
                                 CorbaScript                            December 1998 i

CORBA Scripting Language

Revised Submission

Laboratoire d’Informatique Fondamentale de Lille

Object–Oriented Concepts, Inc.

OMG TC Document orbos/98-12-09



ii                                  CorbaScript                            December 1998

COPYRIGHT NOTICE

Copyright © 1998 Laboratoire d’Informatique Fondamentale de Lille
Copyright © 1998 Object–Oriented Concepts, Inc.
All Rights Reserved.

The submitting organizations listed above have all contributed to this submission. These organizations
recognize that this draft submission is the joint intellectual property of all the submitters, and may be used
by any of them in the future, regardless of whether they ultimately participate in a final joint submission.

The organizations listed above hereby grant a royalty-free license to the Object Management Group, Inc.
(OMG) for world-wide distribution of this document or any derivative works thereof, so long as the OMG
reproduces the copyright notices and the below paragraphs on all distributed copies.
The material in this document is submitted to the OMG for evaluation. Submission of this document does
not represent a commitment to implement any portion of this specification in the products of the
submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE
ORGANIZATIONS LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The organizations listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material. The
information contained in this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved Except as
otherwise provided herein, no part of this work may be reproducted or used in any form or by any means
– graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems – without the permission of the copyright owners. All copies of this document must
include the copyright and other information contained on this page.

The copyright owners grant member compagnies of the OMG permission to make a limited number of
copies of this document (up to fifty copies) for their internal use as part of the OMG evaluation process.
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivisions (c) (1) (ii) of the Right in Technical Data and Computer Software
Clause at DFARS 252.227.7013.

CORBA, Object Request Broker, OMG and OMG IDL are trademarks of Object Management Group, Inc.
CorbaScript is a trademark of Laboratoire d’Informatique Fondamentale de Lille.
Object–Oriented Concepts and ORBacus are trademarks of Object–Oriented Concepts, Inc.
Other names, products, and services may be the trademarks or registered trademarks of their respective
holders.



                                 CorbaScript                            December 1998 iii

1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Cosubmitting Organizations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Guide to the Submission  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Omissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Submission Contact Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
3 Responses to RFP Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Scope of Proposals Sought. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Design Rational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Mandatory Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Scripting Language Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Requirements for Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Optional Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 CorbaScript Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Scripting Languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
CORBA and Scripting Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
The CorbaScript Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
A CorbaScript Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A Grid Distributed Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Basic Functionalities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Dynamic CORBA connection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Direct Access to all OMG IDL Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Connection to Any CORBA Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
OMG IDL Operations, Attributes and Exceptions . . . . . . . . . . . . . . . . . . . . . . . . 17
Procedures and Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Implementation of OMG IDL Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Creation of Stand-alone CORBA Servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 The CorbaScript Language Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Lexical Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Tokens  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CorbaScript Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



iv                                  CorbaScript                            December 1998

Literal Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Arithmetic Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Relational Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Procedure Call  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Attribute Getting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Method Call  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Array Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Dictionary Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Indexed Getting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Variable and Attribute Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
The Del  Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Objects and Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Everything is Typed Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Basic Value Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
String Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Array Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Dictionary Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Predefined Internal Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Control Flow Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
The If  Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
The While  Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
The Do Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
The For  Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
The Return  Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Formal Parameters and Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
The Returned Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Local and Global Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Procedure Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A Simple Class Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A Single Class Inheritance Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A Multiple Class Inheritance Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Class and Instance Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Internal Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
User Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



                                 CorbaScript                            December 1998 v

Exception Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Importation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Access to the Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Module Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Module Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 The OMG IDL Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Binding for Basic OMG IDL Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

CorbaScript Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Basic OMG IDL Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Binding for OMG IDL Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
OMG IDL Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
CorbaScript Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Binding for OMG IDL Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
OMG IDL Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
CorbaScript Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Binding for OMG IDL Enum  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
An OMG IDL Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
CorbaScript Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Enum Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Binding for OMG IDL Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
OMG IDL Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
CorbaScript Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Structure Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Structure Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Binding for OMG IDL Union  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
An OMG IDL Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
CorbaScript Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Union Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Union Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Binding for OMG IDL Typedef. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
OMG IDL Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
CorbaScript Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Typedef Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Binding for OMG IDL Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
OMG IDL Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
CorbaScript Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Sequence Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Sequence Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Binding for OMG IDL Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
OMG IDL Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



vi                                  CorbaScript                            December 1998

CorbaScript Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Array Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Array Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Binding for OMG IDL Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
CorbaScript Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Exception Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
System Exception Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
System Exception Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
User Exception Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
User Exception Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Binding for OMG IDL Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
OMG IDL Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
CorbaScript Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Object References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Access to OMG IDL Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Invocation of OMG IDL Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Invocation of Oneway Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Operation Invocation using the Deferred Mode. . . . . . . . . . . . . . . . . . . . . . . . . . 84

Implementing OMG IDL Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Class Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
OMG IDL Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
OMG IDL Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Object Registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Object Adapter Run-Time Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Binding for OMG IDL TypeCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Binding for OMG IDL Any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
The Global CORBA  Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

The CORBA::Object Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
The CORBA::ORB Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Summary Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



                                 CorbaScript                            December 1998 1-1

Preface 1

1.1 Cosubmitting Organizations

The following organizations are pleased to submit this revised specification in response
to the OMG CORBA Scripting Language RFP (OMG Document orbos/97-06-13):

• Laboratoire d'Informatique Fondamentale de Lille

• Object-Oriented Concepts, Inc.

1.2 Guide to the Submission

This revised submission specifies and presents the new general purpose object-oriented
scripting language called CorbaScript. This language is specifically dedicated to
simplify the use of CORBA. Elements included are:

• Proof of Concept

• Responses to RFP Requirements

• CorbaScript Overview

• CorbaScript Language Core

• OMG IDL Binding

1.3 Omissions

This submission does not respond to topics related to:

• CORBA 2.3: This submission is based on the CORBA 2.2 specification. It  does
not provide a CorbaScript reflection of the Objects-by-Value specification (provided
as soon as we will have more real experiences).



1-2                                  CorbaScript                            December 1998

1

• Component Model: This submission assumes that the future CORBA Component
Model will be independent of any scripting language and any scripting language
will be able to use CORBA components. Moreover, the current revised CORBA
Component submission defines components in terms of OMG IDL specifications,
then they could be scripted from CorbaScript as any other CORBA objects.

• Other RFP Submissions: CorbaScript is fully compliant with any current and
future RFP submissions as far as they are defined in terms of OMG IDL
specifications.

1.4 Conventions
IDL appears using this font. 

CorbaScript Code appears using this font.

Note that a CorbaScript code beginning with a ">>>" string refers to the interactive
use of the CorbaScript interpreter. Then the next line displays the result of the
execution of this interactive command.

1.5 Submission Contact Points

All questions about this revised submission should be directed to:

Philippe Merle
Laboratoire d'Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille
U.F.R. d'I.E.E.A., Bâtiment M3
Cité Scientifique
59655, Villeneuve d'Ascq Cedex
France
phone: +33 3 20 43 47 21
fax: +33 3 20 43 65 66
email: merle@lifl.fr

Marc Laukien
Object-Oriented Concepts, Inc.
44 Manning Road
Billerica, MA 01821
USA
phone: (978) 439 9285 x 245
fax: (978) 439 9286
email: ml@ooc.com



                                 CorbaScript                            December 1998 2-3

Proof of Concept 2

This specification presented here is based on the extensive experience the submitting
organizations have had in building implementations, language mappings, environments
and tools for CORBA. The final choices that are embodied in this submission were
made based upon user and vendor experience.

Moreover the CorbaScript object-oriented scripting language is issued of a long
experimentation and validation period. It has been under development for the last three
years and has been the subject of a set of scientific papers and presentations (see
http://corbaweb.lifl.fr/papers/ ).

The first CorbaScript release has been freely available since September 1997 at
http://corbaweb.lifl.fr/CorbaScript/  and has been downloaded by
more than one thousand sites.

This document is based on the current release that is available since October 1998.
This release fully works on the following 

• ORB products: MICO, OAK, ORBacus, and Visibroker 3.3.

• Operating systems: AIX, HP-UX, Linux, SGI IRIX, Solaris, and Windows 95/NT.

Our CorbaScript implementation is written in C++ and can be compiled on a large set
of well-known C++ compilers. As it is only based on the standard CORBA 2.2 features
(the Interface Repository, the Dynamic Invocation Interface, the Dynamic Skeleton
Interface and the DynAny API), it could be ported on any other C++ ORB products.



2-4                                  CorbaScript                            December 1998

2



                                 CorbaScript                            December 1998 3-5

Responses to RFP Requirements 3

This chapter gives the problem statement from the CORBA Scripting Language RFP
(OMG Document orbos/97-06-13) and specifies how this submission is responsive to
the RFP requirements.

3.1 Problem Statement

This RFP is intended to form part of a coordinated strategy to introduce a component
model into the OMA and should be considered in conjunction with the CORBA
Component Model RFP (orbos/97-06-12) and CORBA Component Imperatives paper
(orbos/97-05-25) which identify the need for scripting within the context of a larger
component model. The objective of this RFP is to solicit proposals for a scripting
language that is capable of scripting CORBA components.

Scripting languages have long been prominent in rapid application-development tools.
The reason for their wide-spread use is that scripting languages are generally easy to
understand, and hence more accessible to a greater audience. Scripting tools generally
do not require a compilation step, and therefore fit better into a world where user code
is immediately executable once it has been specified. Essentially all scripting
languages allow the application builder to create new scripts at run time and execute
them by calling an “eval” function.

All these virtues of scripting languages would be vices if scripting languages were
used to build large programs with complex functionality. But in fact scripting
languages are used not for complex algorithms, but rather as glue knitting together
components and subsystems written in other, more structured languages. Typically, the
interface between scripts and components is based on two patterns of usage: scripts can
call arbitrary methods that are part of the component external interface ; and scripts
can be triggered by events generated by components.

If OMG is to produce a viable, widely-used component technology, there is great
benefit in specifying a standard scripting language for gluing together these
components.



3-6                                  CorbaScript                            December 1998

3

3.2 Scope of Proposals Sought

This RFP requests proposals that specify a scripting language for a CORBA-based
component model. The specific requirements and concepts to be addressed by the
scripting language are outlined in detail in “Mandatory Requirements” on page 3-6.
The scope of proposals shall be limited to technology required to address those
requirements which is not already in the process of being specified in other ORBOS
RFP processes. Responses to this RFP shall be coordinated with other RFP responses
as necessary to provide a coherent, complete scripting language compatible with the
CORBA component model.

Responses shall take into account existing scripting technologies and experiences in
using them.

3.3 Design Rational

See Chapter 4 on "CorbaScript Overview".

3.4 Mandatory Requirements
• Responses shall specify a scripting language that fits naturally into the CORBA

object and proposed component models, and shall take account of experiences with
other successful scripting languages.

• CorbaScript provides a dynamic binding to any OMG IDL specifications allowing
scripts to invoke naturally any CORBA object or component. This dynamic
binding is discuted in Chapter 6 on "The OMG IDL Binding".

• Responses shall define the elements of a scripting language, and concrete
expressions of these elements in terms of CORBA technology.

• CorbaScript lexical and syntactical constructs and semantics are defined in
Chapter 5 on "The CorbaScript Core Language".

• Responses shall build upon existing specifications, and be aligned with other
simultaneously emerging specifications.

• This response is based on CORBA Components Joint Revised Submission
(orbos/98-10-18), and draws from CORBA 2.2  (orbos/98-02-01). Moreover,
CorbaScript is fully compliant with any current and future RFP submissions as far
as they are defined in terms of OMG IDL specifications.

3.4.1 Scripting Language Elements

• Responses shall clearly define the concept of object-oriented scripting.



CorbaScript                             December 1998 3-7

3

• Object-oriented scripting requires a scripting language capable of reflecting
objects faithfully, so that intuition about objects is fully reusable in the scripting
environment. In this sense, CorbaScript is a fully object-oriented scripting
language.

• Responses shall describe the relationship between scripts and the CORBA proposed
component model. In particular, responses shall describe how scripts interact with
and control components.

• As far as components are defined in terms of OMG IDL specifications,
CorbaScript will interact with them.

• Responses shall describe how scripts can invoke operations on CORBA objects.

• See Section 6.12.5, “Invocation of OMG IDL Operations”, on page 6-83.

• Responses shall specify interfaces and mechanisms for controlling component-
events, and for installing arbitrary component-event handlers (listeners) for specific
components-events generated by the proposed components. The language shall be
aligned with the CORBA component event mechanism. The relationship between
the CORBA component model's event mechanism and the scripting language shall
be clearly defined.

• The CORBA Components specification defines event production and consumption
based on the notification service. In CorbaScript, events are produced and
consumed just as in any other language, i.e. by implementing the approriate
consumer and supplier interfaces, or calling them.

• Responses shall specify how the scripting language exposes and manages
component properties.

• The CORBA Components submission does not define the explicit notion of
component properties (just attributes and see Section 6.12.4, “Access to OMG
IDL Attributes”, on page 6-82). Instead, a component may offer a configuration
interface. A script may operate on the configuration interface just as on any other
interface. The component specification defines the details of how the
configuration interface is obtained and what operations it offers.

3.4.2 Requirements for Programming Model

• The response shall support both run-time and design-time needs. Responses shall
describe how the scripting language can be used to configure and assemble
proposed CORBA components.



3-8                                  CorbaScript                            December 1998

3

• Scripting languages tend to hide the difference between compile-time and run-
time.

• The scripting language shall be designed to be used in a visual runtime environment
(i.e. desktop, browser, etc.) as well as a non-visual runtime environment (i.e. middle
tier application server).

• CorbaScript has  been thoroughly tested in both interactive, embedded and server
applications.

3.5 Optional Requirements

Proposals may also support the use of the scripting language as an implementation
language for CORBA objects.

• CorbaScript can be used as implementation language for CORBA objects ; see
Section 6.13, “Implementing OMG IDL Interfaces”, on page 6-85.



                                 CorbaScript                            December 1998 4-9

CorbaScript Overview 4

This chapter presents design rationales to provide a new scripting language for
CORBA objects. Section 4.1 gives our point of view on the usefulness of a scripting
language. Section 4.2 describes some uses of scripting languages in the CORBA
context. Section 4.3 describes the CorbaScript approach and its architecture. Section
4.4 presents a simple CorbaScript example: a distributed grid application. This
example aims at presenting the usefulness and simplicity of the new CorbaScript
language: access to any OMG IDL specifications, connection to any CORBA objects,
access to OMG IDL attributes, invocation of OMG IDL operations, handling of OMG
IDL exceptions, and finally implementation of CORBA objects and servers.

4.1 Scripting Languages

A scripting language simplifies the access and the use of computer system resources
like files and processes in the context of an operating system shell, relational database
query requests in the context of SQL, and graphic widgets in the context of Tcl/Tk.
These resources are used without the need to write complex programs, hence the
following benefits:

• Simplicity of use:  A script is often easier to write and more concise (no variable
declarations, dynamic typing, garbage collector)  than its equivalent written in a
standard programming language.  The simplicity of scripting languages allows
users, even novices, to develop small scripts that meet their needs.

• Easy to learn:  The "teachability" of a scripting language is often more simple than
a "traditional" language like C++. The training time is shorter for a scripting
language.

• Enhanced productivity:  This ease of use makes development easier and more
flexible, as the user  can prototype scripts in interactive mode,  then use them in
batch processing mode.  This also encourages the exchange of scripts between
users:  they can adapt them to meet their individual needs.



4-10                                  CorbaScript                            December 1998

4

• Reduced cost:  Simplicity and productivity respectively mean reduced training
costs for users and reduced operating costs in conventional computer environments.

However this previous list is not exhaustive and does not capture all scripting benefits.

4.2 CORBA and Scripting Languages

These benefits can be applied to a CORBA environment by providing a binding
between scripting languages and OMG IDL. Then this considerably improves the
ability to make use of CORBA distributed objects during all of the development,
implementation, and execution steps:

• Design and prototyping:  During the design step of a distributed CORBA
application, two important problems  may occur: the choice of OMG IDL interfaces
and the choice of object distribution.  Currently there is no miraculous solution to
these two problems,  only experience and know-how allow selecting the "right"
choices.  Under these conditions it is necessary to be able to prototype quickly in
order  to evaluate fundamental choices.  But prototyping in a compiled language
such as C++ implies a  complex and costly development cycle,  hence the advantage
of using an interpreted language with a short  development cycle  in order to
develop functional models.

• Development and testing:  During the development of an object-oriented
client/server application  using CORBA, developers must write a number of pieces
of programs in order  to check the validity and the operation correctness of their
CORBA objects.  These test codes are hard to debug and write due to the
complexity of mapping rules.  In addition, they become useless when the
components are correctly implemented.  In this context, a command interpreter
saves a lot of time and effort.  It becomes possible to immediately and interactively
test object implementations  during development.  In addition, object test codes can
be generated automatically from the Interface  Repository and data on interface
semantics, resulting in automated testing.

• Configuration and administration :   Most of the services and object frameworks
require a number of client programs to configure, administrate and connect the
objects (such as the Naming Service).   This large number of client programs often
depends on the number of operations described in the objects' OMG IDL interfaces.
A dynamic scripting language then becomes an excellent alternative for supporting
the multitude of programs as they can be written using a few instructions   and
evolve rapidly to meet the needs of service administrators.

• Using components:  Experienced users can design scripts themselves to meet their
own specific needs.  In this way, using components available from the ORB, they
can extract relevant data  without the need to refer to ORB specialists.

• Assembling software components:  Scripts can be used to assemble existing
components in order to create new ones.  The new components encapsulate all of
the functions of connected components  and provide new functions. Therefore we
obtain a kind of "software glue" to build  new objects by aggregating existing
objects.  In addition, these new components can be used from CORBA applications
just like ordinary objects.



CorbaScript                             December 1998 4-11

4

• Evolution:  If the components evolve or if new ones appear, using scripts means
that it is  possible to discover them dynamically at execution time and therefore to
use them  as soon as they become available.  Minor OMG IDL modifications do not
necessarily require re-writing scripts.

Therefore a scripting language can offer a number of services  during the life cycle of
an object-oriented distributed service. The various uses imply that the scripting
language provides the necessary mechanisms for discovering, invoking and navigating
among CORBA objects and for implementing objects using scripts. Navigating in and
using large graphs of disparate objects imply dynamically acquiring the stubs of the
types encountered as the scripting language cannot know ahead of time all of the OMG
IDL types.

4.3 The CorbaScript Language

CorbaScript is a new general purpose object-oriented scripting language dedicated to
CORBA which allows any user to develop their activities by simply and interactively
accessing objects available on the ORB. Therefore the user is completely free to
operate, administrate, configure, connect, create and delete distributed objects on the
ORB.

The binding between CORBA and CorbaScript is achieved through the DII and the
Interface Repository. The DII is used to construct requests at runtime and the IFR is
used to check parameters types of requests (also at runtime). Moreover, using the DSI,
CorbaScript allows one to implement OMG IDL interfaces through scripted objects.
Figure 4-1 illustrates the CorbaScript architecture.

The main features of CorbaScript described in Chapters 5 and 6 are:

• Interpretation:  The CorbaScript engine is a scripting interpreter. It provides three
execution modes: the interactive one, the batch one and the embedded one. In the
first mode, users provide their scripts interactively. In the second one, the interpreter
loads and executes file scripts allowing batch processing or server implementations.
In the last one, the interpreter can be embedded in another program and then
interprets strings as scripts.

• General purpose: CorbaScript is a true high level language comprising
programming concepts such as structured procedures, modularity and object-
oriented programming (classes/instances, multiple inheritance and polymorphism).
The CorbaScript language provides various syntactical constructions such as basic
values and types (integer, double, boolean, character, string, array and dictionary),
expressions (arithmetic, relational, and logical operators), assignments, control flow
statements, procedures, classes, modern exception handling (throw/try/catch/finally)
and modules (downloadable scripts).

• Object-oriented: All scripting values are encapsulated by internal engine objects.
These objects provide some attributes and methods according to their type. The
dotted notation is used to access/modify object attributes (i.e. variable =
object.attribute, object.attribute = value) and invoke object methods (i.e.
object.method(parameters)). CorbaScript also allows the definition of  scripting
classes.



4-12                                  CorbaScript                            December 1998

4

Figure 4-1 The CorbaScript Architecture

• Dynamic typing: A scripting value/object is the instance of one type. Types are
also objects. A type can be a subtype of several other ones. Coercion rules are
defined between types. This defines a type conformity tree used for runtime type
checking, e.g. method parameter type controls and automatic operand coercions
(e.g. 10 + 3.14). Moreover, scripts can dynamically access to the type conformity
tree to check explicitly the type of an object, i.e. any object has a _type attribute and
an _is_a method.

• Reflexivity:  The CorbaScript engine allows the introspection of any scripting object
(values and types).  The introspection encompasses object displaying and dynamic
attribute, method and type discovering.

• Adaptability:  CorbaScript is a powerful scripting framework which can be adapted
to meet users' needs. This framework can be extended by new internal classes which
implement new object types. For example, an extension allows scripts to access to
any Java class or object through the Java Virtual Machine.

IIOP ORB

Static
IFR Stubs DII DSI

CorbaScript
Interface

Repository

Any CORBA Objects

OMG IDL FilesBatch ScriptsInteractive
Users



CorbaScript                             December 1998 4-13

4

• Dynamic CORBA binding: The integration between CorbaScript and the ORB is
fully dynamic: there is no stubs/skeletons generation. The CorbaScript engine
discovers OMG IDL specifications through the Interface Repository. When scripts
invoke CORBA objects, the Dynamic Invocation Interface and the Dynamic
Skeleton Interface are internally used to send and receive requests and the IFR is
used to check parameter types at runtime. But users never use directly these
CORBA dynamic mechanisms: they are totally hidden by the scripting engine.

• Complete OMG IDL binding:  All OMG IDL concepts such as basic types,
modules, constants, enumerations,  structures,  unions, typedefs, sequences, arrays,
interfaces, exceptions, TypeCode and Any  types are directly and transparently
available to scripts. The user must only give the IDL scoped name of accessed IDL
specifications. These IDL concepts are reflected by scripting objects which are
implemented by the scripting engine. Reflexivity is available on all these objects.
Scripts can display any IDL values or definitions. Users can interactively discover
the content of an IDL module or interface, what the signature (parameters and
exceptions) of an IDL operation is, what the mode and type of an IDL attribute is or
what the definition of a complex IDL type (enum, array , sequence, struct, union
and typedef) is.

• Object binding: To access and invoke CORBA objects, users must know their
CORBA object references. CorbaScript proposes several ways to obtain these
references. Users can specify a known object network address described with the
OMG's IOR format or with an ORB-specific URL format (i.e. IP host, IP port and a
local implementation object name). Moreover, standard CORBA Name and/or
Trader services can be dynamically used to obtain needed users' object references.
To obtain these services, the standard ORB operations are available. Obtained object
references are automatically narrowed to the most derived IDL interfaces.

• Dynamic invocation: CorbaScript allows scripts to invoke IDL operations, access
IDL attributes of remote CORBA objects/components. All type checks and
coercions/conversions are automatically done by the interpreter. Parameter
coercions are automatically done according to IDL signatures. CorbaScript provides
a simple Java-like exception mechanism that allows one to catch users' defined IDL
exceptions and also standard CORBA system exceptions. CORBA requests are sent
by the Dynamic Invocation Interface.

• Dynamic implementation: CORBA objects (and components and listeners)  are
implemented by scripting classes. Incoming requests are intercepted by the
Dynamic Skeleton Interface and are forwarded to scripting objects. The scripting
engine automatically  converts incoming/outcoming IDL values to/from scripting
objects respectively.

4.4 A CorbaScript Example

This section presents a simple CorbaScript example: a distributed grid application.
This example aims at presenting the usefulness and simplicity of the new CorbaScript
language: access to any OMG IDL specifications, connection to any CORBA objects,
access to OMG IDL attributes, invocation of OMG IDL operations, handling of OMG
IDL exceptions, and finally implementation of CORBA objects and servers.



4-14                                  CorbaScript                            December 1998

4

4.4.1 A Grid Distributed Application

As this example is an illustration of CorbaScript, the object model of this application is
deliberately simplified. This application is composed of a Factory  OMG IDL interface
that allows the creation of Grid  objects:

module GridService {
     typedef double Value;
     struct Coord { unsigned short x, y; };
     exception InvalidCoord { Coord pos; };

    interface Grid {
       readonly attribute Coord dimension;
       void set (in Coord pos, in Value val) raises (InvalidCoord);
       Value get (in Coord pos) raises (InvalidCoord);
       void destroy ();
     };

    interface Factory {
       Grid create_grid (in Coord dim, in Value init_value);
     };
   };

A grid is a matrix of values (the Value  type definition). The Coord  structure defines
matrix positions and dimensions. The InvalidCoord  exception handles out of matrix
bounds. The Grid  interface provides the dimension attribute which returns the matrix
dimension and operations to get and set values. The destroy operation allows clients to
destroy a Grid  object. The Factory  interface provides the create_grid operation to
create new grids. This operation creates a grid with the related dimension and
initializes each item of the matrix. All OMG IDL type and interface definitions of this
application are defined into the GridService OMG IDL module.

 

Figure 4-2 The Distributed Grid Application

ORB based on Internet (IIOP)

User
Scripts

CorbaScript
Interpreter

CorbaScript
Interpreter

Mrs Smith Mr Doe A Name Server A Grid Server

Interface
Repository

GridService.idl CosNaming.idl Server
Scripts



CorbaScript                             December 1998 4-15

4

 Figure 4-2 shows the runtime distribution of this application. The Grid server contains
a GridService::Factory CORBA object and the set of grid objects created by this
factory. This server is composed of a set of CorbaScript scripts which implement the
OMG IDL interfaces of the GridService module and the server main function. The
factory object reference is registered into the standard CORBA Name Service to allow
client applications to retrieve it. In this example, the Interface Repository only contains
the OMG IDL specifications of used CORBA objects, here the GridService.idl and
CosNaming.idl OMG IDL files. Through this type information, a CorbaScript
interpreter can access to all CosNaming::NamingContext, GridService::Factory and
GridService::Grid  objects connected to the ORB. Finally, Mrs Smith and Mr Doe,
end-users or CORBA specialists, can interactively act on the available CORBA objects
thanks to the CorbaScript interpreter. Moreover, they can share user scripts that provide
advanced processes on CORBA objects.

4.4.2 Basic Functionalities

To perform the users' activities presented in Section 4.2, CorbaScript is a true high
level language comprising programming concepts such as structured procedures,
modularity and object-orientation (classes/instances, multiple inheritance and
polymorphism). CorbaScript is a script interpreter shell:

unix_promt> cssh
CorbaScript 1.2 for ORBacus for C++ Copyright 1996-98 LIFL, 
France
>>>

unix_promt> cssh a_script_file.cs

CorbaScript can be used from the command line (interactively) or in batch processing
mode using script files. A script is a set of instructions such as display a value, call-up
an operation, assign a variable, control flows and handle exceptions. This language
supports a few number of basic data types wired into the interpreter: integers, strings,
arrays, associate tables, basic OMG IDL data types, etc. The conformity of expressions
is checked dynamically at execution time using a dynamic typing mechanism. As
CorbaScript is object-oriented, all values are objects. The dotted notation is used to
express operation call-up, attributes access or modification. Moreover, CorbaScript
provides standard algorithm constructions (variables, tests, loops) used to express
complex scripts.

4.4.3 Dynamic CORBA connection

When a user invokes a CORBA object, the interpreter checks that the parameter types
are conformed to the OMG IDL specifications contained into the Interface Repository.
Moreover, this OMG IDL information is stored into a local IFR cache to improve next
type checks and to reduce communications with the Interface Repository.



4-16                                  CorbaScript                            December 1998

4

Invocations are performed via the Dynamic Invocation Interface. In addition, OMG
IDL interfaces can be implemented using CorbaScript classes. The CorbaScript
interpreter then uses the Dynamic Skeleton Interface  to intercept and decode the
requests sent to the objects implemented by scripts.

4.4.4 Direct Access to all OMG IDL Definitions

Through CorbaScript, users can interactively and transparently access to any OMG
IDL specifications contained into the Interface Repository. This allows one to discover
OMG IDL interfaces, operation parameters and exceptions, the fields in a structure or
the content of a module. The user must only give the scoped name of accessed OMG
IDL specifications as presented here:

>>> GridService.Grid
< OMG-IDL interface GridService::Grid {
        attribute readonly struct Coord dimension;
        void set (in struct Coord pos, in Value val)
           raises(GridService::InvalidCoord);
        Value get (in struct Coord pos)
           raises(GridService::InvalidCoord);
        void destroy ();
}; >

>>> GridService.Coord
< OMG-IDL struct Coord {
     unsigned short x;
     unsigned short y;
}; >

As we can see it, CorbaScript is transparently connected to the Interface Repository
and accesses to any OMG IDL definitions loaded into the Interface Repository as
shown in  Figure 4-2.

4.4.5 Connection to Any CORBA Object

To access and invoke CORBA objects, users must know their CORBA object
references. CorbaScript proposes several ways to obtain these references. Users can
specify a known object network address described with the OMG's IOR format or with
an ORB specific URL format (IP host, IP port, and a local implementation object
name). Moreover, standard CORBA Name and/or Trader services can be used to obtain
users' needed object references. To obtain these services, the list_initial_services and
resolve_initial_references operations from the CORBA::ORB  interface are directly
available. Consider the following examples:



CorbaScript                             December 1998 4-17

4

>>> factory = GridService.Factory("IOR:00000000000001c4...")
>>> factory = GridService.Factory(
                      "iiop://an_IP_host_name:5000/factory")
>>> CORBA.ORB.list_initial_services ()
["InterfaceRepository", "NameService", "TradingService",...]
>>> NS = CORBA.ORB.resolve_initial_references("NameService")
>>> factory = NS.resolve ( [ ["aGridService", ""] ] )

In the last way, the user does not need to specify the type of the returned object. The
CorbaScript interpreter refers to the Interface Repository to determine the interface for
the accessed objects and then checks the typing of invocations. When a CORBA
request returns an object reference, CorbaScript automatically creates an object
reference for the dynamic type of the returned object. If the interpreter does not yet
know the GridService.Factory type, it automatically loads its definition into its local
Interface Repository cache. Therefore users can navigate through the naming service
graph and discover at execution time the type of visited objects.

4.4.6 OMG IDL Operations, Attributes and Exceptions

As illustrated in the resolve operation invocation, the user does not have to specify the
parameter types sent to the operations as CorbaScript automatically performs the
conversions. The [["aGridService", ""]]  value is an array that contains an array with
two items. This value is automatically converted into a CosNaming::Name which is
an OMG IDL sequence of CosNaming::NameComponent structures containing two
OMG IDL string  fields and then it is forwarded to the resolve operation.

>>> grid = factory.create_grid ([20,5], 1)
>>> # or more precisely, (GridService.Coord(20,5), 
GridService.Value(1))
>>> grid.dimension
GridService::Coord(20,5)
>>> try {
      grid.set([100,100],10)
    } catch (GridService::InvalidCoord e) {
      println ("GridService::InvalidCoord raises on ", e.pos)
    }
GridService::InvalidCoord raises on GridSevice::Coord(100, 
100)

The previous example illustrates the simplicity of CorbaScript to invoke OMG IDL
operations, access OMG IDL attributes of remote CORBA objects. All type checks and
conversions are automatically done by the interpreter. Moreover, CorbaScript provides
a simple Java-like exception mechanism that allows scripts to catch user defined OMG
IDL exceptions and also standard CORBA system exceptions.



4-18                                  CorbaScript                            December 1998

4

4.4.7 Procedures and Modules

Naturally, these previous scripts are very rudimentary but CorbaScript allows the
storage of more ambitious scripts using procedures and modules. The procedures are
used to capture users' reusable scripts. The returned result and procedure parameters
are not typed. These procedures can be grouped in downloadable modules.

The following script fragment is part of the gridTools module. This module contains a
procedure (DisplayGrid) which iterates on a grid to obtain matrix values by calling the
get OMG IDL operation and display them. The user can therefore download the
gridTools module to access to this procedure and then execute it on the grid object
previously obtained. Declarations contained in a CorbaScript module are accessible
with the dotted notation.

# File: gridTools.cs
proc DisplayGrid (grid)
{
  dim = grid.dimension
  h = dim.y
  w = dim.x
  println ("The dimensions of this grid are ", w, "*", h)
  # iterate to get each values of the grid
  for i in range (0, h-1) {
    for j in range (0, w-1) {
      print (' ', grid.get([i,j]))
    }
    println ()
  }
}

>>> import gridTools
>>> gridTools.DisplayGrid(grid)
The dimensions of this grid are 20*5
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In this way a number of users' activities can be implemented without the need for the
user to be a CORBA expert. It is still necessary to know the CorbaScript language and
the object OMG IDL interfaces to access them. But writing CorbaScript scripts appears
far easier than writing CORBA programs in a compiled language. Users can rapidly
meet their specific needs and exchange scripts when their activities have points in
common.



CorbaScript                             December 1998 4-19

4

4.4.8 Implementation of OMG IDL Interfaces

A script handles local values and remote CORBA objects, acting just like a CORBA
client program. Another CorbaScript functionality supports the implementation of new
object types (local or CORBA ones). It integrates object concepts such as classes,
multiple inheritance and polymorphism. Instance methods are grouped into classes and
must take an explicit first parameter that refers to the current instance. However there
is no enforced convention name for this parameter: users can choose any name like
self, this or anything else. Through this instance reference, the method codes can
access instance attributes. Instance attributes are declared at their first assignment.

# File: grid_impl.cs
class GRID {
  # GRID instance initialization
  proc __GRID__ (self, dim, init_value)
  { # This GRID instance (self) is a GridService.Grid object
    CORBA.ORB.connect (self, GridService.Grid)
    # set the GRID instance attributes
    self.dim = dim
    self.values = create_matrix (dim, init_value)
  }

  # Creation of a matrix
  proc create_matrix (dim, init_value)
  {
    w=dim.x
    l=dim.y
    values = array.create(w)
    for i in range(0,w-1) {
      tmp = array.create(l)
      for j in range(0,l-1) { tmp[j] = init_value }
      values[i] = tmp
    }
    return values
  }

  # Implementation of the GridService::Grid interface

  # implements the readonly 'dimension' attribute
  proc _get_dimension (self)
  {
    return self.dim
  }



4-20                                  CorbaScript                            December 1998

4

  # implements the 'set' operation
  proc set (self, pos, val)
  {
    try {
      self.values[pos.y][pos.x] = val
    } catch (BadIndex exc) {
      throw GridService.InvalidCoord(pos)
    }
  }

  # implements the 'get' operation
  proc get (self, pos)
  {
    try {
      return self.values[pos.y][pos.x]
    } catch (BadIndex exc) {
      throw GridService.InvalidCoord(pos)
    }
  }

  # implements the 'destroy' operation
  proc destroy (self)
  {
    CORBA.ORB.disconnect (self)
  }
}

class FACTORY
{
  proc __FACTORY__ (self)
  {
    CORBA.ORB.connect (self, GridService.Factory)
  }

  # the 'create_grid' operation
  proc create_grid (self, dim, init_value)
  {
    grid = GRID(dim, init_value)
    return grid._this
  }
}

The previous code presents an implementation of the Grid service. The GRID  and
FACTORY  classes implement respectively the GridService::Grid  and
GridService::Factory interfaces. CorbaScript enforces a convention name for the
instance initialization method (__GRID__ and __FACTORY__). The OMG IDL
operations are implemented by instance methods with the same name. The OMG IDL
attributes are also implemented by instance methods called by the attribute name
prefixed by _get_ for the attribute getting and by the _set_ prefix for the attribute
setting.



CorbaScript                             December 1998 4-21

4

The CORBA.ORB symbol refers to the CorbaScript reflection of the ORB object. This
object provides operations to connect/disconnect class instances to/from a CORBA
object reference. The connect operation allows one to associate a CorbaScript instance
to a new CORBA object: the first parameter refers to the instance and the second one
refers to the OMG IDL interface that the instance implements. The disconnect
operation cuts this association, then all its CORBA object references become invalid.

Figure 4-3 The Grid Server Objects Architecture

 Figure 4-3 presents the CorbaScript objects architecture after the creation of the
FACTORY  instance. The GridService::Factory object is in the local cache of the
OMG IDL interface. This cache communicates with the Interface Repository to obtain
OMG IDL type information. The generic DSI object is connected to the ORB to
receive requests for the FACTORY  instance. Received requests are checked thanks to
the local cache (interface) and if they are correct then they are forwarded to the
FACTORY  instance (instance). This instance implements the OMG IDL operations
and attributes of the GRIDService::Factory interface. The _this instance attribute
refers to the generic DSI object. It is used when the object must give its CORBA object
reference.

This approach is similar to the TIE approach used in C++ and Java mappings. This
mechanism of request delegation allows one to provide several DSI object references
for the same CorbaScript instance: several OMG IDL interfaces could be implemented
by a single CorbaScript instance.

IIOP ORB

instance

interface

Generic
DSI Object

create_grid

_this

FACTORY
Instance

connect

disconnect

CORBA.ORB

create_grid

GridService::Factory

DSI Static
IFR Stubs



4-22                                  CorbaScript                            December 1998

4

4.4.9 Creation of Stand-alone CORBA Servers

In this way a script can become a CORBA object server accessible to all CORBA
programs and therefore to other scripts. The following code shows the Grid server
implementation:

# Load the GridService implementation `grid_impl.cs' file   
import grid_impl

# Create a FACTORY instance
factory = grid_impl.FACTORY()

# Obtain the Name Service reference
NS = CORBA.ORB.resolve_initial_references("NameService")

# Register the server object into the Name Service
NS.bind ( [["aGridService", ""]], factory._this)

# Start the main loop to wait for ORB requests
CORBA.ORB.run ()

# Unregister the server object from the Name Service
NS.unbind ( [["aGridService", ""]])

This server script imports the previous Grid implementation module containing the
GRID  and FACTORY  classes. It  creates then a FACTORY  instance and registers it
into the standard CORBA Name service with the bind operation. Then this script starts
a main loop to wait for ORB requests (CORBA.ORB.run). Finally, it unregisters the
factory object from the Name Service (unbind operation) when the server is stopped.

4.4.10 Conclusion

This chapter has presented a quick tour of the CorbaScript functionalities. CorbaScript
simultaneously offers enough syntax constructions and semantic entities such as
expressions, numerous types of basic data, all of the types expressed in OMG IDL, the
modules, the procedures, the classes and the instances in order to quickly develop
client programs and CORBA object servers. In addition, the dynamic loading of
modules is used to structure scripts into easily reusable entities. These entities are used
to quickly write sets of procedures to use an application and reuse them to build a
number of client applications, meeting the specific needs of each developer and also of
each user in a CORBA environment.



                                 CorbaScript                            December 1998 5-23

The CorbaScript Language Core 5

This chapter describes the CorbaScript core language including lexical conventions,
syntactical and semantic constructs.

5.1 Overview

CorbaScript is a simple and powerful general purpose object-oriented scripting
language: All the CorbaScript entities are objects with attributes and methods.
Moreover,  CorbaScript is dedicated to CORBA environments allowing users to write
scripts to easily access to CORBA objects. Scripts can also implement CORBA objects
(e.g. callback objects) via classes. However the information presented herein is fully
CORBA and OMG IDL independent. The binding between CorbaScript and CORBA is
presented in the next chapter.

The CorbaScript lexical rules are very similar to OMG IDL ones, although keywords
and punctuation characters are different to support programming concepts. The
description of CorbaScript’s lexical conventions is presented in “Lexical Conventions”
on page 5-24.

The CorbaScript grammar provides a small and "easy-to-learn" set of  constructs to
define scripts, expressions, variables, control flow statements, procedures, classes,
exceptions, and modules. The grammar is presented in “CorbaScript Grammar” on
page 5-28.

The CorbaScript core concepts are respectively presented in “Scripts” on page 5-30,
“Expressions” on page 5-31, “Objects and Types” on page 5-37, “Control Flow
Statements” on page 5-45, “Procedures” on page 5-47, “Classes” on page 5-50,
“Exceptions” on page 5-54, and “Modules” on page 5-58.

Scripts can be interactively provided  by users or stored into source files with the ".cs"
extension.



5-24                                  CorbaScript                            December 1998

5

The description of CorbaScript grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 5-1 lists the symbols used in this format
and their meaning.

5.2 Lexical Conventions

This section1 presents the lexical conventions of CorbaScript. It defines tokens in a
CorbaScript script and describes comments, identifiers, keywords, and literals such as
integer, floating point, and character constants and string literals.

As OMG IDL, CorbaScript uses the ISO Latin-1 (8859.1) character set. This character
set is divided into alphabetic characters (letters), digits, graphic characters, the space
(blank) character and formatting characters (for more information, see Table 3-2, Table
3-3, Table 3-4, and Table 3-5 in the CORBA 2.2 specification).

5.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments, as
described below, are ignored except as they serve to separate tokens. Some white space
is required to separate otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to be the longest string of characters that could possibly constitute a token.

5.2.2 Comments

The sharp character (#) starts a comment, which terminates at the end of the line on
which it occurs. Comments may contain alphabetic, digit, graphic, space, horizontal
tab, vertical tab, and form feed characters. The following example illustrates
comments:

1.This section is an adaptation of The CORBA 2.2 Specification, Chapter 3, already an adapta-
tion of Ellis, Margaret A. and Bjarne Stroustrup,  The Annoted  C++ Reference Manual,
Addison-Wesley Publishing Company, Reading, Massachussets, 1990, ISBN 0-201-51459-
1, Chapter 2. It differs in the list of legal keywords and punctuation.

Table 5-1 CorbaScript EBNF

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal

"text" Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed unit is optional -- may occur zero or one time



CorbaScript                             December 1998 5-25

5

>>> # This is a comment

5.2.3 Identifiers

Identifiers refer to names of variables, types, procedures, classes, and modules. An
identifier is an arbitrarily long sequence of alphabetic, digit, and underscore ("_")
characters. The first character must be an alphabetic or underscore character. All
characters are significant. Following examples are valid identifiers:

 identifier  identifier123  an_identifier  An_Identifier

Note that CorbaScript is a case sensitive language: an_identifier and An_Identifier are
two different identifiers.

5.2.4 Keywords

The identifiers listed in Table 5-3 are reserved for use as keywords and may not be
used otherwise.

Keywords obey the rules for identifiers (see "Identifiers" on page 5-25) and must be
written exactly as shown in the above list. For example, "class " is correct ; "Class "
refers to an identifier and can produce an interpretation error.

CorbaScript scripts use the characters shown in Table 5-3 as punctuation.

5.2.5 Literals

This section describes the following literals:

• Integer

• Floating-point

• Character

• String

Table 5-2 Keywords

catch class del do else

finally for if import in

proc return throw try while

Table 5-3 Punctuation Characters

( ) [ ] { } , ; . :: :

+ - * / % \ ! && ||

= == != < <= > >=



5-26                                  CorbaScript                            December 1998

5

Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten)
unless it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of
digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). The
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0xC.

Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e
or E, and an optionnally signed integer exponent. The integer and fraction parts both
consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (but not both) may be missing ; either the decimal point or the letter e (or E) and
the exponent (but not both) may be missing. Consider the following examples:

3.  3.2  .2  3.2e-4  .2e15  10e10

Character Literals

A character literal is one or more characters enclosed in single quotes, as in following
examples:

 'a' ’\t' ’\045' ’\x4f’

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal).
The value of a space, alphabetic, digit, or graphical character literal is the numerical
value of the character as defined in the ISO Latin-1 (8859.1) character set standard
(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4 in the
CORBA 2.2 specification). The value of null is 0. The value of a formatting character
literal is the numerical value of the character as defined in the ISO 646 standard (See
Table 3-5 on page 3-5 in the CORBA 2.2 specification). The meaning of all other
characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below in
Table 5-4. Note that escape sequences must be used to represent single quote and
backslash characters in character literals.

Table 5-4 Escape Sequences

Description Escape Sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f



CorbaScript                             December 1998 5-27

5

If the character following a backslash is not of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired character. The escape \xhh consists of
the backslash followed by x followed by one or two hexadecimal digits that are taken
to specify the value of the desired character. A sequence of octal or hexadecimal digits
is terminated by the first character that is not an octal digit or a hexadecimal digit,
respectively. The value of a character constant is implementation dependent if it
exceeds that of the largest char.

Wide character and wide string literals are specified exactly like character and string
literals. All character and string literals, both wide and non-wide, may only be
specified (portably) using the characters found in the ISO 8859-1 character set, that is
identifiers will continue to be limited to the ISO 8859-1 character set.

String Literals

A string literal is a sequence of characters (as defined in "Character Literals" on
page 5-26) surrounded by double quotes, as in following examples:

 "Hello world!\n" "An \"embedded\" string"

Adjacent string literals are concatenated. Characters in concatenated strings are kept
distinct. For example,

            "\xA" "B"

contains the two characters ’\xA’ and ’B’ after concatenation (and not the single
hexadecimal character ’\xAB’).

The size of a string literal is the number of character literals enclosed by the quotes,
after concatenation. The size of the literal is associated with the literal. Within a string,
the double quote character must be preceded by a \.

A string literal may not contain the character ’\0’.

alert \a

backslash \\

question mark \?

single quote \’

double quote \"

octal number \ooo

hexadecimal number \xhh

Table 5-4 Escape Sequences

Description Escape Sequence



5-28                                  CorbaScript                            December 1998

5

5.3 CorbaScript Grammar

(1)         <script>  ::= <statements>
(2)     <statements>  ::= <statement> *

(3)      <statement>  ::= ";"
                      |   "{" <statements> "}"
                      |   <expression>
                      |   <variable_management>
                      |   <control_flow_statements>
                      |   <procedure_declaration>
                      |   <class_declaration>
                      |   <exception_management>
                      |   <module_management>
(4)     <expression>  ::= <literal>
                      |   <identifier>
                      |   "(" <expression> ")"
                      |   <arithmetic_expression>
                      |   <relational_expression>
                      |   <logical_expression>
                      |   <procedure_call>
                      |   <attribute_get>
                      |   <method_call>
                      |   <array_creation>
                      |   <dictionary_creation>
                      |   <indexed_get>
(5)        <literal>  ::= <long_literal>
                      |   <double_literal>
                      |   <character_literal>
                      |   <string_literal>
(6) <arithmetic_expression>
                      ::= "+" <expression>
                      |   "-" <expression>
                      |   <expression> "+" <expression>
                      |   <expression> "-" <expression>
                      |   <expression> "*" <expression>
                      |   <expression> "/" <expression>
                      |   <expression> "%" <expression>
                      |   <expression> "\" <expression>
(7) <relational_expression>
                      ::= <expression> "==" <expression>
                      |   <expression> "!=" <expression>
                      |   <expression> "<"  <expression>
                      |   <expression> "<=" <expression>
                      |   <expression> ">"  <expression>
                      |   <expression> ">=" <expression>
(8) <logical_expression>
                      ::= "!" <expression>
                      |   <expression> "&&" <expression>
                      |   <expression> "||" <expression>
(9) <procedure_call>  ::= <identifier> "(" <arguments> ")"



CorbaScript                             December 1998 5-29

5

(10)     <arguments>  ::= [ <expression_list> ]
(11) <expression_list> ::= <expression> { "," <expression>} *

(12)  <attribute_get>  ::= <expression> "." <identifier>
                       |   <expression> "!" <identifier>
(13)    <method_call>  ::= <expression> "." <identifier>
                           "(" <arguments> ")"
                       |   <expression> "!" <identifier>
                           "(" <arguments> ")"
(14) <array_creation>  ::= "[" <arguments> "]"
(15) <dictionary_creation>
                       ::= "{" <dictionary_expression_list> 
                           "}"
(16) <dictionary_expression_list>
                       ::= [ <dictionary_expression> { ","
                           <dictionary_expression> } * ]
(17) <dictionary_expression>
                       ::= <expression> ’:’ <expression>
(18) <indexed_get>  ::= <expression> "[" <expression> "]"
(19) <variable_management>
                       ::= <assignment_statement>
                       |   <del_statement>
(20) <assignment_statement>
                       ::= <identifier> "=" <expression>
                       |   <expression> "." <identifier>
                           "=" <expression>
                       |   <expression> "!" <identifier>
                           "=" <expression>
                       |   <expression> "[" <expression> "]"
                           "=" <expression>
(21)  <del_statement>  ::= "del" <identifier>
                       |   "del" <expression> "."
                           <identifier>
(22) <control_flow_statements>
                       ::= <if_statement>
                       |   <while_statement>
                       |   <do_statement>
                       |   <for_statement>
                       |   <return_statement>
(23)   <if_statement>  ::= "if" "(" <expression> ")"
                           <statement>
                           [ "else" <statement> ]
(24) <while_statement> ::= "while" "(" <expression> ")"
                           <statement>
(25)   <do_statement>  ::= "do" <statement>
                           "while" "(" <expression> ")"
(26)  <for_statement>  ::= "for" <identifier> "in"
                           <expression> <statement>
(27) <exception_management>
                       ::= <throw_statement>
                       |   <try_catch_finally_statement>
(28) <throw_statement> ::= "throw" <expression>



5-30                                  CorbaScript                            December 1998

5

(29) <try_catch_finally_statement>
                       ::= "try" "{" <statements> "}"
                           { "catch" "(" <exception_type>
                           <identifier> ")"
                           "{" <statements> "}" } *

                           [ "catch" "(" <identifier> ")"
                           "{" <statements> "}" ]
                             [ "finally" "{" <statements> "}" ]
(30) <exception_type>  ::= <identifier> { "." <identifier> } *

(31) <return_statement>
                       ::= "return" [ <expression> ]
(32) <procedure_declaration>
                       ::= "proc" <identifier> "("
                           [ <formal_parameter_list> ] ")"
                           "{" <statements> "}"
(33) <formal_parameter_list>
                       ::= <identifier_list> { ","
                           <identifier> "=" <expression> } *

(34) <identifier_list> ::= <identifier> { ‘,’ <identifier>
                           } *

(35) <class_declaration>
                       ::= "class" <identifier> [ "("
                           <inherited_class_list> ")" ]
                           "{" <statements> "}"
(36) <inherited_class_list>
                       ::= <expression_list>
(37) <module_management>
                       ::= <import_module>
(38)  <import_module>  ::= "import" <identifier_list>

5.4 Scripts

A CorbaScript script consists of zero or more statements. A statement can be a null
statement (’;’), a statement block surrounded by bracket characters (’{’ and ’}’), an
expression, a variable management statement, a control flow statement, a procedure
declaration, a class declaration, an exception management statement, or a module
management statement. The syntax is:

<script> ::= <statements>
<statements> ::= <statement> *

<statement> ::= ";"
            |   "{" <statements> "}"
            |   <expression>
            |   <variable_management>
            |   <control_flow_statements>
            |   <procedure_declaration>
            |   <class_declaration>
            |   <exception_management>
            |   <module_management>



CorbaScript                             December 1998 5-31

5

See “Expressions” on page 5-31, “Variable and Attribute Management” on page 5-36,
“Control Flow Statements” on page 5-45, “Procedures” on page 5-47, “Classes” on
page 5-50, “Exceptions” on page 5-54, and “Modules” on page 5-58, respectively, for
specifications of <expression> , <variable_management> , <control_
flow_statements> , <procedure_declaration> , <class_declara
tion> , <exception_management> , and <module_management> .

5.5 Expressions

This section describes the syntax for CorbaScript expressions. These syntactical
constructs are general and can be applied on any CorbaScript objects. Their semantic
meaning depend on the object’s type as described in “Objects and Types” on
page 5-37.

5.5.1 Syntax

A CorbaScript expression can be a literal, an identifier, a parenthesed expression, an
arithmetic expression, a relational expression, a logical expression, a procedure call, an
attribute getting, a method call, an array creation,  a dictionary creation, and an
indexed getting. The syntax is:

<expression> ::= <literal>
             |   <identifier>
             |   "(" <expression> ")"
             |   <arithmetic_expression>
             |   <relational_expression>
             |   <logical_expression>
             |   <procedure_call>
             |   <attribute_get>
             |   <method_call>
             |   <array_creation>
             |   <dictionary_creation>
             |   <indexed_get>

See “Literal Values” on page 5-31, “Identifiers” on page 5-32, “Arithmetic Operators”
on page 5-32, “Relational Operators” on page 5-33, “Logical Operators” on page 5-33,
“Procedure Call” on page 5-34, “Attribute Getting” on page 5-34, “Method Call” on
page 5-35, “Array Creation” on page 5-35, “Dictionary Creation” on page 5-35, and
“Indexed Getting” on page 5-36, respectively, for specifications of <literal> ,
<identifier> , <arithmetical_expression>, <relational_expression>, <logical_expres
sion>, <procedure_call>, <attribute_get>, <method_call>, <array_creation>,
<dictionary_creation>, and <indexed_get>.

5.5.2 Literal Values

The syntax for expression literals is:



5-32                                  CorbaScript                            December 1998

5

<literal> ::= <long_literal>
          |   <double_literal>
          |   <character_literal>
          |   <string_literal>

Here, <long_literal>, <double_literal>, <character_literal>, and <string_literal>
refers respectively to integer, float-point, character, and string lexical literals defined in
Section 5.2.5, “Literals”, on page 5-25. Consider the following examples:

>>> 10                  # a long value
10
>>> 3.1415              # a double value
3.1415
>>> 'c'                 # a character value
'c'
>>> "Hello World!"      # a string value
"Hello World!"

Note that when CorbaScript is interactively used it displays the result of the last
expression evaluation.

5.5.3 Identifiers

Expression identifiers are defined as lexical identifiers described in Section 5.2.3,
“Identifiers”, on page 5-25. These identifiers refer to named CorbaScript objects like
constants, variables, types, procedures, classes, modules, etc. The two predefined
identifiers true and false respectively refer to CorbaScript constant objects which
represent the two boolean values. The Void identifier refers to the unique void object
value. Consider the following examples:

>>> true               # the boolean true value
true
>>> false              # the boolean false value
false
>>> Void
>>>

Note that if an expression evaluation returns the Void value then this value is not
displayed.

5.5.4 Arithmetic Operators

The syntax for arithmetic expressions is:



CorbaScript                             December 1998 5-33

5

<arithmetic_expression> ::= "+" <expression>
                        |   "-" <expression>
                        |   <expression> "+" <expression>
                        |   <expression> "-" <expression>
                        |   <expression> "*" <expression>
                        |   <expression> "/" <expression>
                        |   <expression> "%" <expression>
                        |   <expression> "\" <expression>

CorbaScript supports the usual arithmetic operators: the "+" and "- " unary ones, and
the "+", "- ", "*" , "/ ", and "%" binary ones. The "\ "  binary operator represents the
integer division. Automatic needed value coercions are done for binary operators.
These operators have the usual meaning. Consider the following examples:

>>> 10 + 3
13
>>> 10 - 3.3
6.7
>>> 10 / 3
3.33333
>>> 10 % 3    # only for long integers
1
>>> 10 \ 3    # only for long integers
3

5.5.5 Relational Operators

The syntax for relational expressions is:

<relational_expression> ::= <expression> "==" <expression>
                        |   <expression> "!=" <expression>
                        |   <expression> "<"  <expression>
                        |   <expression> "<=" <expression>
                        |   <expression> ">"  <expression>
                        |   <expression> ">=" <expression>

Relational operators are the classical binary ones: "==", "!= ", "<", "<=", ">", and
">=". They return boolean values and operand type coercions are done automatically if
needed. This also implies dynamic value type checking at execution time. These
operators have the usual meaning. Consider the following examples:

>>> 10 == 3
false
>>> 3.1415 > 3
true

5.5.6 Logical Operators

The syntax for logical expressions is:



5-34                                  CorbaScript                            December 1998

5

<logical_expression> ::= "!" <expression>
                     |   <expression> "&&" <expression>
                     |   <expression> "||" <expression>

Logical operators are the classical unary and binary ones. The unary not is represented
by "! ". The binary and is represented by "&&". The binary or is represented by "|| ".
They take two boolean operands.  These operators return a boolean value. Dynamic
operand type checking is done at execution time. These operators have the usual
meaning. Consider the following examples:

>>> ( 10 != 3.3 ) && true
true
>>> ( 10 < 3 ) || false
false
>>> true && false
false
>>> false || ( 10 > 3 )
true
>>> ! ( 10 == 3 )
true

5.5.7 Procedure Call

The syntax for procedure calls is:

<procedure_call> ::= <identifier> "(" <arguments> ")"
<arguments> ::= [ <expression_list> ]
<expression_list> ::= <expression> { "," <expression> } *

A procedure call can be applied to any CorbaScript object named by an identifier.
Procedure arguments, surrounded by brackets, are composed of zero or more
expressions separated by comma characters. The number of arguments and the
meaning of a procedure call depend on the CorbaScript object designed by the
identifier. For example, if the object is a procedure (see “Procedures” on page 5-47)
then the meaning is to execute this object procedure, whereas if the object is a class
(see “Classes” on page 5-50) then the meaning is the instanciation of this class.

5.5.8 Attribute Getting

The syntax for attribute getting is:

<attribute_get> ::= <expression> "." <identifier>
                |   <expression> "!" <identifier>

An attribute getting can be applied to any expression object. The identifier names the
accessed attribute. Two point notations are provided: the ’.’ and the ’!’ ones. The
meaning of an attribute getting depends on the target object and the used point
notation. For most of objects, these two notations are equivalent and their meaning are



CorbaScript                             December 1998 5-35

5

the access to an existing attribute of the target object. However applied to a CORBA
object reference (see Section 6.12.4), the meaning is a synchronous or a deferred
attribute getting.

5.5.9 Method Call

The syntax for method calls is:

<method_call> ::= <expression> "." <identifier>
                  "(" <arguments> ")"
              |   <expression> "!" <identifier>
                  "(" <arguments> ")"

A method call can be applied to any expression object. The identifier names the
invoked method. Method arguments, surrounded by brackets, are composed of zero or
more expressions separated by comma characters. Two point notations are also
provided: the ’.’ and the ’!’ ones. The meaning of a method call depends on the target
object and the used point notation. For most of objects, these two notations are
equivalent and their meaning are the invocation of an existing method of the target
object. However applied to a CORBA object reference (see Section 6.12.5), the
meaning is a synchronous or a deferred method call.

5.5.10 Array Creation

The syntax for array creations is:

<array_creation> ::= "[" <arguments> "]"

At creation time, an array object (see “Array Objects” on page 5-41) can be initialized
with zero or more expression objects. Consider the following examples:

>>> [ ]                            # an empty array
[]
>>> [ 1, 2.3, ’c’, "hello", true ] # an heterogeneous array
[ 1, 2.3, ’c’, "hello", true]

5.5.11 Dictionary Creation

The syntax for dictionary creations is:

<dictionary_creation> ::= "{" <dictionary_expression_list>
                          "}"
<dictionary_expression_list> ::= [ <dictionary_expression>
                             { "," <dictionary_expression> } * ]
<dictionary_expression> ::= <expression> ’:’ <expression>

At creation time, a dictionary object (see “Dictionary Objects” on page 5-43) can be
initialized with zero or more key/value expression pairs separated by commas. The key
and the value of a pair is separated by ’:’. Consider the following example:



5-36                                  CorbaScript                            December 1998

5

>>> { 1: "one", 2: "two", 3: "three" }
{ 1: "one", 2: "two", 3: "three"}

5.5.12 Indexed Getting

The syntax for indexed getting is:

<indexed_get> ::= <expression> "[" <expression> "]"

An indexed getting can be applied to any expression object. The accessed index is also 
an expression object. The meaning depends on the target object.

5.6 Variable and Attribute Management

This section describes the syntax for variable and attribute management, that is
assignment and deletion constructs. The syntax is:

<variable_management> ::= <assignment_statement>
                      |   <del_statement>

5.6.1 Assignments

The syntax for assignments is:

<assignment_statement> ::= <identifier> "=" <expression>
    |     <expression> "." <identifier> "=" <expression>
    |     <expression> "!" <identifier> "=" <expression>
    | <expression> "[" <expression> "]" "=" <expression>

The first construct is dedicated to variable assignments. Variables can refer to any
expression object. They are defined at their first assignment. During execution time, a
variable can take different kinds of values. Consider the following examples:

>>> v = 10
>>> v
10
>>> v = "Hello"
"Hello"

Other constructs are for attribute and indexed assignments. Their meaning depend on
the target object.

5.6.2 The Del  Statement

The syntax for deletions is:

<del_statement> ::= "del" <identifier>
                |   "del" <expression> "." <identifier>



CorbaScript                             December 1998 5-37

5

The del  statement construct allows scripts to forget a previous defined variable. The
variable is designed by the identifier. Note that this identifier can be preceded by an
expression which defines the scope of the variable such as a module, a class or an
instance.

5.7 Objects and Types

This section describes the main CorbaScript object types and their functionalities.

5.7.1 Everything is Typed Object

As CorbaScript is an object-oriented scripting language, all scripted entities such as
literals, arrays, dictionaries, procedures, classes, instances, exceptions, and modules are
represented by objects. Each object provides a set of functionalities: operators,
attributes and methods. These functionalities are used through the syntactical
constructs presented in “Expressions” on page 5-31.

The set of functionalities of an object is defined by its type. Through this type, the
interpreter checks the validity of every operator, attribute, and method call. When a
typing error occurs, the interpreter throws an internal exception (see Section 5.11.1,
“Internal Exceptions”, on page 5-54). Moreover,  types are also CorbaScript objects.
The _type attribute allows scripts to access the CorbaScript type of any object. It
allows programmers to check typing information for instance to check argument types
of a procedure.  Table 5-5 enumerates the set of functionalities which are supported by
all CorbaScript objects and types.

5.7.2 Basic Value Types

The basic object types are accessible through boolean, long, double, and char
identifiers. Consider the following examples:

Table 5-5 The Object and Type Functionalities

Functionality Explanation

object._type Returns the type object of any object.

object._is_a(type) Returns true if the object is of  a certain type or of a type 
which is a subtype of this type.

object._toString() Returns a string that is the textual representation of an 
object.

type._type Returns the meta type of any type object.

type1._is_a(type2) Returns true if the type1 is equal or is a subtype of type2.

type._toString() Returns a string that is the textual representation of the 
type object.



5-38                                  CorbaScript                            December 1998

5

>>> b = true
>>> b._type
< type boolean ... >
>>> b._is_a(boolean)
true
>>> b._is_a(long)
false
>>> b._toString()
"true"
>>> l = 10
>>> l._type
< type long ... >
>>> l._is_a(long)
true
>>> l._is_a(double)
false
>>> l._toString()
"10"
>>> d = 3.1415
>>> d._type
< type double ... >
>>> d._is_a(double)
true
>>> d._is_a(char)
false
>>> d._toString()
"3.1415"
>>> c = ’c’
>>> c._type
< type char ... >
>>> c._is_a(char)
true
>>> c._is_a(boolean)
false
>>> c._toString()
"c"

These types provide the classical semantic for operators (see Section 5.5.4, “Arithmetic
Operators”, on page 5-32, Section 5.5.5, “Relational Operators”, on page 5-33, and
Section 5.5.6, “Logical Operators”, on page 5-33) and automatic coercions.



CorbaScript                             December 1998 5-39

5

5.7.3 String Objects

The string identifier refers to the string type. Strings support a set of attributes,
methods and operators. All these functionalities are enumerated in Table 5-6 and they
never modify the target string. When indexes are out of the string bounds, an exception
BadIndex is raised (see Section 5.11.1, “Internal Exceptions”, on page 5-54).

Table 5-6 The String Type Functionalities

 Functionality Explanation

s.length Returns the length of the s string.

s[i] Returns the character at the i position. The index ranges from 0 
to s.length - 1.

c + s Returns the concatenation of the c character and the s string.

s + c Returns the concatenation of the s string and the c character.

s1 + s2 Returns the concatenation of the s1 and s2 strings.

s1 == s2 Returns true if s1 contains the same sequence of characters as s2.

s1 != s2 Returns true if s1 contains a different sequence of characters as 
s2.

s1 < s2 Returns true if s1 is lexicographically lower than s2.

s1 <= s2 Returns true if s1 is lexicographically lower or equal to s2.

s1 > s2 Returns true if s1 is lexicographically greater than s2.

s1 >= s2 Returns true if s1 is lexicographically greater or equal to s2.

s.index(c) Returns the position of the first occurrence of the c character or  
-1 if c does not occur.

s.index(c,pos) Returns the position of the first occurrence of the c character 
starting the search at the pos index or -1 if c does not occur.

s1.index(s2) Returns the position of the first occurrence of the s2 string or -1 
if s2 does not occur.

s1.index(s2,pos) Returns the position of the first occurrence of the s2 string 
starting the search at the pos index or -1 if s2 does not occur.

s.rindex(c) Returns the position of the last occurrence of the c character or   
-1 if c does not occur.

s.rindex(c,pos) Returns the position of the last occurrence of the c character 
starting the backward search at the pos index or -1 if c does not 
occur.

s1.rindex(s2) Returns the position of the last occurrence of the s2 string or -1 
if s2 does not occur.



5-40                                  CorbaScript                            December 1998

5

Consider the following examples:

>>> s = "Hello World!"
>>> s._type
< type string ... >
>>> s._is_a(string)
true
>>> s._is_a(boolean)
false
>>> s._toString()
"Hello World!"
>>> s.length
12
>>> s[1]
'e'
>>> s + '!'
"Hello World!!"
>>> "Hello " + "World!"
"Hello World!"
>>> s == "Hello World!"
true
>>> s.index('o')
4
>>> s.index('o',6)
7
>>> s.index("l")
2
>>> s.index("l",5)
9
>>> s.substring(3,7)
"lo Wo"
>>> s.toLowerCase()
"hello world!"
>>> s.toUpperCase()
"HELLO WORLD!"

s1.rindex(s2,pos) Returns the position of the last occurrence of the s2 string 
starting the backward search at the pos index or -1 if s2 does not 
occur.

s.substring(bi) Returns a new string that is a substring of s beginning at the bi 
index.

s.substring(bi,ei) Returns a new string that is a substring of s between the bi and ei 
indexes.

s.toLowerCase() Returns a new string that is a lower case copy of the s string.

s.toUpperCase() Returns a new string that is a upper case copy of the s string.

Table 5-6 The String Type Functionalities

 Functionality Explanation



CorbaScript                             December 1998 5-41

5

5.7.4 Array Objects

The array  identifier refers to the array type. Arrays are  dynamically extensible
containers of any CorbaScript objects. Arrays are built using ’[ ’ and ’] ’ delimiters and
values are separated by commas (’, ’). Array elements can have different types. Arrays
can be embedded in other arrays. Moreover, array objects provide a set of operators,
attributes and methods. All these functionalities are enumerated in Table 5-7. When
indexes are out of the array bounds, a CorbaScript internal exception BadIndex is
raised.

Consider the following examples:

Table 5-7 The Array Type Functionalities

Functionality Explanation

a.length Returns to the length of the a array.

a[i] Returns the value at the i position. The index ranges from 0 to 
a.length - 1.

a[i] = v Updates the component value at the i position. The index ranges 
from 0 to a.length - 1.

a1 + a2 Returns a new array which is the concatenation of  the a1 and a2 
arrays.

a.append(v) Appends the v object at the end of the a array.

a.insert(v,i) Inserts the v object at the i position. The index ranges from 0 to 
a.length.

a.delete(i) Deletes the component value at the i position. The index ranges 
from 0 to a.length - 1.

a.remove(v) Removes the first occurrence of the v object.  Returns true if v 
occurs.

a.contains(v) Returns true if the v value is contained in the array.

a.index(v) Returns the position of the first occurrence of the v object or -1 if v 
does not occur.

a.index(v,pos) Returns the position of the first occurrence of the v object  starting 
the search at the pos index or -1 if v does not occur.

a.rindex(v) Returns the position of the last occurrence of the v object or -1 if v 
does not occur.

a.rindex(v,pos) Returns the position of the last occurrence of the v object starting 
the backward search at the pos index or -1 if v does not occur.

array.create(n) Creates an array initialized with n Void objects.



5-42                                  CorbaScript                            December 1998

5

>>> # heterogeneous array
>>> a = [ true, [1, 3.1415], 'c', "Hello World!"]
>>> a._type
< type array ... >
>>> a._type == array
true
>>> a._is_a(boolean)
false
>>> a._toString()
"[ true, [1, 3.1415], 'c', "Hello World!"]"
>>> a.length
4
>>> a[1]
[1, 3.1415]
>>> a[1] = 10
>>> a
[ true, 10, 'c', "Hello World!"]
>>> a + [1,2]
[ true, 10, 'c', "Hello World!", 1, 2]
>>> a.append (false)
>>> a
[ true, 10, 'c', "Hello World!", false]
>>> a.insert("a value", 1)
>>> a
[ true, "a value", 10, 'c', "Hello World!", false]
>>> a.delete(2)
>>> a
[ true, "a value", 'c', "Hello World!", false]
>>> a.remove("a value")
true
>>> a
[ true, 'c', "Hello World!", false]
>>> a.contains(10)
false
>>> a.index(false)
3
>>> a.index(true, 1)
-1
>>> a = [ true, 'c', 10, 'c', false]
>>> a.rindex('c')
3
>>> a.rindex('c',2)
1
>>> a = array.create(5)
>>> a
[ Void, Void, Void, Void, Void]



CorbaScript                             December 1998 5-43

5

5.7.5 Dictionary Objects

The dictionary  identifier refers to the dictionary type. A dictionary object is a
powerful container to store any key - value associations such as indexed tables,
structured records, etc. Keys and values are of any CorbaScript object types.
Dictionaries are built using ’{ ’ and ’} ’ delimiters, associations are separated by
commas (’, ’), and key and value by the ’: ’ character. Dictionary objects provide a set
of operators, attributes and methods. All these functionalities are enumerated in
Table 5-7. Searching a key that is not contained by a dictionary raises a CorbaScript
internal NotFound exception.

Consider the following examples:

>>> d = { 1: "one", 2: "two", 3: "three"}
>>> d._type
< type dictionary ... >
>>> d._type == dictionary
true
>>> d._is_a(boolean)
false
>>> d._toString()
"{ 1: "one", 2: "two", 3: "three"}"

Table 5-8 The Dictionary Type Functionalities

Functionality Explanation

dict.size Returns the number of associations in the dict dictionary.

dict.keys Returns an array of the key objects in the dict dictionary.

dict.values Returns an array of the value objects in the dict dictionary.

dict[key] Returns the value associated to the key  in the dict 
dictionary.

dict[key] = value Updates the value associated to a key or adds this key - 
value association in the dict dictionary.

dict.contains(value) Returns true if the value is associated to a key in the dict 
dictionary.

dict.containsKey(key) Returns true if the key is present in the dict dictionary.

dict.remove(key) Removes the key and its corresponding value from the dict 
dictionary.



5-44                                  CorbaScript                            December 1998

5

>>> d.size
3
>>> dict.keys
[1, 2, 3]
>>> dict.values
["one", "two", three"]
>>> d[1]
"one"
>>> d[4] = "four"
>>> d
{ 1: "one", 2: "two", 3: "three", 4: "four"}
>>> d.contains("two")
true
>>> d.containsKey(4)
true
>>> d.remove(2)
>>> d
{ 1: "one", 3: "three", 4: "four"}

5.7.6 Predefined Internal Procedures

CorbaScript provides some predefined internal procedures, see Table 5-9, respectively
named by the following identifiers: eval, exec, getline, print, and println.

The eval function provides the classical powerful evaluation function: it takes a
stringified script, executes it, and returns the result of this evaluation. This allows
programmers to construct interpretable CorbaScript code at execution time.

The exec function executes a script file. Variables, procedures, and classes defined into
the file are always available after the file execution.

The getline function allows scripts to read a text line from the standard input stream
and returns a string containing this text line.

The interpreter automatically displays the last evaluated expression. But it can be
necessary into complex scripts to display a value or a set of values at any time, for
example, during a loop. The print procedure allows scripts to display a set of object
expressions. The println procedure displays a new line after printing all the
expressions.

Table 5-9 The Predefined Internal Procedures

Internal Procedures Explanation

eval(string) Evaluates a string containing a CorbaScript script.

exec(string) Executes the file named by string.

getline() Reads a text line from the standard input stream.

print(arg1, ..., argn) Prints zero or more object arguments.

println(arg1, ... argn) Prints zero or more object arguments and a new line.



CorbaScript                             December 1998 5-45

5

These internal procedures are executed using the procedure calling notation. Consider
the following examples:

>>> s = "1 + 1"
>>> eval (s)
2
>>> exec("a_script.cs")
. . .
>>> s = getline()
Hello World!
>>> s
"Hello World!"
>>> print (100, '\n', "string1 string2\n")
100
string1 string2
>>> println (1, ' ', 'c', ' ', true, ' ', "string")
1 c true string

5.8 Control Flow Statements

This section describes the syntax for CorbaScript control flow statements.

5.8.1 Syntax

A CorbaScript control flow statement can be an if , a while , a do , a for , and a
return  statement. The syntax is:

<control_flow_statements> ::= <if_statement>
                          |   <while_statement>
                          |   <do_statement>
                          |   <for_statement>
                          |   <return_statement>

See “The If Statement” on page 5-45, “The While Statement” on page 5-46, “The Do
Statement” on page 5-46, “The For Statement” on page 5-47, and “The Return
Statement” on page 5-47, respectively, for specifications of <if_statement>,
<while_statement>, <do_statement>, <for_statement>, and <return_statement>.

5.8.2 The If  Statement

The syntax for if  statements is:

<if_statement> ::= "if" "(" <expression> ")" <statement>
                   [ "else" <statement> ]

The if  statement construct allows scripts to test a condition expression: if it is true,
the following statement is executed else the statement after else  is executed. Of
course, the else  clause is optional.



5-46                                  CorbaScript                            December 1998

5

The condition must be a boolean expression: a variable containing a boolean object, a
relational operator (e.g. ==, != , <, <=, > or >=) or a composition of boolean
expressions (e.g. &&, ||  or ! ). The dynamic type of the expression is checked at
runtime. Consider the following examples:

>>> i = 1
>>> if ( i == 1) println("i == 1");
i == 1
>>> i = 2
>>> if ( i == 1) { println("i == 1") }
    else { println("i != 1") }
i != 1

5.8.3 The While  Statement

The syntax for while  statements is:

<while_statement> ::= "while" "(" <expression> ")"
                      <statement>

The while  statement construct allows scripts to iterate a set of statements while a
condition expression is true. The condition must be a boolean expression object and is
checked at runtime. If the condition is false at the first time, the statements are never
executed. Consider the following example:

>>> i = 0
>>> while ( i < 10 ) {
      print (i, ' ')
      i = i + 1
     }
0 1 2 3 4 5 6 7 8 9

5.8.4 The Do Statement

The syntax for do  statements is:

<do_statement> ::= "do" <statement>
                   "while" "(" <expression> ")"

The do  statement construct allows scripts to iterate a set of statements while a
condition expression is true. The condition must be a boolean expression object and is
checked at runtime. Consider the following example:

>>> i = 0
>>> do {
      print (i, ' ')
      i = i + 1
    } while ( i < 10 )
0 1 2 3 4 5 6 7 8 9



CorbaScript                             December 1998 5-47

5

5.8.5 The For  Statement

The syntax for for  statements is:

<for_statement> ::= "for" <identifier> "in" <expression>
                          <statement>

The for  statement construct allows scripts to iterate on an expression enumeration of
objects. During each statement execution loop, the identifier variable contains the next
object of the expression. The expression must be an enumerated object such as a string
or an array. This property is checked at runtime. Consider the following examples:

>>> a = ["Monday", "Tuesday", "Wednesday", "Thursday", 
"Friday", "Saturday", "Sunday"]
>>> for i in a print (i, ' ');
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
>>> for i in "hello world!" print (i, ' ');
h e l l o   w o r l d !
>>> for i in range(0,9) print (i, ' ');
0 1 2 3 4 5 6 7 8 9
>>> r = range(9,0,-1)
>>> for i in r print (i, ' ');
9 8 7 6 5 4 3 2 1 0

The range expression allows scripts to perform a loop on an integer interval. The two
first arguments define respectively the first and last integer values of the interval, the
third optional argument sets the interval increment. By default, this increment is equal
to 1. Moreover, a range expression is also a CorbaScript object: it can be stored into a
variable.

5.8.6 The Return  Statement

The syntax for return  statements is:

<return_statement> ::= "return" [ <expression> ]

The return  statement construct allows a script to interrupt its execution before the
end of the script code. It is mainly used in procedures or instance methods to return a
result to the caller.

The returned value is optional. In this way, the return  statement returns
automatically the Void object. This construct can be used when procedures want to
prematurely stop their execution without returning a value.

5.9 Procedures

This section describes the syntax for CorbaScript procedures.



5-48                                  CorbaScript                            December 1998

5

5.9.1 Declaration

The syntax for procedure declarations is:

<procedure_declaration> ::= "proc" <identifier> "("
                            [ <formal_parameter_list> ] ")"
                            "{" <statements> "}"
<formal_parameter_list> ::= <identifier_list> { ","
                            <identifier> "=" <expression> } *

<identifier_list> ::= <identifier> { ‘,’ <identifier> } *

The proc  declaration construct allows scripts to create a procedure. A procedure is
specified by an identifier name and a list of formal parameters (formal_parameter_list)
defined between brackets (’( ’ and ’) ’). A procedure body is composed of a set of
statements between brackets (’{ ’ and ’} ’). Consider the following example which
declares a sample procedure with two formal parameters (p1 and p2):

>>> proc sample (p1, p2)
    {
      println ("The 'sample' procedure is called with p1=",
               p1, " and p2=", p2)
    }
>>> sample (true,"hello")
The 'sample' procedure is called with p1=true and p2=hello

Procedures can be redefined at any time. The new procedure must only use the same
name. The previous procedure version becomes unavailable.

5.9.2 Formal Parameters and Default Values

Formal parameters are not typed and there is no limit about their number. A default
value can be assigned to the last formal parameters. These values are evaluated at the
procedure creation time. The procedure statements can access directly to formal
parameters as local variables. Consider the following example:

>>> proc display (p1, p2="World")
    {
      println (p1, ' ', p2, ’!’)
    }
>>> display ("Hello")
Hello World!
>>> display ("Hello", "You")
Hello You!

Formal parameters can be used in read and write mode inside the procedure ; it does
not affect the real parameter since procedures do not call update methods on the formal
parameters.



CorbaScript                             December 1998 5-49

5

5.9.3 The Returned Object

Procedures can return an object computed inside them using the return  statement,
and this stops the procedure execution. Consider the following example that presents a
recursive implementation of a factorial function:

>>> proc fac (i)
    {
      if ( i == 1 ) return 1
      return i * fac (i - 1)
    }
>>> fac (5)
120

5.9.4 Local and Global Variables

Local variables can be defined anywhere inside a procedure. They are defined at their
first assignment. If a local variable has the same name as a global variable then this
global variable is hidden in the procedure. Unhidden global variables can be accessed
by procedures only in read mode. However global variables can be accessed and
updated by prefixing them with the global scope name. Consider the following
example:

>>> x = 5
>>> proc sample ()
    {
      # access to the global 'x' variable.
      println ("x=", x)
      x = 3                   # create a local 'x' variable.
      # access to the local 'x' variable.
      println ("x=", x)
      # access and update the global 'x' variable.
      global.x = global.x * 2
    }
>>> sample ()
x=5
x=3
>>> x
10

5.9.5 Procedure Aliasing

Procedures are objects, then they can be assigned to a variable and be called using the 
new name. Consider the following example: 

>>> alias = fac
>>> alias (5)
120



5-50                                  CorbaScript                            December 1998

5

As procedures are objects, they can be transmitted to another procedure as a parameter.
The following example illustrates passing procedures as parameters: the sort_criteria
parameter of the sort procedure:

>>> proc down (a, b) { return a < b }
>>> proc up (a, b) { return a > b }
>>> proc sort (a, sort_criteria = up)
    {
      for i in range (0, a.length -2)
        for j in range (i + 1, a.length -1)
          if ( sort_criteria (a[i], a[j]) ) {
            temp = a[i]
            a[i] = a[j]
            a[j] = temp
          }
    }
>>> t = [ 60 , 6543 , 4 , 1124 , 1 ]
>>> sort (t)
>>> t
[1 , 4 , 60 , 124 , 6543]
>>> sort (t, down)
>>> t
[6543 , 124 , 60 , 4 , 1 ]

This sort procedure works with all  basic CorbaScript value types. By default, it uses
the up function as sort criteria, but it is possible to pass another procedure like down.
Note that the modification of an array item stays after the execution of a procedure,
because an array is an object passed by reference.

5.10 Classes

The CorbaScript language allows one to design script classes. CorbaScript uses the
classical functionalities of object-oriented programming. A class can define instance
attributes, instance methods, class attributes and class methods. Polymorphism,
overriding and multiple inheritance are available, but as scripts are not syntactical
typed, overloading is not provided.

5.10.1 Declaration

The syntax for class  declarations is:

<class_declaration> ::= "class" <identifier>
                        [ "(" <inherited_class_list> ")" ]
                        "{" <statements> "}"
<inherited_class_list> ::= <expression_list>

The class  declaration construct allows script to declare a class named by identifier. A
class can inherit of a set of parent classes (inherited_class_list). Finally, the class body
is composed of a set of statements.



CorbaScript                             December 1998 5-51

5

The class body statements define instance methods, class methods, and class attributes.
Instance attributes are declared at their first assignment. The CorbaScript class
construct is very simple because we think that creating scripted objects must be as
simple as possible.

5.10.2 A Simple Class Example

The following example shows a simple class that implements two dimensional points.
This class illustrates the definition of instance attributes, instance methods, class
attributes and class methods.

>>> class Point2D {
      proc __Point2D__ (self,x,y) {
        self.x = x
        self.y = y
        Point2D.nb_created_points = Point2D.nb_created_points 
+ 1
      }
      proc show (self) {
        println ("Point2D(x=", self.x, ", y=", self.y, ")")
      }
      proc move (self, x, y) {
        self.x = self.x + x
        self.y = self.y + y
      }
      proc how_many () {
        println (nb_created_points, " Point2D instances are 
been created.")
      }
      nb_created_points = 0
    }

Instance Methods

In CorbaScript, each instance method must have an explicit first argument (self for
instance) that refers to the instance receiving the method call. However this first
argument can have any name. Next arguments receive parameters of the method call.

It is possible to define an instance initialization method which is called at the class
instanciation time (__Point2D__). This method must have the same name as the class
and must be surrounded by two underscores (_).

Instance Attributes

Instance attributes are dynamically declared at their first assignment like in self.x = x
and self.y = y statements of the initialization __Point2D__ method.

Instance methods can access directly to instance attributes just by prefixing them with
the instance reference like in the show and move instance methods.



5-52                                  CorbaScript                            December 1998

5

Class Methods

Any procedure declared in the scope of a class is considered as a class method like
how_many.

Class Attributes

Class attributes are just variables assigned in the scope of a class like
nb_created_points. Accessing to class attributes requires that they should be prefixed
by their class name.

The Use of Classes and Instances

Consider the following example that illustrates the use of the Point2D class:

>>> p = Point2D(1,1)
>>> p
< Point2D instance
     x = 1
     y = 1
>
>>> p.move(10,10)
>>> p.show ()
Point2D(x=11, y=11)
>>> p._type
< class Point2D {
       proc __Point2D__ (self, x, y);
       proc show (self);
       proc move (self, x, y);
       proc how_many ();
       nb_created_points = 1;
} >

The first statement creates a Point2D instance. CorbaScript allows scripts to simply
evaluate an instance: this shows the type of the instance and all instance attributes. The
classical dotted notation is used to invoke instance methods. As other CorbaScript
objects, instances support the _type attribute which returns the instance class. The
evaluation of a class shows the signatures of all instance methods, class methods and
class attributes.

5.10.3 A Single Class Inheritance Example

CorbaScript provides a simple class inheritance mechanism. This allows a class to
inherit other classes like in the following example where the class Point3D inherits the
class Point2D. Overriding is available as shown by the show and move instance
methods. Note that the polymorphism will not work if the procedure signature is
changed by adding new parameters: CorbaScript does not provide overloading.
Moreover as procedures are CorbaScript values, it is possible to define alias to access
to inherited methods as shown by the move2D alias. 



CorbaScript                             December 1998 5-53

5

>>> class Point3D (Point2D) {
      proc __Point3D__ (self,x,y,z) {
        self.__Point2D__(x,y)
        self.z = z
      }
      proc show (self) { ... }
      move2D = Point2D.move
      proc move (self, p) {
        self.move2D (p.x, p.y)
        self.z = p.z
      }
    }
>>> p = Point3D(1,1,1) 

5.10.4 A Multiple Class Inheritance Example

Multiple inheritance is available in CorbaScript as shown by the following example
where the class ColoredPoint3D inherits the Point3D and ColoredPoint2D classes.

>>> class ColoredPoint2D (Point2D) {
      proc __ColoredPoint2D__ (self,x,y,c) { ... }
      proc show (self) {...}
    }

>>> class ColoredPoint3D (Point3D, ColoredPoint2D) {
      proc __ColoredPoint3D__ (self,x,y,z,c) { ... }
      proc show (self) {...}
    }

>>> p = ColoredPoint3D(10,10,10,"green")
>>> p   < ColoredPoint3D instance
       x = 10
       y = 10
       z = 10
       c = "green"
>

The method lookup is based on the deep-first algorithm. So if a method has the same
name in two inherited classes, it will be the version in the first class which will be
chosen. Method aliasing allows one to simply change this standard method lookup.

5.10.5 Class and Instance Types

As classes and instances are CorbaScript objects, they provide the standard attributes
and methods to manipulate types (see “Everything is Typed Object” on page 5-37).
Then type comparisons and dynamic type checking are simply available on classes and
instances. Consider the following examples:



5-54                                  CorbaScript                            December 1998

5

>>> ColoredPoint3D
< class ColoredPoint3D (Point3D,ColoredPoint2D) {
       proc __ColoredPoint3D__ (self, x, y, z, c);
       proc show (self);
   } >

>>> p._type == ColoredPoint3D
true
>>> p._type == Point2D
false
>>> p._is_a(Point2D)
true
>>> ColoredPoint3D._is_a(Point2D)
true

5.11 Exceptions

This section describes the CorbaScript exception mechanism. There are two kinds of
exceptions: internal interpreter exceptions and users’ script exceptions.

5.11.1 Internal Exceptions

The internal exceptions are used by the interpreter to signal syntax errors, bad type
checkings, and invalid operations, or any other internal problems during the execution
of a users' script. Internal exceptions are:

• BadArgumentNumber: This exception is thrown when a script calls a procedure or
a method without passing enough parameters.

• BadIndex: This exception is thrown when the index to access a string (or an array)
is out of the string (or array) bounds. If an index is less than zero or greater than the
length of a string (or an array) then the interpreter throws this exception.

• BadTypeCoerce: This exception is thrown when a script tries to apply operations
between incompatible types. For instance, adding a boolean with a string is
impossible because the boolean and the string object can not be coerced to two
compatible objects, then the interpreter throws a bad type coerce exception.
Moreover, this exception is thrown when parameters passed to an internal procedure
are not compatible with formal parameter expected types.

• ExecutionStopped: This exception is thrown when the interpreter is stopped by an
external reason like a <CTRL-C> signal. 

• FileNotFound: This exception is thrown when a script tries to load another script of
which the file name is unknown (or not understandable) by the underlying file
system.

• NotFound: This exception is thrown when an undefined variable, an undefined
attribute, or an undefined method is accessed by a script.

• NotImplemented: This exception is thrown when an internal CorbaScript feature is
not currently implemented.



CorbaScript                             December 1998 5-55

5

• NotSupported: This exception is thrown when an operator or a syntactic construct
is applied on a CorbaScript object which does not support it.

• Overflow: This exception is thrown when the interpreter detects an arithmetic
overflow.

• ReadOnlyAttribute : This exception is thrown when scripts try to affect a read only
attribute.

• SyntaxError : This exception is thrown when a lexical or syntactic error appears in
an interactive script, a downloaded script contained into a file, or a script evaluated
by the eval  expression.

Consider the following examples:

>>> s = "Hello world!"

>>> s.toLowerCase(10)  # toLowerCase takes no parameter.
Exception: < BadArgumentNumber: < InternalMethod 
string.toLowerCase() > needed = 0 given = 1 >
  File "stdin", line 1 in ?

>>> s[100]  # 100 is out of the string bounds.   
Exception: < BadIndex: 100 must be between (0,11) on "Hello 
world!" >
  File "stdin", line 1 in ?

>>> s < 10  # No type coercion between a string and a long 
value.
Exception: < BadTypeCoerce: "Hello world!" < 10 >
  File "stdin", line 1 in ?

>>> while (true);  # an infinite loop.
Exception: < ExecutionStopped: by CTRL-C >
  File "stdin", line 1 in ?
  
>>> exec("a_script.cs")  # execute a script file not 
available.
Exception: < FileNotFound: 'a_script.cs' by exec() >
  File "stdin", line 1 in ?
  
>>> s1 # This is an undefined variable name.
Exception: < NotFound: variable 's1' >
  File "stdin", line 2 in ?

>>> s.an_attribute  # a string value does not provide this 
attribute.
Exception: < NotFound: attribute 'an_attribute' in "Hello 
world!" >
  File "stdin", line 1 in ?



5-56                                  CorbaScript                            December 1998

5

>>> s(10)  # the procedure call construct is not available on 
string values.
Exception: < NotSupported: call on "Hello world!" >
     File "stdin", line 1 in ?

>>> 10 \ 0  # division by zero.
Exception: < Overflow: divide by zero >
  File "stdin", line 1 in ?

>>> s.length = 10
Exception: < ReadOnlyAttribute: < InternalSlot readonly stri 
ng.length > >
  File "stdin", line 1 in ?

>>> s.10  # this construction is not syntactically correct.   
Exception: < SyntaxError before or on '10' >
     File "stdin", line 1 in ?

5.11.2 User Exceptions

Users can define their own exceptions. The exceptions are launched with the throw
statement followed by an expression.

<throw_statement> ::= "throw" <expression>

Any CorbaScript object can be used to throw a user exception. A script can throw a
basic value such as a boolean, a long integer, a string, or also a complex value like an
array or a class instance.

>>> throw 10
Exception: < throw 10 >
     File "stdin", line 1 in ?

>>> throw "Hello"
Exception: < throw "Hello" >
     File "stdin", line 1 in ?

>>> throw [1,2]
Exception: < throw [1 , 2] >
     File "stdin", line 1 in ?

>>> class A_CLASS { proc __A_CLASS__(self,v) { self.v = v } }   
>>> throw A_CLASS(1)
Exception: < throw < A_CLASS instance > >
     File "stdin", line 1 in ? 



CorbaScript                             December 1998 5-57

5

5.11.3 Exception Handling

Internal and user exceptions can be caught by scripts. The syntax for exception
handling is:

<try_catch_finally_statement> ::= "try" "{" <statements> "}"
   { "catch" "(" <exception_type> <identifier> ")"
     "{" <statements> "}" } *

   [ "catch" "(" <identifier> ")" "{" <statements> "}" ]
   [ "finally" "{" <statements> "}" ]
<exception_type> ::= <identifier> { "." <identifier> } *

The try  statement block surrounds a set of statements throwing exceptions. This
block is followed by a set of catch  statement blocks. Each catch  block intercepts a
type of exception values (exception_type). If the exception type is compatible with the
type caught by a block then the exception is stored into a variable (identifier) and the
statements of this block are executed. The last and optional catch  block (with no
exception type) allows scripts to catch any exception. However, if the type of the
current raised exception is not intercepted by a catch  block then this exception is
thrown to the next encapsulating try  block. Moreover, the optional finally  block is
executed in any case, this allows scripts to execute some statements if there are
exceptions or not.

>>> proc exception_handling (v) {
      try {
        throw v
      } catch (boolean e) {
        println ("The exception is a boolean = ", e)
      } catch (long e) {
        println ("The exception is a long integer = ", e)
      } catch (string e) {
        println ("The exception is a string = ", e)
      } finally {
        println ("The finally block is executed.")
      }
    }

>>> exception_handling(true)
The exception is a boolean = true
The finally block is executed.

>>> exception_handling(1)   
The exception is a long integer = 1
The finally block is executed.

>>> exception_handling("EXCEPTION")
The exception is a string = EXCEPTION
The finally block is executed.



5-58                                  CorbaScript                            December 1998

5

>>> exception_handling([1, 2, 3])
The finally block is executed.
Exception: < throw [1 , 2 , 3] >
     File "stdin", line 3 in exception_handling
     File "stdin", line 1 in ?

>>> try {
      exception_handling(A_CLASS(1))
    } catch (e) {
      println ("The exception ", e, " is thrown by the 
procedure.")
    }

The finally block is executed.
The exception < A_CLASS instance > is thrown by the proce-
dure.

5.12 Modules

Modules allow users to store reusable scripts into text files. Then any text file
containing CorbaScript statements is a module. A module looks like an interactive
script: it can declare variables, procedures, classes and can execute any statements.

5.12.1 Importation

The syntax for module importations is:

<import_statement> ::= "import" <identifier_list>
<identifier_list> ::= <identifier> { ‘,’ <identifier> } *

To load modules in the interpreter, users must invoke the  import  statement with a
list of one or more module names.

The file storing a module has the same name as the module postfixed by the .cs
extension. The interpreter has to look for module files using an environment variable
named CSPATH. This variable lists the directories containing module files. Directories
are separated by ’: ' or ’;’ depending on operating systems.

5.12.2 Initialization

When a module is loaded for the first time, the interpreter executes all statements
contained into the module file. Then, the module can declare any procedure or class,
and execute any statements to initialize global module variables. Next importations do
not reexecute the statements.



CorbaScript                             December 1998 5-59

5

5.12.3 Access to the Content

The dotted notation is used to access to variables, procedures and classes of a module:
module_name.name_of_a_variable ; module_name.name_of_a_procedure (parameters)
; module_name.name_of_a_class.

5.12.4 Module Aliasing

As all CorbaScript entities, a module is an object that can be assigned to a variable,
and passed as a parameter to a procedure.

>>> import module1
>>> module2 = module1
>>> a_procedure(module2)

5.12.5 Module Management

The list of all the loaded modules is contained into the sys.modules scope. Consider the
following example:

>>> sys.modules
< scope sys.modules {
    module module1;
  } >
>>> del sys.modules.module1
>>> sys.modules
< scope sys.modules {
  } >

The del  statement can be applied to the sys.modules scope to explicitly delete a
loaded module. Then the next importation of this deleted module reloads the module
file.



5-60                                  CorbaScript                            December 1998

5



                                 CorbaScript                            December 1998 6-61

The OMG IDL Binding 6

This chapter presents the binding between CorbaScript and OMG IDL. It shows how
all OMG IDL constructions such as basic types, modules, constants, enumerations,
structures, unions, typedefs, sequences, arrays, interfaces, attributes, operations,
exceptions, TypeCodes and Anys are represented and can be manipulated from the
CorbaScript language.

6.1 Overview

CorbaScript provides a dynamic IDL binding which allows users to access directly and
naturally to any IDL specifications loaded into the Interface Repository. This approach
does not need to generate stubs and skeletons, therefore users can invoke, navigate, and
discover any CORBA objects at runtime. CorbaScript totally hides the complexity of
the DII, DSI, and Interface Repository APIs, and it internally uses them to construct
and receive requests in a safe way.

The CorbaScript type system integrates seamlessly the OMG IDL type system. For
each IDL construction, this chapter presents how to access to the IDL definition, how
it is represented with CorbaScript, how to create such values and how to manipulate
them using the CorbaScript language.

From “Binding for Basic OMG IDL Types” on page 6-62 to “Binding for OMG IDL
Exception” on page 6-75, this document presents the binding for basis elements of
OMG IDL. “Binding for OMG IDL Interface” on page 6-80  presents the binding for
OMG IDL interfaces and how to implement these interfaces using CorbaScript
(“Implementing OMG IDL Interfaces” on page 6-85). Any and TypeCode are
presented in “Binding for OMG IDL TypeCode” on page 6-88 and “Binding for OMG
IDL Any” on page 6-90. Finally the access to the heart of CORBA is presented in “The
Global CORBA Object” on page 6-91.



6-62                                  CorbaScript                            December 1998

6

6.2 Binding for Basic OMG IDL Types

In CorbaScript, any item is accessible by an identifier. Therefore all basic IDL types
are directly accessible by special CorbaScript identifiers contained in the CORBA
scope. This CORBA scope contains basic CORBA concepts like basic IDL types,
standard system exceptions related to CORBA uses, and some other embedded scopes
like the ORB one.

6.2.1 CorbaScript Representation

Table 6-1 lists the CorbaScript identifiers which refer to basic OMG IDL types..

6.2.2 Basic OMG IDL Values

A script can directly manipulate basic IDL types to create basic  IDL values as shown
in the following example. Operators described in the previous chapter can be used on
these values. CorbaScript can automatically coerce basic IDL values to basic values
when it is necessary as shown on the v1 + v2 > 100 and v3 != ""  expressions.

Table 6-1 The CorbaScript Representation of OMG IDL Types

Basic OMG IDL Types CorbaScript Identifiers 

void CORBA.Void

short CORBA.Short

unsigned short CORBA.UShort

long CORBA.Long

unsigned long CORBA.ULong

long long CORBA.LongLong

unsigned long long CORBA.ULongLong

float CORBA.Float

double CORBA.Double

long double CORBA.LongDouble

boolean CORBA.Boolean

char CORBA.Char

wchar CORBA.WChar

octet CORBA.Octet

string CORBA.String

wstring CORBA.WString



CorbaScript                             December 1998 6-63

6

>>> v1 = CORBA.Short(1)
>>> v2 = CORBA.ULong(10000)
>>> v1 + v2 > 100
true
>>> v3 = CORBA.String("Hello World!")
>>> v3.length
12
>>> v3 != ""
true

6.3 Binding for OMG IDL Module

All modules are directly accessible from the CorbaScript interpreter. They are
represented by internal objects managed by the Interface Repository cache of the
CorbaScript interpreter.

6.3.1 OMG IDL Examples

The following example presents some module declarations. The module GridService
has already been presented in Section 4.4, “A CorbaScript Example”, on page 4-13.
The module MA illustrates the definition of an embedded module MB.

module GridService {  . . . };
 
module MA {
     module MB { . . . };
 };

6.3.2 CorbaScript Representation

In CorbaScript, the access to an IDL module is simply done by providing its IDL
module identifier. The evaluation of  modules displays the content of the module. This
functionality can be used as end-user on-line helping facility. The dotted notation is
used to access to the contains of a module.

>>> GridService
< OMG-IDL module GridService { . . . }; >

>>> m = MA.MB
>>> m
< OMG-IDL module MA::MB { . . . }; >

The previous example illustrates the access to the GridService and MA::MB modules.
The evaluation of the GridService module displays its content. Note that as IDL
modules are represented by CorbaScript objects, they can be assigned to variables (the
m alias).



6-64                                  CorbaScript                            December 1998

6

6.4 Binding for OMG IDL Constant

All IDL constants are directly accessible from the CorbaScript interpreter. They are
represented by internal objects managed by the Interface Repository cache of the
CorbaScript interpreter.

6.4.1 OMG IDL Examples

The following example presents some constant declarations: the PI and Math::PI OMG
IDL constants.

const double PI = 3.14159;
module Math {
     const double PI = 3.14159;
};

6.4.2 CorbaScript Representation

In CorbaScript, the access to an IDL constant is simply done by providing its IDL
constant identifier. This identifier can be prefixed by its IDL module or interface
scopes where it is defined. The evaluation of an IDL constant displays the IDL
definition of this constant.

>>> PI
< OMG-IDL const double PI = 3.14159; >

>>> Math.PI
< OMG-IDL const double Math::PI = 3.14159; >

>>> c = PI
>>> c
< OMG-IDL const double PI = 3.14159; >

>>> c._type
< OMG-IDL typedef double CORBA.Double; >

The previous example shows how to access to the IDL PI and Math::PI constants. The
evaluation of the PI constant displays its definition and value. As IDL constants are
represented by CorbaScript objects, they can be assigned to CorbaScript variables to
create some kind of aliases as the c one and they support the _type attribute.

6.5 Binding for OMG IDL Enum

All IDL enumeration types and values are directly accessible from the CorbaScript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the CorbaScript interpreter.



CorbaScript                             December 1998 6-65

6

6.5.1 An OMG IDL Example

Consider the following example: it presents an enum declaration. The enumeration
Months contains all the months of the year.

// This definition can be located inside or outside an IDL module or interface   
enum Months {
        January, February, March, April, May, June, July, August,
        September, October, November, December
};

6.5.2 CorbaScript Representation

In CorbaScript, the access to an IDL enum type is simply done by providing its IDL
enumeration identifier. This identifier can be prefixed by its IDL module or interface
scopes where it is defined. The evaluation of an IDL enum displays the IDL definition
of this enumeration.

>>> m = Months
>>> m
< OMG-IDL enum Months { January, February, March, April,
May, June, July, August, September, October, November, 
December }; >

The previous code shows how to access to the Months enum. This displays all items of
this enumeration. As IDL enumeration types are represented by CorbaScript objects,
they can be assigned to variables to create some kind of aliases.

6.5.3 Enum Values

The creation of an IDL enum value needs to specify the selected item belonging to the
IDL enum. As an IDL enum value is represented by a CorbaScript object, it is possible
to use the typing attributes and methods like the _type and _is_a ones.

>>> a = Months.January
>>> a
Months.January

>>> a._type
< OMG-IDL enum Months { January, February, March, April, 
May, June, July, August, September, October, November, 
December }; >

>>> a._is_a(Months)
true

For instance, the previous code shows how to create and assign the January value of
the Months enum type  to the a variable. The last two instructions access to type
information managed by the interpreter. 



6-66                                  CorbaScript                            December 1998

6

6.6 Binding for OMG IDL Structure

All IDL structure types and values are directly accessible from the CorbaScript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the CorbaScript interpreter.

6.6.1 OMG IDL Examples

Consider the following example: it presents some structure declarations. The structure
Point contains two fields named x and y with the basic type double . The structure
TwoPoints contains two embedded Point structures.

// This definition can be located inside or outside an IDL module or interface   
struct Point {
     double x;
     double y;
};

struct TwoPoints {
     Point a;
     Point b;
};

6.6.2 CorbaScript Representation

In CorbaScript, the access to an IDL structure type is simply done by providing its IDL
structure identifier. This identifier can be prefixed by its module or interface scopes
where it is defined. The evaluation of an IDL structure displays the IDL definition of
this structure and all its fields.

>>> Point
< OMG-IDL struct Point { double x; double y; }; >

>>> Point.x
< OMG-IDL typedef double CORBA.Double; >

>>> TwoPoints
< OMG-IDL struct TwoPoints { Point a; Point b; }; >

>>> TwoPoints.a
< OMG-IDL struct Point { double x; double y; }; >

>>> a = Point
>>> a
< OMG-IDL struct Point { double x; double y; }; >



CorbaScript                             December 1998 6-67

6

The previous code presents the access to the Point and TwoPoints structures. It is
possible to display the entire definition of a structure or only the definition of one field
using the dotted notation (Point.x and TwoPoints.a). As IDL structure types are
represented by CorbaScript objects, they can be assigned to variables to create some
kind of aliases.

6.6.3 Structure Values

The creation of an IDL structure value is achieved by the calling notation
(IDLType(field1,...,fieldn)). The interpreter checks if the number of given values is
equal to the number of the expected IDL fields. If necessary, the interpreter can
automatically coerce given values to expected IDL values. For instance, an expected
long  field can be initialized by an integer literal. Moreover, a field of an IDL structure
type can be initialized by providing an array containing the values of each structure
field.

>>> p1 = Point (1,2)
>>> p1
Point(1,2)
>>> tp1 = TwoPoints([11,22],[33,44])
>>> tp1
TwoPoints(Point(11,22),Point(33,44))

>>> tp2 = TwoPoints(p1,Point(3,4))

>>> tp3 = TwoPoints(Point(6,7),Point(8,9))

The previous code presents some examples of structure value creations. All the fields
of the structure must be filled to allow creation and the interpreter coerces integer
literals to basic IDL double  values. An embedded structure can be defined by several
ways: by a literal representation (tp1), by using variables containing structures already
created (tp2) or by giving the IDL types of the items (tp3). 

6.6.4 Structure Fields

When an IDL structure value is created, the dotted notation allows one to get and set
field values. The following example presents some accesses to fields of the previous
structure value.



6-68                                  CorbaScript                            December 1998

6

>>> p1.x
CORBA.Double(1)
>>> p1.x = -1
>>> p1
Point(-1,2)

>>> tp1.a
Point(11,22)
>>> tp1.a.y
CORBA.Double(22)

>>> tp1._type
< OMG-IDL struct TwoPoints { Point a; Point b; } >

As IDL structure values are represented by CorbaScript objects, it is possible to use
common value attributes and methods such as _type and _is_a.

6.7 Binding for OMG IDL Union

All IDL union types and values are directly accessible from the CorbaScript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the CorbaScript interpreter.

6.7.1 An OMG IDL Example

Consider the following example: it presents an union declaration. In this example, the
union named Union contains three fields named m_short, m_long and m_float.

// This definition can be located inside or outside an IDL module or interface   
union Union switch(unsigned short) {
     case 0: short m_short;
     case 1: long m_long;
     case 2: float m_float;
};

6.7.2 CorbaScript Representation

In CorbaScript, the access to an union type is simply done by providing its IDL union
identifier. This identifier can be prefixed by its module or interface scopes where it is
defined. The evaluation of an IDL union displays the IDL definition of this union and
all its fields.



CorbaScript                             December 1998 6-69

6

>>> u = Union
>>> u
< OMG-IDL union Union switch (unsigned short) {
        case 0: short m_short;
        case 1: long m_long;
        case 2: float m_float;
}; >

>>> u == Union
true

The previous code presents the access to the Union union. As IDL union types are
represented by CorbaScript objects, they can be assigned to variables to create aliases,
compared and passed as arguments to procedures.

6.7.3 Union Values

The creation of an IDL union value is achieved by the procedure calling notation
IDLtype(discriminator, value) and needs two values: the union discriminator value and
the value associated to this discriminator. The interpreter checks if the discriminator
value is correct in relation to the set of case values of the union. Moreover it checks if
the second given value is correct according to the expected union case value. If
necessary, the interpreter can automatically coerce the given discriminator and field
values to expected IDL values.

>>> a = Union(0,1)
>>> a
Union(0,1)

>>> b = Union(2,10.3)
>>> b
Union(2,10.3)

>>> a._type == b._type
true

The previous code presents some examples of IDL union value creations. As IDL
unions values are represented by CorbaScript objects, it is possible to use common
value attributes and methods such as _type and _is_a.

6.7.4 Union Fields

When an IDL union value is created, the dotted notation allows one to get and set field
case values. The special read-only _d attribute is provided to access to the
discriminator value of an  IDL union value. When getting an union field, the interpreter
checks if the discriminator has the right value and it throws an internal exception to
signal that the union does not have the right discriminator. Setting an union field
automatically changes the discriminator value. The following example presents some
accesses to fields of the previous union value.



6-70                                  CorbaScript                            December 1998

6

>>> a._d
CORBA.UShort(0)

>>> a.m_short
CORBA.Short(1)

>>> a.m_long = 2
>>> a.m_long
CORBA.Long(2)
>>> a._d
CORBA.UShort(1)

6.8 Binding for OMG IDL Typedef

All IDL typedef types and values are directly accessible from the CorbaScript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the CorbaScript interpreter.

6.8.1 OMG IDL Examples

Consider the following example: it presents an example of typedef declarations. The
Day typedef refers to the basic unsigned short  type and the Coordinate type
refers to the previous Point type.

// This definition can be located inside or outside an IDL module or interface   
typedef unsigned short Day;
typedef Point Coordinate;

6.8.2 CorbaScript Representation

In CorbaScript, the access to an IDL typedef type is simply done by providing its IDL
typedef identifier. This identifier can be prefixed by its module or interface scopes
where it is defined. The evaluation of an IDL typedef displays the IDL definition of
this type definition.

>>> Day
< OMG-IDL typedef unsigned short Day; >

>>> c = Coordinate
>>> c
< OMG-IDL typedef Point Coordinate; >

>>> c.x
< OMG-IDL typedef double CORBA.Double; >



CorbaScript                             December 1998 6-71

6

The previous code presents the access to the Day and Coordinate typedefs. As IDL
typedef types are represented by CorbaScript objects, they can be assigned to variables
to create aliases, compared and passed as arguments to procedures. When an IDL
typedef refers to a complex IDL type, it also supports all attributes and methods
provided by the aliased type.

6.8.3 Typedef Values

The creation of an IDL typedef value is achieved by the calling notation with a set of
initialiazing values. The number and types of these values must be equal to the number
and types which are needed to create a value of the aliased type.

>>> d = Day(2)
>>> d
Day(2)

>>> c = Coordinate(1.1,2.2)
>>> c
Coordinate(1.1,2.2)

>>> c.x
CORBA.Double(1.1)

>>> c._is_a(Point)
true

The previous code presents some examples of IDL typedef value creations and their
uses. The created values support the same attributes and methods as those provided by
the aliased type (c.x). Moreover as  IDL typedef values are represented by CorbaScript
objects, it is possible to use common value attributes and methods such as _type and
_is_a.

6.9 Binding for OMG IDL Sequence

All IDL sequence types and values are directly accessible from the CorbaScript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the CorbaScript interpreter.

6.9.1 OMG IDL Examples

Consider the following example: it presents some sequence declarations: SeqString for
a string  sequence, SeqMonths for a Months sequence, and SeqPoint for a Point
sequence. Only named sequences are supported by CorbaScript, no binding for
anonymous sequences is provided.

// This definition can be located inside or outside an IDL module or interface   
typedef sequence<string> SeqString;
typedef sequence<Months> SeqMonths;
typedef sequence<Point> SeqPoint;



6-72                                  CorbaScript                            December 1998

6

6.9.2 CorbaScript Representation

In CorbaScript, the access to an IDL sequence type is simply done by providing its
IDL sequence identifier. This identifier can be prefixed by its module or interface
scopes where it is defined. The evaluation of an IDL sequence displays the IDL
definition of this type definition.

>>> SeqString
< OMG-IDL typedef sequence<string> SeqString; >

>>> SeqMonths
< OMG-IDL typedef sequence<Months> SeqMonths; >

>>> s = SeqPoint
>>> s
< OMG-IDL typedef sequence<Point> SeqPoint; >

The previous code presents the access to the SeqString, SeqMonths and SeqPoint
sequence types. As IDL sequence types are represented by CorbaScript objects, they
can be assigned to variables to create aliases, compared and passed as arguments to
procedures.

6.9.3 Sequence Values

The creation of an IDL sequence value is achieved by the calling notation with a list of
values. The type of each value must be conform to the item type of the IDL sequence.
If necessary, the interpreter automatically coerces given values to required IDL values.

>>> s = SeqString("One","Two","Three")
>>> s
SeqString("One","Two","Three")

>>> s = SeqMonths()
>>> s
SeqMonths()

>>> s = SeqPoint ( [1.1,2.2] , [3.3,4.4] , [5.5,6.6] )
>>> s
SeqPoint(Point(1.1,2.2),Point(3.3,4.4),Point(5.5,6.6))

>>> s1 = SeqPoint ( [1.1,2.2], Point(3.3,4.4), Point(CORBA.
Double(5.5), CORBA.Double(6.6)) )
>>> s1._type
< OMG-IDL typedef sequence<Point> SeqPoint; >

The previous code presents some examples of  IDL sequence value creations. If the list
of values is empty then CorbaScript creates an empty sequence value (SeqMonths()).
The creation of structured values sequences is very simple because each structured
value can be provided as a CorbaScript array. Then the interpreter checks if the array
contains the expected number of values. However it is also possible to use a more



CorbaScript                             December 1998 6-73

6

typed notation as illustrated by the s1 creation. As IDL sequence values are represented
by CorbaScript objects, it is possible to use common value attributes and methods such
as _type and _is_a.

6.9.4 Sequence Items

An IDL sequence value is similar to a basic CorbaScript array. It provides the operator
[]  to get and set sequence items, the attribute length to obtain the number of items,
and can be used in the for  statement construction. The following example illustrates
these functionalities on the previous SeqPoint value.

>>> s1[0]
Point(1.1,2.2)

>>> s1[0] = [100,200]

>>> s1[1].x = 300

>>> s1.length
3

>>> for i in s1 { println (i)  }
Point(100,200)
Point(300,4.4)
Point(5.5,6.6)

6.10 Binding for OMG IDL Array

All IDL array types and values are directly accessible from the CorbaScript interpreter.
They are represented by internal objects managed by the Interface Repository cache of
the CorbaScript interpreter.

6.10.1 OMG IDL Examples

Consider the following example: it presents some array declarations: ArrayLong  for a
long  array, and ArrayPoint  for a Point array. IDL arrays have a bounded size defined
at declaration. Only named array types are supported by CorbaScript, no binding for
anonymous arrays is provided.

// This definition can be located inside or outside an IDL module or interface 
typedef long ArrayLong[10]; 
typedef Point ArrayPoint[10];



6-74                                  CorbaScript                            December 1998

6

6.10.2 CorbaScript Representation

In CorbaScript, the access to an IDL array type is simply done by providing its IDL
array identifier. This identifier can be prefixed by its module or interface scopes where
it is defined. The evaluation of an array displays the IDL definition of this type
definition.

>>> ArrayLong
< OMG-IDL typedef long[10] ArrayLong;>

>>> a = ArrayPoint
>>> a
< OMG-IDL typedef Point[10] ArrayPoint;>

The previous code presents the access to the ArrayLong , and ArrayPoint  IDL array
types. As IDL array types are represented by CorbaScript values, they can be assigned
to variables to create aliases, compared and passed as arguments to procedures.

6.10.3 Array Values

The creation of an IDL array value is achieved by the calling notation with a list of
values. The type of each value must be conform to the item type of the IDL array. If
necessary, the interpreter automatically coerces given values to required IDL values.
Moreover the interpreter checks if the number of given values is equal to the size of the
IDL array type.

>>> a = ArrayLong(1,2,3,4,5)
Exception : < BadArraySize: array must have 10 items >
File "stdin", line 1 in ?

>>> a = ArrayLong(1,2,3,4,5,6,7,8,9,10)
>>> a
ArrayLong(1,2,3,4,5,6,7,8,9,10)

>>> a = ArrayPoint([1,1],[2,2],[3,3],[4,4],[5,5],[6,6],[7,7
],[8,8],[9,9],[10,10])
>>> a
ArrayPoint(Point(1,1),Point(2,2),Point(3,3),Point(4,4),Point
(5,5),Point(6,6),Point(7,7),Point(8,8),Point(9,9),Point(10,1
0))

>>> a._type == ArrayPoint
true

The previous code presents some examples of IDL array value creations. The creation
of structured values IDL arrays is very simple because each structured value can be
provided as a CorbaScript array. Then the interpreter checks if the array contains the
expected number of values. However it is also possible to use a more typed notation as



CorbaScript                             December 1998 6-75

6

illustrated in Section 6.9.3. As IDL array values are represented by CorbaScript
objects, it is possible to use common object attributes and methods such as _type and
_is_a.

6.10.4 Array Items

An  IDL array value is similar to a basic CorbaScript array. It provides the operator []
to get and set array items, the attribute length to obtain the number of items, and can
be used in the for  statement construction. The following example illustrates these
functionalities on the previous ArrayPoint  value.

>>> a[0]
Point(1,1)

>>> a[0] = [100,100]

>>> a[1].x = 200

>>> a.length
10

>>> for i in a { println (i) }
Point(100,100)
Point(200,2)
Point(3,3)
...

6.11 Binding for OMG IDL Exception

All IDL exception types and values are directly accessible from the CorbaScript
interpreter. They are represented by  internal objects managed by the Interface
Repository cache of the CorbaScript interpreter.

Figure 6-1 The CORBA Exception Type Hierarchy

CORBA.Exception

CORBA.SystemException CORBA.UserException

All OMG IDL
User Exceptions

See Table 6-2



6-76                                  CorbaScript                            December 1998

6

6.11.1 CorbaScript Representation

CorbaScript supports all CORBA exception types: the System Exceptions representing
internal ORB problems and User Exceptions defined in IDL. Figure 6-1 shows the
hierarchy of the CorbaScript types representing IDL exception types. All CORBA
exception types are transitively subtypes of the CORBA.Exception exception type.
This type has two subtypes CORBA.SystemException and CORBA.UserException
representing respectively the standard CORBA system exceptions and the IDL user
exceptions.

6.11.2 Exception Handling

The CORBA exception types are represented by CorbaScript types and are thrown and
caught via the exception mechanism presented in Section 5.11, “Exceptions”, on page
5-54. Consider the following example:

try {
   # a script code.
   throw CORBA.UNKNOWN()
} catch (CosNaming.NamingContext.AlreadyBound ae) {
   println ("A CosNaming.NamingContext.AlreadyBound exceptio 
n ", ae, " has been thrown!")
} catch (CORBA.UserException ue) {
   println ("An IDL exception ", ue, " has been thrown!")
} catch (CORBA.SystemException se) {
   println ("A system  exception ", se, " has been thrown!")
} finally {
   # a finally script code.
}

6.11.3 System Exception Types

All standard CORBA system exception types are subtypes of the
CORBA.SystemException type. In CorbaScript, the access to a system exception type
is simply done by providing its identifier. This identifier must be prefixed by the
CORBA scope name like CORBA.INV_OBJREF, CORBA.COMM_FAILURE  or
CORBA.OBJECT_NOT_EXIST.

Table 6-2 The CorbaScript Identifiers for CORBA System Exceptions

CORBA.UNKNOWN CORBA.BAD_PARAM

CORBA.NO_MEMORY CORBA.IMP_LIMIT

CORBA.COMM_FAILURE CORBA.INV_OBJREF

CORBA.NO_PERMISSION CORBA.INTERNAL

CORBA.MARSHAL CORBA.INITIALIZE

CORBA.NO_IMPLEMENT CORBA.BAD_TYPECODE



CorbaScript                             December 1998 6-77

6

Consider the following examples:

>>> CORBA.UNKNOWN
< OMG-IDL exception CORBA::UNKNOWN {
        unsigned long minor;
        CORBA::CompletionStatus completed;
}; >

>>> CORBA.CompletionStatus
< OMG-IDL enum CORBA::CompletionStatus {
 COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE
}; >

>>> CORBA.UNKNOWN._is_a(CORBA.Exception)
true

>>> e = CORBA.UNKNOWN
>>> e._is_a(CORBA.SystemException)
true

>>> e._is_a(CORBA.UserException)
false

The previous code illustrates the access to the CORBA.UNKNOWN  exception type.
Evaluating an exception type shows the IDL definition of the exception. System
exceptions have two fields: the minor one and the completed one. This latter is a value
of the CORBA.CompletionStatus enumeration type. As system exception types are
represented by CorbaScript objects, they can be assigned to variables to create aliases,
compared and passed as arguments to procedures. Moreover it is possible to use
common object attributes and methods such as _type and _is_a.

CORBA.BAD_OPERATION CORBA.NO_RESOURCES

CORBA.NO_RESPONSE CORBA.PERSIST_STORE

CORBA.BAD_INV_ORDER CORBA.TRANSIENT

CORBA.FREE_MEM CORBA.INV_IDENT

CORBA.INV_FLAG CORBA.BAD_CONTEXT

CORBA.OBJ_ADAPTER CORBA.DATA_CONVERSION

CORBA.OBJECT_NOT_EXIST CORBA.INTF_REPOS

CORBA.TRANSACTION_REQUIRED CORBA.TRANSACTION_ROLLED
BACK

CORBA.INVALID_TRANSACTION

Table 6-2 The CorbaScript Identifiers for CORBA System Exceptions



6-78                                  CorbaScript                            December 1998

6

6.11.4 System Exception Values

The creation of a system exception value is achieved by the calling notation
CORBA.ExceptionName(). CorbaScript provides three different ways to create these
values. The first one needs no parameter and creates a system exception with the minor
field equal to zero and the completed field equal to the COMPLETED_MAYBE
enumeration value. The second one needs one parameter to initialize the minor field.
The third one takes two parameters to set the minor and completed fields.

>>> s = CORBA.UNKNOWN()
>>> s = CORBA.UNKNOWN(100)
>>> s = CORBA.UNKNOWN(100,CORBA.CompletionStatus.COMPLETED_
YES)

>>> s.minor
100

>>> s.completed
CORBA.CompletionStatus.COMPLETED_YES

>>> s._type == CORBA.UNKNOWN
true

>>> s._is_a (CORBA.Exception)
true

>>> s._is_a (CORBA.SystemException)
true

>>> s._is_a (CORBA.UserException)
false

The previous code illustrates the three creation ways of system exceptions. The access
to field values is achieved by the dotted notation. Exception values have two fields: the
minor and completed ones. As system exception values are represented by CorbaScript
objects, it is possible to use common value attributes and methods such as _type and
_is_a. A system exception value is a CORBA.Exception and a CORBA.SystemExcep
tion as shown in Figure 6-1.

6.11.5 User Exception Types

Consider the following example: it presents some exception  declarations. The
exception EmptyException contains no field. The exception Exception contains three
fields: a simple string  field, a Months enumeration field, and a structured Point
field.



CorbaScript                             December 1998 6-79

6

// This definition can be located inside or outside an IDL module or interface   
exception EmptyException {};

exception Exception {
     string s;
     Months m;
     Point p;
};

In CorbaScript, the access to an IDL user exception type is simply done by providing
its IDL exception identifier. This identifier can be prefixed by its module or interface
scopes where it is defined. The evaluation of an IDL exception displays the IDL
definition of this exception and all its IDL fields.

>>> EmptyException
< OMG-IDL exception EmptyException {}; >

>>> Exception
< OMG-IDL exception Exception {
    string s;
    Months m;
    Point p;
}; >

>>> Exception.p
< OMG-IDL struct Point {
    double x;
    double y;
}; >

>>> Exception._is_a(CORBA.Exception)
true

>>> e = Exception
>>> e._is_a(CORBA.SystemException)
false

>>> e._is_a(CORBA.UserException)
true

The previous code illustrates the access to the IDL EmptyException and Exception
exception types. Evaluating an exception type shows the IDL definition of the
exception. As IDL exception types are represented by CorbaScript values, they can be
assigned to variables to create aliases, compared and passed as arguments to
procedures. Moreover it is possible to use common value attributes and methods such
as _type and _is_a. All IDL user exception types are subtypes of the
CORBA.Exception and CORBA.UserException types  as shown in  Figure 6-1.



6-80                                  CorbaScript                            December 1998

6

6.11.6 User Exception Values

The creation of an IDL exception value is achieved by the calling notation
IDLExceptionType(field1,...,fieldn). The interpreter checks if the number of given
values is equal to the number of the expected IDL fields. If necessary, the interpreter
can automatically coerce given values to expected IDL values. For instance, an
expected string  field can be initialized by a string literal. Moreover, a field of an
IDL structure type can be initialized by providing an array containing the value of each
structure field.

>>> u = EmptyException()
>>> u = Exception ("Hello", Months.June, [100,100])
>>> u
Exception("Hello",Months.June,Point(100,100))

>>> u.s
"Hello"

>>> u._is_a (CORBA.Exception)
true
>>> u._is_a (CORBA.SystemException)
false
>>> u._is_a (CORBA.UserException)
true

The previous code presents some examples of exception value creations. All the fields
of the exception must be filled to allow creation and the interpreter coerces literals and
arrays to the required IDL values. The dotted notation allows one to get and set field
values. As IDL exception values are represented by CorbaScript objects, it is possible
to use common value attributes and methods such as _type and _is_a.

6.12 Binding for OMG IDL Interface

All IDL interface types and object references are directly accessible from the
CorbaScript interpreter. They are represented by internal objects managed by the
Interface Repository cache of the CorbaScript interpreter.

6.12.1 OMG IDL Examples 

Consider the following example: it presents some interface declarations. The Foo
interface contains a string  assignable attribute, a double  nonassignable attribute
and a method operation. The AnotherFoo interface is derived from the Foo interface
and it adds a new operation which illustrates all parameter passing modes. The two
operations can raise the EmptyException exception.



CorbaScript                             December 1998 6-81

6

interface Foo {
     attribute string assignable;
     readonly attribute double nonassignable;
     long method(in long p1) raises(EmptyException);
};

interface AnotherFoo : Foo {
     long operation(in long p1, out long p2, inout long p3) 
                  raises(EmptyException);
};

6.12.2 CorbaScript Representation

In CorbaScript, the access to an IDL interface is simply done by providing its IDL
interface identifier. This identifier can be prefixed by its module scopes where it is
defined. The evaluation of an IDL interface displays the IDL definition of this type
definition with the signature of all attributes and operations and the list of inherited
interfaces.

>>> Foo
< OMG-IDL interface Foo {
    attribute string assignable;
    attribute readonly double nonassignable;
    long method (in long p1) raises(EmptyException);
} >

>>> a = AnotherFoo
>>> a
< OMG-IDL interface AnotherFoo : Foo {
    long operation (in long p1, out long p2, inout long p3) 
raises(EmptyException);
} >

>>> a = AnotherFoo.assignable
>>> a
< OMG-IDL attribute string Foo::assignable >

>>> AnotherFoo.operation
< OMG-IDL operation long AnotherFoo::operation (in long p1, 
out long p2,   inout long p3) raises(EmptyException) >

>>> AnotherFoo._is_a (Foo)
true

The previous code illustrates the access to the Foo and AnotherFoo interfaces. The
evaluation of the Foo interface shows the signature of the assignable and
nonassignable attributes and the method operation. The signature of an attribute is
composed of its access mode (none or readonly), its type, and its formal name. The
signature of an operation is composed of its return type, its formal name, its parameters
list (mode, type, and formal name) and its exceptions list.



6-82                                  CorbaScript                            December 1998

6

As IDL interfaces, IDL attributes, IDL operations are represented by CorbaScript
objects, they can be assigned to variables to create aliases, compared and passed as
arguments to procedures. The hierarchy of IDL interfaces is directly accessible to
check interface conformity through the use of common value attributes and methods
such as _type and _is_a.

6.12.3 Object References

Accessing to CORBA objects requires that obtaining related CORBA object references.
The creation of these references is simply achieved by the following calling notations
CORBA.Object("StringifiedObjectReference") or InterfaceType("StringifiedObjectRe
ference"). The object reference is given through the following formats: the standard
CORBA IOR one (i.e. "IOR:...") or the ORB-specific URL one (e.g. "iiop://host:port/
object_name").

>>> objref = CORBA.Object("IOR:.....")
>>> objref._type
< OMG-IDL interface AnotherFoo : Foo {
      long operation (in long p1, out long p2, inout long p3)           
raises(EmptyException);
} >

>>> objref = AnotherFoo("IOR:.....")
>>> objref = AnotherFoo("iiop://host:port/name")

>>> objref._is_a(Foo)
true

The first creation notation allows scripts to create an object reference without
knowledge about its IDL interface. The second creation notation allows scripts to
create an object reference and check if this reference supports a specific IDL interface.
However the interpreter only creates the object reference if the given string is correct
else it raises a CORBA.INV_OBJREF  exception. Moreover this object reference is
automatically narrowed to the most derivated IDL interface type. Then as result, users
can directly and interactively discover the interface supported by the object as shown in
the previous example.

As object references are represented by CorbaScript objects, they can be assigned to
variables, passed as arguments to procedures. Moreover it is possible to use common
object attributes and methods such as _type and _is_a.

6.12.4 Access to OMG IDL Attributes

Getting and setting IDL attributes is simply done through the dotted notation and by
using the IDL identifier of attributes. These accesses are realized by the interpreter via
the Dynamic Invocation Interface. The interpreter checks the attribute access mode
when a script tries to set an attribute (internal CorbaScript exception



CorbaScript                             December 1998 6-83

6

ReadOnlyAttribute ). If necessary, it also converts automatically the given CorbaScript
value into the required IDL value. The following example illustrates the access to the
assignable and nonassignable attributes.

>>> objref.assignable = "Hello World"
>>> println(objref.assignable, ’!’)
Hello World!

>>> objref.nonassignable = 10
Exception: < ReadOnlyAttribute: < attribute readonly double 
Foo::nonassignable; > >
     File "stdin", line 2 in ?

6.12.5 Invocation of OMG IDL Operations

All IDL operations can be simply invoked with CorbaScript using the method calling
notation (object.operation(arg1,...,argn)). The interpreter automatically checks the
number of parameters and coerces given values to IDL values. Invocations are done
through the Dynamic Invocation Interface. Exceptions thrown by operations can be
easily intercepted thanks to the CorbaScript exception mechanism (try , catch  and
finally  statements).

>>> objref.method
< OMG-IDL operation long Foo::method (in long p1) 
raises(EmptyException) >

>>> objref.method(100)
100

>>> try {
      r = objref.method(100)
    } catch (EmptyException e) {
      print "The EmptyException has been thrown\n"
    }

>>> out = Holder()
>>> inout = Holder(200)
>>> objref.operation (100, out, inout)
100
>>> out.value
300

The previous example illustrates the invocation of the method and operation IDL
operations. All parameter passing modes are supported by CorbaScript. Passing in
parameters is done by value while out  and inout  parameters require to use a value
of the Holder type. As CorbaScript is dynamically typed, a Holder can store any of
CorbaScript values. For an out  parameter, scripts must only create and pass to the
operation an empty holder. For an inout  parameter, scripts must create and pass to
the operation an initialized holder. After the invocation, the returned value is available
into the holder by its value attribute. 



6-84                                  CorbaScript                            December 1998

6

6.12.6 Invocation of Oneway Operations

Oneway operations are transparently managed by the interpreter. Invocations to
operations defined as oneway will always be achieved asynchronously using the same
syntactic notation as twoway operations.

6.12.7 Operation Invocation using the Deferred Mode

All IDL operations can be simply invoked using the deferred mode with CorbaScript
using the method calling notation (object!operation(arg1,...,argn)). The interpreter
automatically checks the number of parameters and coerces given values to IDL
values. Invocations are done through the Dynamic Invocation Interface. Exceptions
thrown by operations can be easily intercepted thanks to the CorbaScript exception
mechanism (try , catch  and finally  statements).

>>> objref.method
< OMG-IDL operation long Foo::method (in long p1) 
raises(EmptyException) >

>>> futureReply = objref!method(100)
...
>>> futureReply.value
100

The previous example illustrates deferred invocation of an operation. The result of
invocation is obtained using the value attribute of the futureReply object. Access to the
value attribute of the futureReply object is blocking if the result is not currently
available.

Inout  and out parameters are also managed with deferred calls. Consider the following
example:

>>> out = Holder()
>>> inout = Holder(200)
>>> futureReply = objref!operation (100, out, inout)
...
>>> futureReply.value
100
>>> myFutureReplyForMyOutParameter = out.value
>>> myFutureReplyForMyOutParameter.value
300

In this example, out and inout are Holder referencing future objects. Access to the
result after invocation is done as for Holder in a synchronous invocation (using the
value attribute). The value contained in the holder is a future object. The access to the
real result is done like in the previous example: using the value attribute of the
futureReply object.

If an exception is thrown during the execution of a deferred call, this exception will be
thrown in the client side at the first access to a future object involved in this invocation.



CorbaScript                             December 1998 6-85

6

Table 6-3 summarizes the functionalities of future objects.

6.13 Implementing OMG IDL Interfaces

The implementation of IDL interfaces is simply done by CorbaScript classes (see
Section 5.10, “Classes”, on page 5-50). IDL attributes and operations are implemented
by CorbaScript instance methods. These instance methods must only follow some
naming conventions.

6.13.1 Class Examples

The following example illustrates the implementation of the Foo and AnotherFoo
interfaces presented in Section  6.12.1. The Foo interface is implemented by the FOO
CorbaScript class. The AnotherFoo interface is implemented by the AnotherFOO
CorbaScript class. As AnotherFOO is a subclass of FOO, their instances support
instance methods defined in the FOO class.

class FOO {
  proc __FOO__ (self, s, d) { self.s = s
                              self.d = d }
  proc _get_assignable (self) { return self.s }
  proc _set_assignable (self, value) { self.s = value }
  proc _get_nonassignable (self) { return self.d }
  proc method (self, p1) {
    if ( p1 == 0 ) { throw EmptyException() }
    return p1
  }
}
class AnotherFOO (FOO) {
  proc __AnotherFOO__ (self, s, d)  { self.__FOO__(s,d) }
  proc operation (self, p1, p2, p3) {
    if ( p1 == 0 ) { throw EmptyException() }
    p2.value = p1 + p3.value
    return p1
  }
}

Table 6-3 The Future Object Functionalities

Functionality Explanation

futureReply.value waits for the end of the invocation and returns the result.

futureReply.poll() polls the end of the invocation and returns a boolean: 
true = invocation is completed ; 
false = invocation is still running.

futureReply.wait() waits for the end of the invocation.



6-86                                  CorbaScript                            December 1998

6

6.13.2 OMG IDL Attributes

A class which implements an IDL interface must provide instance methods for IDL
attributes. These methods can do any computation on the instance state.

The implementation class must provide a getting method per IDL attribute. The name
of these methods is the concatenation of the attribute name and the prefix _get_, e.g.
_get_assignable and _get_nonassignable. These methods take one parameter to refer to
the current receiver object and must return the (computed) value of the IDL attribute.

For non readonly IDL attributes, the implementation class must provide a setting
method. These methods are named by the IDL attribute name prefixed by _set_, e.g.
_set_assignable. They take two parameters: one to refer to the receiver and another one
containing the new value of the IDL attribute. These methods do not return any value.

6.13.3 OMG IDL Operations

Each IDL operation is implemented by a CorbaScript method named as the operation,
e.g. operation or method.

Implementation methods must take one parameter for the receiver and as many
parameters as the IDL operation signature defines. In  parameters are transmitted by
value while out and inout parameters are received through a Holder object.

These methods can do any computation on the instance state. They can also throw any
CORBA system exception or any user exception defined in the IDL operation signature
as shown in the operation method.

6.13.4 Object Registration

CorbaScript provides two different ways to register/unregister object implementations,
i.e. CorbaScript class instances:

• The POA approach: Scripts can use the Portable Object Adapter as defined in its
specification. Here, the native PortableServer::Servant is reflected by class
instances.

• A Java-like connect/disconnect approach: Here, object implementations are
connected/disconnected via the connect() and disconnect() methods of the
CORBA.ORB CorbaScript object. Connections may be explicitly or implicitly
done by scripts. The disconnection is always explicitly done by scripts. Consider the
following example:



CorbaScript                             December 1998 6-87

6

>>> a_foo = FOO ("Hello",10)
>>> # 'a_foo' refers to a FOO instance.

>>> CORBA.ORB.connect(a_foo, Foo, "my_foo")
>>> # 'a_foo' is now associated to a Foo CORBA object.
>>> # The 'a_foo' instance becomes accessible from the
>>> # ORB. The last parameter is optional.

>>> a_foo._this
< DSI Object Foo("IOR:000000000000000c49444c3a466f6f3a312e30
00000000010000000000000038000100000000000f3133342e3230362e31
302e3132390000138f0000000000184f422f49442b4e554d0049444c3a46
6f6f3a312e30003200") >
>>> # The '_this' attribute refers to the associated
>>> # DSI object.
>>> # This is the CORBA object reference implemented by
>>> # the 'a_foo' instance.

>>> ...
>>> CORBA.ORB.disconnect(a_foo)
>>> # Explicit disconnection. The 'a_foo' instance becomes
>>> # inaccessible from the ORB.

On the one hand, object implementations may be explicitly connected to the ORB by
calling the ORB's connect() method. As CorbaScript is fully dynamic, this method
takes two parameters: the class instance to connect and the IDL interface which this
instance implements (let us note that another parameter can be used to set the ORB-
specific object name). This way allows scripts to explicitly fix which interfaces an
object implements, i.e. a CorbaScript instance can simultaneously implement several
IDL interfaces with different object references.

On the other hand, an object implementation may also be automatically and implicitly
connected to the ORB if it is passed as a parameter to an IDL operation of a distant
CORBA object. This connection is done only if the object implementation is not
already connected to an IDL interface which is conform to the formal parameter type,
else the previous connection is reused. This approach simplifies the registration of
listener objects because registration IDL methods explicitly wait for a specific listener
interface. However, this approach can introduce distributed typing problems, e.g. if an
object implementation is bound to the CosNaming service without explicit connection
then it is implicitly connected to the CORBA::Object interface.

6.13.5 Object Adapter Run-Time Exceptions

To support CorbaScript, an ORB product must provide a reactive or multithreaded
Object Adapter. Then, interactive scripting can be done simultaneously with incoming
request handling, i.e. listener callbacks are executed concurrently with interactive
scripts. Moreover, some run-time exceptions can be thrown by the CorbaScript engine
when it receives a CORBA request via the Dynamic Skeleton Interface:

• CORBA::BAD_OPERATION : This exception is thrown when the invoked IDL
operation is not supported by the interfaces of the object implementation.



6-88                                  CorbaScript                            December 1998

6

• CORBA::OBJ_ADAPTER : This exception is thrown when the object
implementation has been explicitly disconnected from its interfaces.

• CORBA::NO_IMPLEMENT : This exception is thrown when the object
implementation class does not provide an implementation for the invoked operation
or attribute.

• CORBA::BAD_INV_ORDER : This exception is thrown when the invoked
implementation throws an internal exception, i.e. an exception which is not a
CORBA exception.

6.14 Binding for OMG IDL TypeCode

As we have seen it, the CorbaScript language provides a full and transparent binding to
any IDL definitions. These IDL types are directly accessible through their related IDL
definition name. Then these types can be used anywhere it is needed to provide a
CORBA TypeCode value.

>>> ExampleTC
< OMG-IDL interface ExampleTC {
    void send (in TypeCode tc);
}; >

>>> o = ExampleTC("IOR:....")
>>> o.send(CORBA.Long)
>>> o.send(Point)
>>> o.send(Foo)

>>> tc = CORBA.TypeCode(Foo)
>>> tc
CORBA.TypeCode(Foo)
>>> o.send(tc)

The previous code shows how IDL types can be directly sent as CORBA TypeCode
values. The ExampleTC interface defines the send operation which takes a CORBA
TypeCode value as parameter. This operation can be invoked with any IDL type: the
basic ones like CORBA.Long, the user defined ones like Point and the interface ones
like Foo. Moreover TypeCode values can be explicitly created from the
CORBA.TypeCode binding type.



CorbaScript                             December 1998 6-89

6

All the OMG IDL type representations can be managed as a CorbaScript TypeCode
object. Table 6-4 enumerates TypeCode object functionalites.

Table 6-4 The CORBA.TypeCode Functionalities

Functionality Explanation

tc.equal(aCorbaType) Tests equality between the tc TypeCode and the 
aCorbaType TypeCode.

tc.kind() Returns the TypeCode kind of tc and helps to 
determine what other operations can be invoked on 
the TypeCode.

tc.id() Returns the RepositoryId globally identifying the 
type on the TypeCode. It can be invoked on object 
reference, structure, union, enumeration, alias, and 
exception TypeCodes.

tc.name() Returns the simple name identifying the type within 
its enclosing scope.

tc.member_count() Returns the number of members constituting the type. 
It can be invoked on structure, union, and 
enumeration TypeCodes.

tc.member_name(anIndex) Returns the simple name of the member identified by 
anIndex. It can be invoked on structure, union, and 
enumeration TypeCodes.

tc.member_type(anIndex) Returns the TypeCode describing the type of the 
member identified by anIndex. It can be invoked on 
structure and union TypeCodes.

tc.member_label(anIndex) Returns the label of the union member identified by 
anIndex. It can only be invoked on union TypeCodes.

tc.discriminator_type() Returns the type of all non-default member labels. It 
can only be invoked on union TypeCodes.

tc.default_index() Returns the index of the default member, or -1 if there 
is no default member. It can only be invoked on union 
TypeCodes.

tc.length() Can be invoked on string, wide string, sequence, and 
array TypeCodes. For strings, wide strings, and 
sequences, it returns the bound, or zero indicating an 
unbounded string, wide string or sequence. For arrays, 
it returns the number of elements in the array.

tc.content_type() Can be invoked on sequence, array, and alias 
TypeCodes. For sequences and arrays, it returns the 
element type. For aliases, it returns the original type.



6-90                                  CorbaScript                            December 1998

6

6.15 Binding for OMG IDL Any

As we have seen it, the CorbaScript language allows one to simply create and
manipulate any IDL values. These values can be directly created from their related IDL
type. Then these values can be used anywhere it is needed to provide a CORBA Any
value.

>>> ExampleAny
< OMG-IDL interface ExampleAny {
    void send (in any a);
}; >

>>> p = Point(10,10)
>>> foo = Foo("IOR:....")

>>> o = ExampleAny("IOR:....")
>>> o.send(CORBA.Long(10))
>>> o.send(p)
>>> o.send(foo)
>>> o.send(AnotherFoo)

>>> a = CORBA.Any(p)
>>> a
CORBA.Any(Point(10,10))
>>> o.send(a)

>>> a.type
< OMG-IDL struct Point {
    double x;
    double y;
}; >
>>> a.value
Point(10,10)

The previous example shows how IDL values can be directly sent as CORBA Any
values. The ExampleAny interface defines the send operation which takes a CORBA
Any value as parameter. This operation can be invoked with any IDL value. The
interpreter automatically coerces the IDL value to an Any value like for
CORBA.Long(10), Point(10,10), Foo("IOR:....") and  AnotherFoo invocations.

Moreover Any values can be explicitly created from the CORBA.Any  binding type.
Such a value supports two attributes: type to obtain the IDL TypeCode of the value
stored in the Any and value to obtain the stored value.



CorbaScript                             December 1998 6-91

6

Some automatic coercions have been defined for the most common types. This feature
simplifies the use of IDL specifications using CORBA::Any. When an any is expected,
CorbaScript allows scripts to give one of the value of Table 6-5.

6.16 The Global CORBA  Object

The CorbaScript engine contains a global object named CORBA which is the
reflection of the CORBA module. This object defines a scope containing the hierarchy
of the previously presented objects: basic IDL types, basic IDL enums, standard
CORBA exception types, and the is_nil function. It also contains the Object interface,
the ORB object, and the POA object.

Moreover, the CORBA object dynamically allows the access to the other IDL
definitions contained in the CORBA module if they are popularized into the Interface
Repository (e.g. CORBA.Repository, etc.).

6.16.1 The CORBA::Object Object

The Object object is the reflection of the CORBA object base interface: it contains all
standard operations defined in the CORBA::Object  IDL interface and some others.
The following code presents the functionalities available from CorbaScript:

>>> CORBA.Object
< OMG-IDL interface CORBA::Object {
     InternalSlot readonly _ior;
     InternalSlot readonly _is_local;
     InternalMethod _hash(arg1);
     InternalMethod _is_equivalent(arg1);
}; >

The Table 6-6 presents the functionalities of these operations.

Table 6-5 CORBA.Any Implicit Conversions

Type Conversion to

a long L CORBA::Any(CORBA::Long(L))

a double D CORBA::Any(CORBA::Double(D))

a char C CORBA::Any(CORBA::Char(C))

a boolean B CORBA::Any(CORBA::Boolean(B))

a string S CORBA::Any(CORBA::String(S))

Table 6-6 The CORBA.Object Functionalities

Functionality Explanation

o._ior Returns the stringified Interoperable Object Reference 
of the associated CORBA object o.



6-92                                  CorbaScript                            December 1998

6

6.16.2 The CORBA::ORB Object

 The ORB object is the reflection of the ORB singleton object and it provides standard
ORB operations (i.e. object_to_string, string_to_object, list_initial_services,
resolve_initial_references, run, shutdown, etc.). Moreover, it also provides operations
to explicitly connect/disconnect a scripting object to/from a CORBA object as defined
in the IDL/Java Mapping (see Section 6.13.4, “Object Registration”). The following
code presents the functionalities available from CorbaScript:

>>> CORBA.ORB
< scope CORBA.ORB {

InternalFunction resolve_initial_references(arg1);
InternalFunction list_initial_services();
InternalFunction connect(anInstance,anIDLInterface, 

anObjectName,anAttributeName);
InternalFunction disconnect(arg1,...);
InternalFunction string_to_object(arg1);
InternalFunction object_to_string(arg1);
InternalFunction run();
InternalFunction shutdown();

} >

The Table 6-7 presents the functionalities of these operations.

o._is_local Returns true if o is a local object.

o._hash(number) Returns a hash value associated to o less than number.

o1._is_equivalent(o2) Returns true if o1 is equivalent to o2.

Table 6-7 The CORBA.ORB Functionalities

Functionality Explanation

resolve_initial_references(arg1) Returns the IOR associated to the initial 
service given as arg1 string parameter.

list_initial_services() Returns the list of the initial services as a 
CorbaScript string array.

connect(anInstance, 
anIDLInterface, anObjectName, 
anAttributeName)

See Section 6.13.4.

disconnect(arg1,...) See Section 6.13.4.

string_to_object(s) Converts the stringified object reference s  in 
an object reference.

Table 6-6 The CORBA.Object Functionalities



CorbaScript                             December 1998 6-93

6

The CORBA.ORB object is initialized at the starting time of the CorbaScript engine
before its first use.

6.17 A Summary Example

The following example illustrates how CORBA object’s interactions / callbacks can be
implemented with CorbaScript: it defines two Service and Listener interfaces and one
ValueChangedEvent structure. Listeners are notified each time the value attribute of
the Service object changes.

module Example {
   interface Listener;
   interface Service;
   struct ValueChangedEvent {
      Service service;
      long old_value;
      long new_value;
   };
   interface Service {
      attribute long value;
      void addListener (in Listener l);
      void removeListener (in Listener l);
   };
   interface Listener {
      void valueChanged (in ValueChangedEvent e);
   };
};

The following script presents a Service implementation (the value attribute and the
listener registration), its instanciation, and its registration into the Name Service.

object_to_string(o) Converts the object reference o in a 
stringified representation.

run() Starts a main loop to wait for ORB requests.

shutdown() Shutdowns the CORBA server.

Table 6-7 The CORBA.ORB Functionalities



6-94                                  CorbaScript                            December 1998

6

class ServiceImpl {
   # constructor with a default value.
   proc __ServiceImpl__ (self, initValue=0)
   {
      self.value = initValue
      self.listeners = []    # empty array
   }

   proc _get_value (self)
   {
      return self.value
   }

   proc _set_value (self, new_value)
   {
     # direct access to IDL types and creation of IDL values.
     event = Example.ValueChangedEvent (self, self.value,
                                        new_value)
     self.value = new_value
     # notification of all listeners.
     for l in self.listeners
       l.valueChanged(event)
   }

   proc addListener (self, l)
   {
      self.listeners.append(l)  # array method
   }

   proc removeListener(self,l)
   {
      self.listeners.remove(l)  # array method
   }
}

my_service = ServiceImpl(10)    # class instanciation

# A CorbaScript instance must be explicitly connected to
# an IDL interface, else it is implicitly connected to the
# CORBA::Object interface when it is bound into the Name
# Service.
CORBA.ORB.connect (my_service, Example.Service)

NS = CORBA.ORB.resolve_initial_references ("NameService")

# Note that implicit narrowing and automatic conversion to
# IDL structures.
NS.bind ([["services", ""], ["a_service", ""]], my_service)

# Start ORB main loop.
CORBA.ORB.run ()



CorbaScript                             December 1998 6-95

6

The next script shows the Listener implementation, its registration and the update of a
Service attribute.

NS = CORBA.ORB.resolve_initial_references ("NameService")
# Note that implicit narrowing and automatic conversion
# to IDL structures.
a_service = NS.resolve ([["services", ""],["a_service",""]])

class MyListenerImpl {
   proc __MyListenerImpl__ (self) { ... }

   proc valueChanged (self, e)
   {
      println("old_value=", e.old_value,
              " new_value=", e.new_value)
   }
}

a_listener = MyListenerImpl ()

# Note that the implicit connection to the Example::Listener
# interface.
a_service.addListener (a_listener)   # listener registration

. . .

a_service.value = 100   # attribute setting

. . . callback of the valueChanged method

# a_listener always converts to the same CORBA object when
# presenting as the same interface,
# so, removal works correctly.
a_service.removeListener(a_listener)


