image classification fails with lack of data
[Akata et.al. TPAMI'14]

2. Structured Joint Embeddings tackles lack of visual data
[Akata et.al. CVPR'13, Akata et.al. TPAMI'16]
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Summary of ZSL for Image Classification

1. Large-scale image classification fails with lack of data
[Akata et.al. TPAMI'14]

2. Structured Joint Embeddings tackles lack of visual data
[Akata et.al. CVPR'13, Akata et.al. TPAMI'16]

3. Attributes, text and gaze provide side information
[Akata et.al. CVPR'15 & CVPR'16, Xian et.al. CVPR'16 &
CVPR'17, Karessli et.al. CVPR'17]

4. The Good, the bad and the ugly aspects of zero-shot learning
[Xian et.al. CVPR'17 & ArXiv'17]
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Thank you!
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Traditional Localization
Training Inference

Bicyclist

Zero-Shot Learning
with Localization

Efstratios Gavves

Zero-Shot Localization
Training Zero-Shot Inference
Bicyclist:
“wheels”+”helmet”+”street”

Known visual classes

55 1§ S

Why Zero-Shot Localization?

.-
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Find the object

Brown
Mammal Curvy beak

Pointy ears

Hairy Wings

Colorful
Gray eyes

OB AT RN, s R T
¢\ Even more relevant in complex scenes
i .i‘ N (o TN PN+ AT VT ‘\ ‘\Q‘

“Sunglasses”
- “White pants”

O, WY R ~_1

Attributes belong to objects, not images

Mammal
Hairy
Brown

M Horns
% Brown color
» W




Attributes lost with clutter

Horns
Brown color
White snout

Attributes lost with clutter

Horns
Brown color
White snout

RELX NG

4 Attributes lost with cl,gft

Horns

“ Brown color
} White snout

i)

*
7

! Horns
% Brown color




Attribute signal is lost with clutter

Horns
Brown color
White snout

[1] Discovering Localized Attributes for Fine-Grained Recognition, Duan et al., CVPR 2012

[2] RubbLeNet: Fo eated Imaging for Visual Discgver tzepn and Snavely, ICCV 2015
Rtthe fevelrsf visual detairs

Learn attributes that are
e discriminative

red stripes on wings orange stripes on wings

7]
\

white belly yellow belly

* machine-detectable

Also, semantically meaningful g
* By design: human in the loop [1]
* By unsupervised clustering [2]
Properties
* Spatially precise
* CNN too invariant (?)

Not explicitly for Zero-Shot

Specific attribute CRF

What is the spatial extent of attributes?

* Visual details, e.g. “floral patterns”
. Must be discriminative
. Must be repeatable
. Must be salient
. Spatially specific
* Regions
*  More salient

*  Attributes do not have to be
visually groundable, e.g., “retro”

. But less specific

[1] Discovering Localized Attributes for Fine-Grained Recognition, Duan et al., CVPR 2012

At the level of visual details

Automatically detect discriminative attributes
*  Solve CRFs iteratively
e  Random attribute initialization
Not necessarily “nameable”
e  Convert them to nameable
. Human approves

meaningful attributes e Jaﬁmg vicie
'
M M
E(Li|T) = Zok )+ e, 51T, Z5)
i= 1] 1
E(L|T) = ZE(L;JI +ZZ§(1‘ ¥ |T)
i=1 k,k’

Set of attrlbutes CRF




Zero-shot Localization by Attributes
* First to do region-level, attribute based localization [1]
* Extract regions localization (CPMC, ~500) [2]

* Learn attributes with ALE[3]

CPMC Regions

f(x) = argmax max F(z,y)
yeY z€Z(x)

F(zy: W, ) = 0(=) Wo(y)
min 2 [WI[? + R(W, #4)

ALE attributes

* Efficient inference by codemaps [4]

[1] Attributes make sense on segmented objects, Li et al., ECCV 2014

[2] Constrained Parametric Min-Cuts for Automatic Object Segmentation, Carreira ey al., cvrpgo,a@gion
[3] Label-embedding for attribute-based classification, Akata et al., CVPR 019 maximization
[4] Codemaps segment, classify and search objects locally, ICCV, 2013

Zero-shot Localization by Attributes

Training Zero-Shot Inference
Dataset Dy
601 = max L(Dy; a4) ‘%\‘
Attribute aq Attribute ay

@3 = maxL(DA; (Zg) W

[1] Attributes make sense on segmented objects, Li et al., ECCV 2014

Zero-shot Localization by Attributes

 Zero-Shot Localization as Structured Prediction
. Regions are latent variables

* Evidence for accidental Zero-
Shot recognition

. Mean Class Accuracy (MCA)
higher than MCA on well
predicted segments (MSO)

. Maybe segment wrong (<50%)
but descriptive

. Maybe segment mostly on

At white back. white wing.

background probogeiesipirori-al 1 perse o

loU: 0.46 loU: 0.56

Setting  Codebook  Entire image  Object-level attributes

MCA ST NSO A0

Supervised k=16 271 ‘ 51.5 ) 43.0 61.8
Zero-shot k=16 11.3 Y 124 56.3
[1] Attributes make sense on segmented objects, Li et al., ECCV 2014 Accidental Zero-Shot in action

[2] Label-embedding for attribute-based classification, Akata et al., CVPR 2013
[3] Codemaps segment, classify and search objects locally, ICCV, 2013

Zero-shot Localization by Attributes

* Similar for videos & actions [1]
* Instead of CPMC, spatiotemporal action proposals

* Replace attributes with Word2Vec
*  Aggregate Word2Vec by Fisher vectors

C(v) " leBueu Z Fur gyz-
2€EZ,u€U, v

. =

" A —!

[1] Objects2action: Classifying and localizing actions without any video example, Jain et al., ICCV 2015



Localization as Retrieval

* Goal: Find the target in the image

ranking sliding window images

* Sliding window search

thousands of images generated

* Learn scoring function with two inputs

Zero-shot Localization by Free Text

Input #1: Query image
Input #2: Sliding image
Output: Siilarity(Input #1, Input #2)

* Semantic attributes

“hat”, “white”, ...

* Spatial attributes too

“right”, “on top of”, “below”, ...

* Global context

query="white har’

query="Window with closed curtains’

query="right lake’

[1] Natural Language Object Retrieval, Hu et al., CVPR 2016

Zero-shot Localization by Free Text

candidate
location set

* Similar to Zero-Shot Localization [1] input image
. #lnput 1 is now a text query 2
* Rank sliding images

. Scoring function measures
similarity of image to text

object
proposal

P('wt+1|wt, w1, Tboxy Tim, zspatial)

—

natural language query: @ f
white car on the right [ global }[ spatial J[ local ]
context i descriptor

= Softmax(Wiocat{gras + Watobathiopas + 1) 4 L L L

s = p(S\IbOI, Tim, zsp,m-al) Spatial Context Recurrent ConvNet

= I I p(wi|wi—1,- -+ , w1, Ivox, Lim, Tspatial i’;‘(’)‘f‘:s‘e
wi €S output object retrieval result
N M; Kij . :
L=— E E E log(p(sz,j.kubomi,jﬂIzmiymspat,mli’])) : i top score :
=1 =1 k=1 o ; candidate | P

[1] Natural Language Object Retrieval, Hu et al., CVPR 2016

Zero-shot localization in videos, aka
Tracking by Natural Language [1]

* Define the target not as a bounding box but as a language description?

the Little green person with

[1] Tracking by Natural Language Specification, Li et al., CVPR 2017



Zero-shot localization in videos, aka Zero-shot localization in videos, aka
Tracking by Natural Language Tracking by Natural Language

Model | Lingual Specification Network

Query: “Woman with ponytail running”

* Novel type of human-machine —

. t t 3 ¥ E ] E . “Man with blue Dynamic Filter vianguage
\ e - » shirt and backpack N
interaction 2 > next to a tree” = Generation

=0

* ”TeS/a/ fO//OW the red car in the mldd/e \Jracking by language adapts to appearance variations

lane”
* Enables novel tracking scenarios ----

g ” K . Enh tandard tracki d) by hel t drift
* No “first-frame” requirement = ideal for ‘Smecioé stenderd tracking (red) by helping sgeinet ot Model ll

“live” or online tracking ! st
CNN Dynamic Filter Ut

* Multiple-video, multiple-target tracking = Rammly re)2cart the tratking Generation
ideal for large scale monitoring

* More robust standard tracking Eﬁgﬁ

* Tracker adapts to appearance variations
* Helping against drift

Visual Specification Network

Attention
MLP

Model I

\Simultaneous multiple-video, multiple-target tracklng/

“Man with blue g ~language
i | ST | Corerion [
Lingual Specification Attention Network
[1] Tracking by Natural Language Specification, Li et al., CVPR 2017 [1] Tracking by Natural Language Specification, Li et al., CVPR 2017

Person search with Natural Language Person search with Natural Language

on Word-image
uil Affinity
? Elementwise
i . . Myltplication
* First extract region proposals Scalar — Neuron
Query Description Retrieval Results Word-level Attentions A2 I Responses
N \ * Then compute word specific Selo [0OO-0@][0e-00]
The woman is wearing a long, . . y
d Sigmoid *Soﬂmax f
bright orange gown with a white . . (dyn ami C) fl Ite rs |
belt at her waist. She has her hair The woman is dressed  The man is W\,anng The man has dark hair | attention-fc2 | | cls-fc2 |
- up like Marilyn yellow sneakers, and is wearing glasses. . - ni
pulled back into a bun or ponytail. Monroe, witha white  white socks with blue  He has on a pink shirt, CompUter WO rd lmage aﬁ:lnlty * *
dress thatisblowing  stripesonthetopof  blue shorts,and white [ gatefci | [attentionfc1] [ clsfel |
upwardinthewind,  them, black athletic tennis shoes. He has on A
short curly blonde hair, shortsandayellow  ablue backpack andis +
and high heels. with blue t-shirt. He  carrying a re-useable
has short black hair.  tote. Word-LSTM VGG-16

Visual CNN

Person T

Image

Concatenation

The girl is wearing The womanhaslong ~ The man is wearing
= a pink shirt with light brown hair, is blue scrubs with a white
Person Image Database white shorts,she  wearing a black lab coat on top. He is.
is wearingblack  business suit with white holding paperwork in “Young" “girl” VGG-16
. L . converse, with her  low-cut blouse with his hand and has a name Visual CNN
[1] Person Search with Natural Language Description, Li hairina pony tail. large, whitecuffs,a  badge on the left side of «. “scarf’
etal., CVPR 2017 goldring, and is talking his coat.

ona cellphone.

[1] Person Search with Natural Language Description, Li et al., CVPR 2017



Conclusion

* Attributes belong to objects, not images
* Zero-Shot localization natural extension

* Object tracking by natural language description is a very novel and
relevant direction
* Also connected to video object detection



Zero-Shot Learning
for Computer Vision

Thomas Mensink, Efstratios Gavves, Zeynep Akata, Cees Snoek

University of Amsterdam

&l

X

Lampert et al PAMI 2013,
and many others

Difference with traditional zero-shot

Classify test videos by (predefined) mutual
relationship using class-to-attribute mappings

zebra
giant panda

polar bear
collie

oS5

hooves
pads
paws
longleg

SEe8Ee0a

flippers
hands

In retrieval we typically rely on a description only

TUTORIAL
PROGRAM

e 13:30-13:40 | Introduction | Efstratios Gavves
* 13:40-14:30 | Classification | Zeynep Akata

* 14:30-15:00 | Localization | Efstratios Gavves

* 15:00-15:30 | Retrieval | Cees G.M. Snoek

» 15:30-16:00 | Break
* 16:00-16:40 | Open problems | Zeynep Akata, Efstratios Gavves

e 16:40-17:00 | Conclusion | Efstratios Gavves

Related work: Cross-modal retrieval

Given query from modality A, retrieve results
from modality B, where Al=B.

Text Text
Images Images
Music : Music
Videos Videos

We focus today on text to visual and vice versa



Rasiwasia et al. MM 10
Costa et al. TPAMI14

Retrieving images from Wikipedia text

Around 850, out of obscurity rose Vijayalaya, made use of an opportunity arising out of a

conflict between Pandyas and Pallavas, captured Thanjavur and eventually established the
imperial line of the medieval Cholas. Vijayalaya revived the Chola dynasty and his son
Aditya I helped establish their independence. He invaded Pallava kingdom in 903 and killed
the Pallava king Aparajita in battle, ending the Pallava reign. K.A.N. Sastri, '"A History of
South India" p 159 The Chola kingdom under Parantaka I expanded to cover the entire

Pandya country. However towards the end of his reign he suffered several reverses by the

Rashtrakutas who had extended their territories well into the Chola kingdom...

Top 5 Retrieved Images

Retrieving video events from descriptions

Definition: An individual (or more) succeeds in reaching a pre-deter-
mined destination before all other individuals, without vehicle as-
sistance or assistance of a horse or other animal. Racing generally
involves accomplishing a task in less time than other competitors.
The only type of racing considered relevant for the purposes of
this event is the type where the task is traveling to a destination,
completed by a person(s) without assistance of a vehicle or animal.
Different types of races involve different types of human

Event Name: Winning a race without a vehicle

NIST TRECVID Multimedia Event Detection Benchmark

Zhu et al. ICCV15

Retrieving book excerpts from movies

[02:14:29:02:14:32] Good afternoon,
Harry.

-

[02:15:24:02: < member the name of
the town, dor

... He realized he must be in the hospital wing. He
was lying in a bed with white linen sheets, and
next to him was a table piled high with what
looked like half the candy shop.

"Tokens from your friends and admirers," said
Dumbledore, beaming. "What happened down in
the dungeons between you and Professor Quirrell
is a complete secret, so, naturally, the whole
school knows. | believe your friends Misters Fred
and George Weasley were responsible for trying to
send you a toilet seat. No doubt they thought it
would amuse you. Madam Pomfrey, however, felt
it might not be very hygienic, and confiscated it."

he envelope and left ck where Andy had I
d before h

, If you're reading this, then you're out. One way or a
d f you've foll da this far, you might be willing to
don't

Problem statement

How to align visual and textual representations?

Different dimensionality, distributions, and meaning

Feature
Extraction

Feature | r
Extraction



Low-level alighnment

Aligns two modalities directly at low-level features
Canonical Correlation Analysis, Cross-Media hashing, ...

J/"V
V=
Extraction Extraction

Not the most effective space to learn the correlations

[Li et al., MM’ 03] [Rasiwasia et al., MM’10] [Ballan et al., ICMR’14]

Slide credit: Nikhil Rasiwasia

Canonical Correlation Analysis

Learn subspaces that maximize correlation between two modalities

Image Space R} u I“U ¢
(=]

‘<

;K
L * U

¥

Maximally Correlated Sub-spaces

Joint dimensionality reduction across two (or more) spaces

Basis for the maximally correlated space
W W,

max \/ > \/ > Empirical covariance for
w; 20,w, 20 | Wiz y Wi A[ W, 20pp Wy images and text, and their
cross covariance.

How to compute similarity?

Image Space SR ! Text Space SRT

Slide credit: Nikhil Rasiwasia

Mid-level alignment

Aligns two modalities at mid-level features
Extracted by autoencoders, topic models,...

Feature Topic model / Topic model / '/ Feature
Extraction Autoencoder Autoencoder Extraction

Topic modeling on visual descriptors not straightforward
Deep autoencoders less suited for small datasets

[Blei et al., SIGIR’03] [Wang et al., MM’14] [Feng et al., MM’14] ...



Semantic alignment

Embeds images and texts into a mutual semantic space
Semantic space is defined by a vocabulary of concepts
Each concept has a visual and a textual classifier

g,

n
110 gt
9

Feature Semantic Semantic Feature
Extraction Vocabulary Vocabula Extraction

[Smith et al., ICME’03] [Hauptmann et al., TMM’07][Rasiwasia et al., MM’10] ...

LEARNING THE SEMANTIC ALIGNMENT

Amirhossein Habibian, Thomas Mensink, and Cees G. M. Snoek.
Video2vec Embeddings Recognize Events when Examples are Scarce.
IEEE Transactions on Pattern Analysis and Machine Intelligence. In press.
Previously best paper ACM Multimedia 2014.

Rasiwasia et al. MM 10
Costa et al. TPAMI14

Semantic alignment via concepts

Design semantic spaces for both modalities
A space where each dimension is a semantic concept/attribute.
Each point on this space is a weight vector over these concepts

N

Image Space ‘R Z 0
ooo e

H
< Image Classifiers
.

Concept 1 Space

S

TSemantic Semantic

emesen
uy

Kioysiy

/ Semantic
Concept 2

seoe|d
ABojoig

............ eseefens —_
< Text Classifiers a Semantic
Concept V

© ° © 7
Text Space ‘R

; ;;:

/

Problem: define, annotate and train concepts

Research question

Can we learn the alignment from videos and their stories?

Crazy guy doing insane stunts on bike

Story usually highlights the key concepts in video
Videos and stories are freely available, i.e. YouTube



Multimedia embeddings

Stunt

W A Bik
EmbEddlng Nlloiorcycle
.._Il,l.ll_.,lll_..._,l.

X; Yi

Joint space where x, W = y; A
Explicitly relate training W and A from multimedia

W = Visual projection matrix  individual term classifiers
A = Textual projection matrix select/group terms

[Rasiwasa et al., MM 2010] [Weston et al., IJCAI 2011] [Akata et al., CVPR 2013] [Das et al., WSDM 2013]

Key observation: Compelling forces

Crazy guy doing insane stunts on bike

Video2vec: Embed the story of a video

Stunt
Bike
Motorcycle

.._Il,l.ll_.,lll_..._,l.

X; Yi

[
S.
Lw o A4
Embedding
Design criteria: learn W and A such that
Descriptiveness: preserve video descriptions

Predictability: recognize terms from video content

Why is this important?

Grouping terms:

Number of classes is reduced
Training classifiers per group:

More positive examples available per group

We can train from freely available web data

20



Key contribution: Joint optimization Video2vec objectives:

Jointly optimize for descriptiveness and predictability

. Objective 1: The Video2vec embedding should be descriptive
Lvs(A, W) = min Lqi(A,S)+ L,(S,W)

N
1
La(A,8) = %> llyi — Asila + Xa2(A) + A ¥(S)

Hyperparameter: size of the embedding S
L4 Loss function for descriptiveness

L, Loss function for predictability
Essentially latent semantic indexing with L2 rather than an L1 norm

Video2vec objectives: Video2vec: Training

Video2vecTraining | Sat of videos and their captions

Objective 2: The Video2vec embedding should be predictable ]
Encode video features x;

N Video and descriptions
1 N .
Ly(S,W) = ¥ E :Hsi _ “rTmng £ AO(W) @ Any feature (combination) will do
=1
w
—

Encode video descriptions y;

Bag-of-words of terms




[Habibian MM 2014]

VideoStory46K dataset

Videos and title descriptions from YouTube
46K videos, 19K unique terms in descriptions

Seeded from video event descriptions

Filters to remove low quality videos

Crazy guy doing insane stunts on bike.

Available for download: www.mediamill.nl

Video2vec at work

1. Project visual features

S; = WT:Bi.

2. Translate to text

i Visual projection (W)

‘ gi:ASi.

& Predictions (s) o

Videc‘)Zvec

lTextual projection (A) 3. Cosine distance for matching

d09 yeTge
—_ 7 Ji

puppy ~ train se(®i) = P s
PRI

Predictions (y)

mud
i

swim

Terms

Video2vec: Training (2)

Video2vec Training

Video and descriptions

Using Stochastic Gradient Descent:

Choose random sample
Compute sample gradient wrt objective

Valvs = =2 (y: — As:) 8; + A A,
T T
wLys = 2@ (- W) +\W, and

vstLVS = 2 |:St — WTJ!t — AT (yt — ASt)] —+ )\sst

Update parameters with step-size n

[Bottou ICCS 2010]

Video2vec predicted terms

non-motorized vehicle repair

o
n

Predictions

o
T

-bicycle  repair  tire

wheel
l chain
L |

al Lo

Terms



Video2vec predicted terms

horse riding competition

o

Zero-shot event retrieval

Habibian et al.
Ye et al.

Chang et al.
Wu et al.
Jiang et al.
Mazloom et al.
Hussein et al.

Liang et al.

Video2vec embedding

ICMR 2014
MM 2015
[JCAI 2015
CVPR 2014
AAAI 2015
TMM 2016
CVPR 2017
MM 2015
TPAMI 2017

NIST TRECVID Multimedia Event Detection Benchmark, edition 2013

6.4
9.0
9.6
12.7
12.9
12.9
17.9
18.3
20.0

Video2vec predicted terms

renovating a home

S
»

o
[

tile windov\\’/vaII install -
garage ]

Predictions

o

0 NPT 000 8 TN 0 T T A P A 1 ‘.‘L I
Terms

ADDING LOCALIZATION

Pascal Mettes and Cees G. M. Snoek.
Spatial-Aware Object Embeddings for Zero-Shot Localization and Classification of

Actions. To appear in ICCV 2017.



Related: zero-shot action recognition

Focus on classification.

Position is irrelevant.

Polka dot jersey =

3 | Emphasis:

crash barrier

Merler et al. TMM 2012

Liu et al. WACV 2013

Jain et al. CVPR 2015, ICCV 2015

Gan et al. CVPR 2016

Xu et al. ICIP 2015, ECCV 2016, 1JCV 2017

Our proposal

& Are relevant objects present.

Jain et al. ICCV 2015

Related: Objects2action

Simple convex combination of known classifiers

C(U) = argmax; Z Pvy Gy=

/ N

Test video Object representation Object/action affinities

gy= = s(y)"s(2),

where s() = word2vec

Spatial-aware object embeddings

Kicking a ball

Actors Relevant objects Spatial relanons

%Q%

Action localization




Spatial-aware object embeddings

Kicking a ball

Where are actors occurring?

Spatial relations

Relevant objects

Action localization

Spatial-aware object embeddings

Kicking a ball

Where are actors occurring?

Where are the relevant objects?

Are objects located as expected?

Action localization

Spatial-aware object embeddings

Kicking a ball

Y

Action localization

Actors and objects

Faster R-CNN for bounding boxes and scores. st
Pre-trained on ImageNet and MS-COCO. iy
Region Proposal Network,
” feature maps
4 V4

- . 7
——

Ren et al. NIPS 2015

Actor: Use person class.
Object: Select objects with highest word2vec similarity.



Spatial relations

Relative positions of object and actor mined from MS-COCO.

3x3 grid used: Left of, Right of, On, Above, Below, Above left of, ...

Bicycle Traffic light Skateboard
min T T max

Qualitative results

Riding horse (horse)

Scoring actor-object interactions

500, . 2) ptactori}+ Y- w(o.2) ( myxh(ol]-{1= TSDaldlactor. . 1))

N
w

Link boxes over time that have both high scores and high overlaps

\i \
\

Qualitative results

Skateboarding (skateboard)



Qualitative results

Kicking (tie)

Spatiotemporal action retrieval

Desired object size can also be incorporated in query.

Sports ball (0.10) RIGHT OF actor

Spatiotemporal action retrieval

Backpack on actor

Conclusion on zero-shot retrieval
Semantic embeddings align visual and textual modality
Learn embedding from webly-supervised classifiers
Off-the-shelf object detectors add spatial-awareness

Spatiotemporal retrieval in video with position and size.



Zero-Shot Learning
Open Problems

Efstratios Gavves

Zero-shot recap

Training

Zero-Shot Inference

- Learn attributes

01 = max L(Dy; atty)
Dataset Dy
05 = max L(D,; atts)

f (attribute atty)

“African
elephant”

f (attribute atty)

Why not Knowledge Transfer
with Interaction?



Attributes are often ad-hoc

2

oS

}F>: 7 0
WA R

Choker Hold Rose & Canary Looks Velvet Touch

See More Seasonal Selections From Top Rated Sellers

7

Boots Flats Heels

/ Ankle | Wellies | Knee High Boots / Ballet Flats | Lace Ups | Brogues Court Shoes | Sling Backs | Peep Toes

<

Incrementally learning attributes online
* Zero-shot [1] with Independent Attribute Prediction [2]

* Online Incremental Learning
. Self Organizing Incremental Neural Networks
. Parse images into positive/negative networks

* Linear SVM for learning attribute classifiers

Old Attribute Model Current Attribute Model

“Rectangle”

“Rectangle”

[1] Online Incremental Attribute-based Zero-Shot Learning, Kankuekul et al., CVPR 2012
[2] Attribute-Based Classification for Zero-Shot Visual Object Categorization, Lampert et al., TPAMI 2013

Active learning during training

- Learn attributes

c

f= 01 = max L(Dy; atty, huma

© Dataset Dy

= 05 = max L(Dy; att;, human)
f (attribute atty)

0]

O

c

] —

—

qq_) I

£

f (attribute atty)

Interacting with local attributes

* Discriminative localized attributes are discovered

* Most discriminative discovered feature shown to user
. If “nameable” = stored
. If not, got to next more discriminative feature

* Recommender system prioritization
. spatially consistent features shown first

[1] Discovering Localized Attributes for Fine-Grained Recognition, Duan et al., CVPR 2012



Interacting with relative attributes
* Learn relative attributes minimize (lllw,ﬁllg ‘C (Z &+ 2’72-7))
. learning-to-rank 2
st wl (@i —xj) > 1—E;j;Y(i,§) € Om

T e
+  Learn attributes offline [Wo (i — @5)| < 7ij3 V(i J) € Sm

«  Atinference rank images €ij 2 0373 2 0,
according to relevance Query:

“black shoes”

* Interactive search

*  Userindicates relative 1 |
changes in top ranks Initial top
. . v search
* Active labelling results
T 1
Feedback: Feedback:
“more formal “shinier than
than these” these”
3
Refined
” ’ M top search
49' results

[1] Relative Attributes for Enhanced Man-Machine Communication, Parikh et al., AAAI 2012

Tree-based Interactive Labelling

* Image labels are correlated
. water, river, sea = landscape nature, sky, clouds
. Improved prediction: especially when human-in-the-loop
*  Attribute-based image classification: attributes in tree

[1] Learning Structured Prediction Models for Interactive Image Labelling, Mensink et al., CVPR 2013

Predicting unfamiliar classes
* Open set of classes at test time

« Slightly different than Zero-Shot
*  no known attribute-class mapping
. p(unfamiliar class) = [I(1 — p(seen class))

 User corrects misclassified attributes Unfomiliar or not?
é Match. fi:ss? v.ts M:\xl} dn??.\f:s Match cl:s.s?.No
z & e

_ p(Ula®,z)p(a’|z) z 0y
p(c|U,z) = T oUe) s S\ e
p o FAMILIAR FAMILIAR UNFAMILIAR
p(U|aC,z) = H p(ailag)” = exp { Z 'YIng(&im'i:)} AN mwc%
aeuU €U

KNOWN DATA

[1] Attribute-Based Detection of Unfamiliar Classes with Humans in the Loop, Wah et al., CVPR 2013

Tree-based Interactive Labelling

* Criterion: select attribute that minimizes uncertainty on final class
prediction
. select attribute that minimizes conditional class entropy

. new queries are conditioned on the image and the previously selected
attributes

H(z,ylx)=H (y;|z)+H (2|y;, )+ H(y\i|2, yi, T)
p(yc\w) _ exp _E(ym:l’)
Yo i pyelr) Yo, exp—E(y, )

E(y,z) = ZU&‘(%@)"‘ > Wi y)

(i,5)€€

ple=cle)=

[1] Learning Structured Prediction Models for Interactive Image Labelling, Mensink et al., CVPR 2013



Knowledge is not static External data sources?

* Every year new and large datasets pop up » A few only external data sources one can rely on
* Few out of the ~90 new datasets in 2016-2017 * Wikihow

* Kinetics * Wikipedia

* M2CAI * Wikitravel

* ScanNet « DBPedia

* Oxford RobotCar * EventNet

* Cityscapes
* LabelMeFacade

* Wikipedia expands by 10 edits per second, 750 new articles per day * A few ways only one can exploit external data sources
* Active Learning [1]

. * Parsing knowledge graphs [2]
. ?
Should we discard old datasets & knowledge when new ones appears? « Avoiding catastrophic forgetting [3]

. . .
Ca.nk.weda. Ctlvel&;]engag.e with EXterna.l kzlow'e?]ge sou rges such as ined? [1] Active Transfer Learning with Zero-Shot Priors: Reusing Past Datasets for Future Tasks,Gavves, et al., ICCV 2015
Wi Ip€dia, SO that QA is not constrained to whatever dataset we trained: [2] The More You Know: Using Knowledge Graphs for Image Classification, Marino et al., CVPR 2017

[3] Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al., arXiv 2016

Zero-Shot, Transfer and Active Learning overlap! Reusing past (unrelated) datasets for future tasks

* What if we integrate the three learning paradigms [1] * “Recycle” old datasets

* ImageNet will not be obsolete in the future

*  OpenImages [2 '
P ges [2] Reusing Past Datasets for Future Tasks m

* Enrich current datasets nsce e e R flicke E

. Segmentation
propagation [3] 1 -
Zero-shot priors o

""""" ¥
Annotator ~:O-
VN L
Active Learning ?
ﬂ Learn “BMX" # —

[1] Active Transfer Learning with Zero-Shot Priors: Reusing Past Datasets for Future Tasks, Gavves et al., ICCV 2015
[2] https://qithub.com/openimages/dataset
[3] Segmentation Propagation in ImageNet, Kuettel et al., ECCV 2012

[1] Active Transfer Learning with Zero-Shot Priors: Reusing Past Datasets for Future Tasks,Gavves, et al., ICCV 2015



Known class model
How to transfer? e 0Old datasets

Class-Attribute mapping, * Google

e.g., COSTA [2]
New image

(@) = Zﬂckwk'if%/

kekK
f@) = ' [ (@) + v’ w

Zero-shot model

Active updates

[1] Active Transfer Learning with Zero-Shot Priors: Reusing Past Datasets for Future Tasks,Gavves, et al., ICCV 2015
[2] COSTA: Co-Occurrence Statistics for Zero-Shot Classification, Mensink, Gavves, Snoek, CVPR 2014

Active Transfer Learning with Zero-Shot Priors
In Practice

8

[o}

0

=

-

.29

=

g

=1

.460 mAP)

No. of querie 04 250 300
MCLE (Data: 0.4481 0.460
MCLE (Exter= o 203 0.4420 0.457
BBAL [33] = ® 0395f 0.408
Hiearchical S " " 0.3317 0.365
GP Mean [12 04317 0.438
GP Variance 0.309) 0.326
GP Impact B: ... x PR : 0.430F 0.436
GP EMOC Bujywo oy g .v.-.“,’ e - N eosu vesue 1 .07 0.399) 0.405

https://github.com/stratisgavves/activetransferlearning or
WWW.egavves.com

CODE

How to actively learn?

* Simply speaking
. Sample from margin
. But make sure positive/
negatives labels balanced
. Keep running log of labe
sampling likelihoods

Fully supervised Active learning, t = 3

atyt

1
max Z Yixal — 3 Z alabyiytyyes -z (1)
i ©J

s.t. vaaf-yi =0 2
0<al<C, Vi, 3)
=t @

qu_-t:wa*wB. 5)

7 1
Proposition 1 (Maximum Conflict). To maximize the ob-
jective Eq. (1) at time t, we should query the sample i* such
that (a) its label y;« has an opposite sign from its classifi-

. cation score at (t — 1), while (b)) the classifier score is as

high as possible.
Proposition 2 (Label Equality). 7o respect the constraint
Eq. (2) the number of positive and negative examples in
the training set should be balanced, i.e. Y ;2i[y; = 1] =
Zz 7:[% = _1]'

[1] Active Transfer Learning with Zero-Shot Priors: Reusing Past Datasets for Future Tasks,Gavves, et al., ICCV 2015

Using Knowledge Graphs for Novel QA

! COCO
Detections:

Person Detected
Car - Nodes

Bicycle

To Classification
Net

4=

Propagation
Step

=

Propagation
‘ Step

[1] The More You Know: Using Knowledge Graphs for Image Classification, Marino et al., CVPR 2017



Knowledge Graph QA: Model Knowledge Graph QA: Example
n Importance

h adj1
PI’Op. Im:g;t. Top P
Net | h@, o | | h® [ -I i@ |-| adj2 |
Importance
Loss
| h, o | h®, 45 | | h@) 5, | ——
Prop. ¥ ¥ Import. Top P
Net Net "
I hG)ynse l | h®) a5 [ | h®) 45, I == | i(2) | == | adj3
Ha: H H -
2 e Prediction:
= Lookslike
it | Elephant Shrew
Prop.
Net Final Figure 1. Example of how semantic knowledge about the world
Output — aids classification. Here we see an elephant shrew. Humans are
Classification € an
Net " able to make the correct classification based on what we know
GSNN out Predicted about the elephant shrew and other similar animals.
labels BCE
" Classification T loss [1] The More You Know: Using Knowledge Graphs for Image Classification, Marino et al., CVPR 2017

Loss
[1] The More You Know: Using Knowledge Graphs for Image Classification, Marino et al., CVPR 2017

Zero-exemplar Event Detection Zero-exemplar Event Detection

[1] unified embedding and metric learning for zero-exemplar event detection, [1] unified embedding and metric learning for zero-exemplar event detection,
Hussein et al., CVPR 2017 Hussein et al., CVPR 2017



Zero-exemplar Event Detection

| remove drywall |

[1] unified embedding and metric learning for zero-exemplar event detection,
Hussein et al., CVPR 2017

Zero-exemplar Event Detection

Third layer WikiHow Tree Structure

Article

Event 001: Dancing

Event Article

r—
F
=y

Video Titles Videos

How to Assemble a BMX Bike

First layer Second layer

Zero-exemplar Event Detection

Textual Embedding

fr

Logistic
Loss

Visual Embedding

\\ k
(=) —f 8@
Event 001: Dancing Videotliitle
@ t
— —| st
Event Article
--------------- Event Article
= o
= L] —f e 8&
“|  VideoTitles  Videos | Video

Contrastive
i Loss

fr

[1] unified embedding and metric learning for zero-exemplar event detection,

Hussein et al., CVPR 2017

Conclusion

* Attributes not always perfect

*  Often there is no good attribute definition for classes

*  Often attribute prediction is not that reliable

* Knowledge transfer via external knowledge sources
* Complex inferences about open-world questions
* Make inferences beyond what static datasets can teach
* Feature sharing via knowledge sharing

* Active interaction for practical zero-shot classification

. Correct prediction mistakes through active learning

. Guide novel attribute learning and knowledge transfer

*  Active Transfer Learning: Don’t waste or throw your old datasets!!



Going to the next level Active learning during inference

* Active Deep Learning for Zero-Shot Recognition o attributes
. Deep learning of discriminative, repeatable attributes §
. o [ Dataset = SHIDng
* Truly diversified transfer from past to future tasks = Siese S SHURER G Pt )
. Better transfer learning
* New Datasets for New Tasks
o .g. i ose estimation, you name it!
f (attribute att;, human)
8
c
o —
Q
=

f (attribute atty, human)

Tree-based Interactive Labelling

SUN 09 - 5 labels Before Questions After AwA - 29 labels Before Questions After
—_— — 01 Sky 01 Rock e 01 Fas 01 Toughskin

02 Tree 02 Rocks 02 Active 02 Swims
03 Building 03 Sea 03 Smar 03 Arctic
04 Sc Building 04 Sky 04 Meatteeth Toughskin 04 Wate
05 Rocks Tree 05 Sand 05 Newworld Paws 05 Fish
06 Plant Sea 06 Ground 06 Agility Swims 06 Ocean
07 Ground Rocks 07 Plant 07 Tai Mountains 07 Fast
08 Rock Rock 08 Person 08 Meat Arctic 08 Active
09 Person 09 Window 09 Strong 09 Strong
10 Window 10 Water 10 Chewteeth 10 Smart

iMAP

= = = Indep - Rand
s |ndep - Ent
= = = Mixt - Rand
w— Mixt — Ent

20 40 60 80 o 20 40 60 80
Nr Questions Nr Questions

[1] Learning Structured Prediction Models for Interactive Image Labelling, Mensink et al., CVPR 2011



X Data Distribution in Large-Scale Datasets
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Open Problems in Zero-Shot Learning

Zeynep Akata
Zero-Shot Learning Tutorial, CVPR 2017

26 July 2017 »
number of classes

1 2
(Generalized) Zero-Shot Learning Setting (Generalized) Zero-Shot Learning Setting
Training time Test time Training time Test time
Zero-shot Learning Zero-shot Learning ~ Generalized Zero-Shot Learning
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Evaluating GZSL

Per-class Top-1 accuracy for ZSL:

1Yl

1 # correct in c
accy = .
P12 #inc

to insure that all classes will weigh the same

Zero-Shot Learning Models

Existing ZSL models can be grouped into 4:

Evaluating GZSL

Per-class Top-1 accuracy for ZSL:

1 IIZJ’:I # correct in c
accy = .
V4= #inc

to insure that all classes will weigh the same

Harmonic Mean for GZSL:

2 * accytr * accyts

accytr + accyts

to insure that seen and unseen class accuracy will weigh the same

Zero-Shot Learning Models

Existing ZSL models can be grouped into 4:
1. Linear Compatibility: ALE, DEVISE, SJE, ESZSL, SAE



Zero-Shot Learning Models

Existing ZSL models can be grouped into 4:
1. Linear Compatibility: ALE, DEVISE, SJE, ESZSL, SAE
2. Non-linear Compatibilty: LATEM, CMT

Zero-Shot Learning Models

Existing ZSL models can be grouped into 4:
1. Linear Compatibility: ALE, DEVISE, SJE, ESZSL, SAE
2. Non-linear Compatibilty: LATEM, CMT
3. Two-stage Inference: DAP, CONSE
4. Hybrid Model: SYNC

[Akata et.al IEEE CVPR 2013, Frome et.al. NIPS 2013, Akata et. al. 2015,
Romera Paredes and Torr ICML 2015, , Kodirov et.al IEEE CVPR 2017, Xian
et.al. IEEE CVPR 2016, Socher et.al. NIPS 2013, , Lampert et.al. IEEE CVPR
2009 & TPAMI 2013, Norouzi et.al. ICLR 2014, Changpinyo et.al. IEEE CVPR
2016]

Zero-Shot Learning Models

Existing ZSL models can be grouped into 4:
1. Linear Compatibility: ALE, DEVISE, SJE, ESZSL, SAE
2. Non-linear Compatibilty: LATEM, CMT

3. Two-stage Inference: DAP, CONSE

Datasets Used for Evaluation

Dataset Size |V | V] V%
SUN 14K 717 580 + 65 72
CcuB 11K 200 100 + 50 50
AWA1 30K 50 27 4+ 13 10
AWA2* 3TK 50 27 4+ 13 10
aPY 1.5K 32 15+5 12




Datasets Used for Evaluation Motivating GZSL Setting on ImageNet

Dataset Size |V |Vt |Vt | 161 ElCONSE ||
SUN 4K 717 580165 72 1al Mlcur |
[LATEM
CcuB 11K 200 100 + 50 50 ClaLE
AWA1 30K 50 27 + 13 10 12 ¢ [_|DEVISE
AWA2* 31K 50 27 + 13 10 _ [ ISJE
aPY 1.5K 32 15+5 12 10 [ESZSL

- P syNC
SAE

ImageNet Split |Vt | =

ImageNet 21K - V" 20345 6

Within 2/3 hops from V" 1509/7678

Most populated classes 500/1K/5K 41 1

Least populated classes 500/1K /5K 0 ]
0

2H 3H M500 M1K M5K L500 L1K L5K All

Top-1 Acc. (in %)
O‘.)

6
GZSL Results on ImageNet i 15 oo
e -
[T]aLE [IALE
[ |IDEVISE [ IDEVISE
3 ; : ; ; | ; . g2 e 210 Wnezs:
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| Soevise kL Lo
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ESZSL
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= : B syNC ‘WconsE |
d 15 r — 25 I CONSE
e [ IISAE e
[ ]aLE
- 20 - [ |DEVISE
8- 1+ 4 9 [ |SJE
ol %15 =§§IZJ<SSL
2 W sAE
Z10
0.5 1 e
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Zooming Into GZSL Performance

AWA1 cuB
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accytr + accyts s+u
10
Rank
1 2 3 4 5 6 7 8 9 10

CONSE [1.4] ALE [2.1]
ALE [4.4] DEVISE [2.2]
DAP [4.6] SJE [4.5]
SYNC [4.7] LATEM [4.9]
CMT [4.7] ESZSL [5.1]
ESZSL [6.5] CMT [5.3]
SAE [6.8] SYNC [5.4]
DEVISE [7.0] SAE [7.7]
LATEM [7.1] DAP [8.7]
SJE [7.9] CONSE [9.2]

Seen Class Accuracy

Unseen Class Accuracy

Rank

Rank
12 3 4 5 6 7 8 910 12 3 45 6 7 8 910

CONSE [1.4] ALE [2.1] 2
ALE [4.4] DEVISE [2.2]
DAP [4.6] SJE [4.5]
SYNC [4.7] LATEM [4.9]
CMT [4.7] ESZSL [5.1]
ESZSL [6.5] CMT [5.3]
SAE [6.8] SYNC [5.4]
DEVISE [7.0] SAE [7.7]
LATEM [7.1] DAP [8.7]
SJE[7.9] CONSE [9.2]

Seen Class Accuracy

Conclusions

In Generalized Zero-Shot Learning

Unseen Class Accuracy

11

1. The setup is challenging but more practical

Rank
1.2 3 45 6 7 8 910

ALE [2.0] 1 2
DEVISE [2.5] | 3 1

siE[3]| |8 3 3 [z
LATEM [4.9] 13 1 1 111
SYNC [5.1] 2l 1 Bl
ESZSL[5.1] |2 1 1
CMT[5.2] |8 1.3
SAE [7.9] 3 2
DAP [8.7] 2 1 3
CONSE [9.3] 1

Harmonic mean

11

12



Conclusions

In Generalized Zero-Shot Learning

1. The setup is challenging but more practical

2. Unseen images embedded close to seen classes

12

Thank you!

13

Conclusions

In Generalized Zero-Shot Learning

1. The setup is challenging but more practical
2. Unseen images embedded close to seen classes

3. Results much lower than ZSL: Room for improvement

[Xian et.al. IEEE CVPR 2017 & ArXiv 2017
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Zero-Shot Learning
for Computer Vision

Conclusion & Discussion

Today’s outline

Classification
Localization
Retrieval

Open Problems

Sl ol

Conclusion

What this tutorial was about?

Data: reX /Kﬁéwledge trans%éf\ijy

o

YNZ=10

Objective: [ : X — Z

Lampert et al., CVPR09/PAMI13

Zero-Shot Classification

* Mathematically ALE and DAP are similar
* ALE directly optimizes image classification

* Zero-Shot using pre-trained classifiers
* Indirect attribute prediction
* Word2vec, Co-occurrence statistics
* ALE, DEVISE, SJE, ESZSL, SAE, LATEM, CMT, CONSE, SYNC

* Evaluate, evaluate, evaluate!



Zero-Shot with Localization

* Attributes belong to objects, not images
 Zero-Shot localization is a natural extension to the problem

* Focus on visual Details or Regions
. Each with their merit, depends on application
. Maybe a smart combination?

* Localization in images and videos using natural language queries is
possible and promising

* Offers also a great evaluation framework for image captioning, visual question
answering

Open Problems

* The evaluation of zero-shot classifiers is very important!
* Thankfully, now there is a benchmark to compare against
 Zero-Shot Learning - The Good, the Bad and the Ugly, Xian et al., CVPR 2017
* 12 models compared in 6 datasets
* Generalized Zero-Shot Learning
* More challenging, more practical!
* Unseen images embedded close to seen classes
* How to optimally exploit knowledge graphs to answer novel QA?

* Interaction remedy to attribute-based classification
. Correct prediction mistakes
. Guide new attribute learning
. Guide classification

* Active Transfer Learning = Old datasets no more wasted
. Much faster learning than state-of-the-art alternatives

Zero-Shot Retrieval
* Zero-shot retrieval profits from semantic alignment
e Learnable from freely available online sources
e Better than low- and mid-level alternatives

* Adds meaning and recounting to retrieval results

* Next challenge:
¢ Spatiotemporal search and alerts for live video

W h a t ’S n ext ? this small bird has a pink  this magnificent fellow is
. breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

Black-footed Albatross

the flower has petals that this white and yellow flower
are bright pinkish purple have thin white petals and a
with white stigma round yellow stamen

\ Uses A and associations )
Visual Parts. - -
(Expert Annotation) Language Parts

[1] Multi-Cue Zero-Shot Learning with Strong Supervision, Akata et al., CVPR 2016
[2] Generative Adversarial Text to Image Synthesis, Reed, ICML 2016
[3] Synthesized Classifiers for Zero-Shot Learning, Changpinyo, CVPR 2016



Thank youl

Slides will be added online later at the website:
https://staff.fnwi.uva.nl/t.e.j.mensink/zs12017/




