ORBacus

For C++ and Java

Copyright (c) 2000 Object Oriented Concepts, Inc. All Rights Reserved.

“Object Oriented Concepts”, “ORBacus” and “JThreads/C++" are trademarks or regis-
tered trademarks of Object Oriented Concepts, Inc.

“OMG”, “CORBA", and “Object Request Broker” are trademarks or registered trade-
marks of the Object Management Group.

“Java” is a trademark of Sun Microsystems, Inc.
“Netscape” is a registered trademark of Netscape Communications Corporation.

Other names, products, and services may be the trademarks or registered trademarks of
their respective holders.

ORBacus

CHAPTER 1 Introduction 15

What isORBacus? 15
About thisDocument 16
GettingHelp 16

CHAPTER 2 Getting Started 17

The “Hello World” Application 17
The IDL Code 18
Implementing the Example in C++18
Implementing the Server 18
Implementing the Client 22
Compiling and Linking 23
Running the Application 24
Implementing the Example in Java24
Implementing the Server 24
Implementing the Client 27
Compiling 28
Running the Application 28
Summary 29

Where to go from here 29

CHAPTER 3 The ORBacus Code Generators 31

Overview 31

Synopsis 31

Description 32

Options for idl 32
Options for jidl 35
Options for hidl 37
Options for ridl 38
Options for irgen 39

The IDL-to-C++ Translator and the Interface Repositof)
Include Statements40
Documenting IDL Files 41
Using javadoc 43

ORBacus

CHAPTER 4

CHAPTER 5

ORB and OA Initialization 47

ORSB Initialization 47
Initializing the C++ ORB 47
Initializing the Java ORB for Applications 47
Initializing the Java ORBinJDK 1.2 48
OA Initialization 48
Initialization of the OAin C++ 48
Initialization of the OAin Java 50
Configuring the ORB and OA 50
Properties 51
Command-line Options 57
Using a Configuration File 58
Using the Windows NT Registry 59
Defining Properties 60
Precedence of Properties 62
Advanced Property Usage 62
ORB Destruction 64
Destroying the C++ ORB 64
Destroying the Java ORB 64
Server Event Loop 64

Applets 66
Compatibility with Netscape 66
Initializing the Java ORB for Applets 66
Adding ORBacus Applets to Web Pages 67
Defining ORB Options for an Applet 67
Defining the ORB Class Parameters 67
Security Issues 68

CORBA Objects 69

Overview 69
Implementing Servants 70
Implementing Servants using Inheritance 71
Implementing Servants using Delegation 73
Creating Servants 77
Creating Servantsusing C++ 78
Creating Servantsusing Java 79
Activating Servants 80

ORBacus

Implicit Activation of Servantsusing C++ 80
Implicit Activation of Servantsusing Java 81
Explicit Activation of Servantsusing C++ 81
Explicit Activation of Servantsusing Java 82
Deactivating Servants 83
Deactivation of Servantsusing C++ 83
Deactivation of Servantsusing Java 83
Transient and Persistent Objects 83
Factory Objects 84
Factory Objectsusing C++ 85
Factory Objectsusing Java 87
Caveats 88
Obtaining the POA for a Servant 88
Getting the POA for a Currently Executing Request 89

CHAPTER 6 Locating Objects 91

Obtaining Object References 91
Lifetime of Object References 94
Hostname 94
Port Number 94
Object Key 95
Stringified Object References 95
UsingaFile 95
UsingaURL 97
Using Applet Parameters 98
Object Reference URLs 99
corbaloc: URLs 99
corbaname: URLs 101
file: URLs 101
relfile URLs 102
Initial Services 102
Resolving an Initial Service 102
Configuring the Initial Services 104

CHAPTER 7 Thelmplementation Repository 107

Background 108
How It All Works 108

ORBacus

Information Managed by the IMR 108
Synopsis 110
Usage 110
Configuration Properties 110
Connecting to the Service 111
Utilities 112
Implementation Repository Administration 112
Making References 113
Getting Started with the Implementation Repository 113
Programming Example 116

CHAPTER 8 Thelmplementation Repository Console 119

Synopsis 120

Usage 120

CLASSPATH Requirements 120

Implementation Repository Service Lookup 120
TheMenus 120

The FileMenu 120

The Edit Menu 121

The View Menu 121

The Toolbar and the Popup Menu 122

cHAPTER9 ORBacus Names 123

Synopsis 123
Usage 123
Windows NT Native Service 124
Configuration Properties 126
Persistence 126
CLASSPATH Requirements 127
Connecting to the Service 127
Using the Naming Service withtheIMR 127
Naming Service Concepts 128
Bindings 128
Name Resolution 129
Programming Example 130
Initialization 130

ORBacus

Binding 132

Exceptions 134

The Event Loop 135
Releasing Resources 135

cHAPTER 10 ORBacus Names Console 137

Synopsis 137
Usage 137
CLASSPATH Requirements 138
Naming Service Lookup 138
TheMenus 138
The FileMenu 138
The Edit Menu 140
The View Menu 141
The ToolsMenu 142
The Toolbar 143

The Popup Menu 144

cHAPTER 11 ORBacus Properties 145

Synopsis 145
Usage 145
Configuration Properties 146
CLASSPATH Requirements 146
Connecting to the Service 146
Using the Property Service withthe IMR 147
Property Service Concepts 147
Creating Properties 147
Querying for Properties 148
Deleting Properties 149
Programming Example 150

CHAPTER 12 ORBacus Events 153

Synopsis 153
Usage 153
Windows NT Native Service 154

ORBacus

Configuration Properties 155

Diagnostics 156

CLASSPATH Requirements 156
Connecting to the Service 157
Using the Event Service withthe IMR 158
Event Service Concepts 159

The Event Channel 159

Event Suppliers and Consumers 159

Event Channel Policies 160

Event Channel Factories 160

Programming Example 162

CHAPTER 13 ORBacus Trader 167

Synopsis 168

Usage 168

Configuration Properties 168

CLASSPATH Requirements 169
Connecting to the Service 169
Using the Trading Service withtheIMR 169
Trading Service Concepts 170

Basic Concepts 170

Importing Service Offers 174

Offer Management 177

Dynamic Properties 178

Trader Federation with Links 179

Supporting Legacy Applications with Proxy Offers 181
Programming Example 182

The Print Server 182

TheClient 185

CHAPTER 14 ORBacus Trader Console 187

Synopsis 188

Usage 188

CLASSPATH Requirements 188
Main Window 188
Terminology 189

ORBacus

The Trader Console Menus 190
The Console menu 190
The Edit menu 190
The View menu 191
The Insert menu 192
The Toolsmenu 192
The Toolbar 192
Managing Service Types 192
Adding a New Service Type 193
Removing a Service Type 195
Masking a Service Type 195
Unmasking a Service Type 196
Managing Offers 196
Adding a New Offer 196
Modifying an Offer 198
Withdrawing Offers 199
Managing Proxy Offers 201
Adding a New Proxy Offer 201
Withdrawing Proxy Offers 203
Managing Links 204
Adding a New Link 204
Modifying aLink 204
Removing a Link 205
Configuring the Trader Attributes 205
Support Attributes 206
Import Attributes 207
Link Attributes 209
Admin Attributes 209
Executing Queries 210

Connecting to aNew Trader 212

CHAPTER 15 The Interface Repository 215

Synopsis 215
Usage 215
Windows NT Native Service 216
Configuration Properties 217

Connecting to the Interface Repository 218

Configuration Issues 218

ORBacus

CHAPTER 16

CHAPTER 17

CHAPTER 18

Interface Repository Utilities 218
irfeed 218
irdel 219

Programming Example 219

Using Policies 221

Overview 221
Supported Policies 222
Programming Examples 222

Connection Reuse Policy 222
Timeout Policy 225

Concurrency Models 227

Introduction 227
What is a Concurrency Model? 227
Why different Concurrency Models? 227
ORBacus Concurrency Models Overview 228
Single-Threaded Concurrency Models 228
Blocking Clients 228
Reactive Clientsand Servers 229
Multi-Threaded Concurrency Models 231
Threaded Clients and Servers 231
Thread-per-Client Server 232
Thread-per-Request Server 233
Thread Pool Server 234
Selecting Concurrency Models 235
The Reactor 235
What isa Reactor? 235
Available Reactors 235

The Open Communications Interface

What is the Open Communications Interface? 239

Interface Summary 239
Buffer 239

239

10

ORBacus

CHAPTER 19

APPENDIX A

Transport 240
Acceptor and Connector 240
Connector Factory 240
The Registries 240
The Info Objects 240
ClassDiagram 241

OCI Reference 241

OCI for the Application Programmer 242
A “Converter” Class for Java 242
Getting Hostnames and Port Numberg43
Finding out a Client's IP Address244
Finding out a Server’s IP Address246

Exceptions and Error Messages 249

CORBA System Exceptions 249
INITIALIZE Minor Exception Code 251
UNKNOWN Minor Exception Code251
BAD_PARAM Minor Exception Code251
NO_MEMORY Minor Exception Code?53
IMP_LIMIT Minor Exception Code 253
COMM_FAILURE Minor Exception Code253
MARSHAL Minor Exception Code255
NO_IMPLEMENT Minor Exception Code257
NO_RESOURCES Minor Exception Cod2b7
BAD_INV_ORDER Minor Exception Cod&57
TRANSIENT Minor Exception Code58
INTF_REPOS Minor Exception Code258
OBJECT_NOT_EXIST Minor Exception Cod258
INV_POLICY Minor Exception Code258

Non-Compliant Application Asserts 258

Boot Manager Reference 263

Interface OB::BootManager 263
Interface OB::BootLocator 265

ORBacus

1

APPENDIX B ORBacus Policy Reference 267

ModuleOB 267

Interface OB::ConnectionReusePolicy 269
Interface OB::InterceptorPolicy 270

Interface OB::LocationTransparencyPolicy 271
Interface OB::ProtocolPolicy 272

Interface OB::RetryPolicy 273

Interface OB::TimeoutPolicy 274

APPENDIX C Reactor Reference 275

Interface OB::Reactor 275

APPENDIXD Logger Reference 279

Interface OB::Logger 279

APPENDIX E Open Communications Interface Reference 281

Module OCI 281

Interface OCI::Buffer 284
Interface OCI::Transport 286
Interface OCI:: Transportinfo 290
Interface OCI::CloseCB 292
Interface OCI::Connector 293
Interface OCI::Connectorinfo 296
Interface OCI::ConnectCB 298
Interface OCI::Acceptor 299
Interface OCI::Acceptorinfo 302
Interface OCI::AcceptCB 304
Interface OCI::ConFactory 305
Interface OCI::ConFactorylnfo 307
Interface OCI::ConFactoryRegistry 309

ORBacus

Interface OCI::AccRegistry 311

Interface OCl::Current 313

Module OCI::IIOP 314

Interface OCI::11OP::Transportinfo 315
Interface OCI::I10OP::Connectorinfo 316
Interface OCI::11OP::Acceptorinfo 317
Interface OCI::110P::ConFactorylnfo 318

References 319

Index 321

ORBacus

13

14

ORBacus

CHAPTER 1

|ntroduction

1.1

What is ORBacus?

ORBAcus is an Object Request Broker (ORB) that is compliant with the Common Object
Request Broker Architecture (CORBA) specification as defined in “The Common Object
Request Broker: Architecture and Specification” [4], “C++ Language Mapping” [5],
“IDL/Java Language Mapping” [6], and “Portable Interceptors” [7].

These are some of the highlights of ORBS:

e Full CORBA IDL support

e C++ and Java language mappings

« Simple configuration and bootstrapping
« Portable Object Adapter

e Objects by Value

« Portable Interceptors

e Single- and Multi-threaded

e Active Connection Management

e Fault Tolerant Extensions

* Dynamic Invocation and Dynamic Skeleton Interface
e Dynamic Any

ORBacus 15

Introduction

1.2

1.3

* Interface and Implementation Repository

« Pluggable Protocols

e IDL-to-HTML and IDL-RTF documentation tools

e Includes Naming, Trading, Event and Property Services

For platform availability, please refer to the ORBS home page at
http://ww. ooc. com ob/ .

About this Document

This manual is—except for the “Getting Started” chapter—no replacement for a good
CORBA book. This manual also does not contain the precise specifications of the
CORBA standard, which are freely available on-line. A good grasp of the CORBA speci-
fications in [4], [6], and [6] is absolutely necessary to effectively use this manual. In par-
ticular, the chapters in [4], covering CORBA IDL and the IDL-to-C++ mapping, should be
studied thoroughly.

For C++ users, we also highly recommend [3]. This book contains by far the best treat-
ment of CORBA programming with C++ to date.

What this manual does contain, however, is informatiomenORBAcus implements the
CORBA standard. A shortcoming of the current CORBA specification is that it leaves a
high degree of freedom to the CORBA implementation. For example, the precise seman-
tics of a oneway call are not specified by the standard.

To make it easier to get started with ORBS, this manual contains a “Getting Started”
chapter, explaining some ORBUS basics with a very simple example.

Getting Help

Should you need any assistance with @QRBs, do not hesitate to contact us at
suppor t @oc. com You might also consider joining our OR8US mailing list. For
more information on the mailing list, please see

http://ww. ooc. comob/mailing-list.htm.

16

ORBacus

CHAPTER 2

Getting Sarted

21

The “Hello World” Application

The example described in this chapter is founded on a well-known application: A “Hello
World!” program presented here in a special client-server version.

Many books on programming start with this tiny demo program. In introductory C++
books you'll probably find the following piece of code in the very first chapter:

/] C++
#i ncl ude <i ostream h>

int main(int, char*[])

{
cout << "Hello World!'" << endl;
return O;
}
Or in introductory Java books:
/1 Java
public class Geeter
{
public static void main(String args[])
{
Systemout.printin("Hello Wrld!'");
}

ORBacus 17

Getting Started

2.2

2.3

231

GO N WN R

}

These applications simply print “Hello World!” to standard output and that is exactly what
this chapter is about: Printing “Hello World!” with a CORBA-based client-server applica-
tion. In other words, we will develop a client program that invokesyahel | o opera-

tion on an object in a server program. The server responds by printing “Hello World!” on
its standard output.

The IDL Code

How do we write a CORBA-based “Hello World!” application? The first step is to create a
file containing our IDL definitions. Since our sample application isn't a complicated one,
the IDL code needed for this example is simple:

/1 1DL
interface Hello

{
}s

An interface with the namel | o is defined. An IDL interface is conceptually equivalent
to a pure abstract class in C++, or to an interface in Java.

void say_hello();

The only operation defined say_hel | o, which neither takes any parameters nor returns
any result.

| mplementing the Example in C++

The next step is to translate the IDL code to C++ using the IDL-to-C++ translator. Save
the IDL code shown above to a file callae | o. i dl . Now translate the code to C++
using the following command:

idl Hello.idl

This command will create the filé®l | 0. h, Hel | 0. cpp, Hel | o_skel . h and
Hel | o_skel . cpp.

I mplementing the Server

To implement the server, we need to define an implementation class f@i the inter-
face. To do this, we create a clags$| o_i npl that is derived from the “skeleton” class
POA Hel | o, defined in the filedel | o_skel . h. The definition forHel | o_i npl looks
like this:

18

ORBacus

Implementing the Examplein C++

Q © ® N O AN WNRK

~

N

© N O WNRK

wW

/] C++
#i ncl ude <Hel | o_skel . h>

class Hello_inpl : public POA Hell o,
publ i c Portabl eServer: : Ref Count Ser vant Base

{
public:

virtual void say_hello() throw CORBA:: SystenException);
H

Since our implementation class derives from the skeleton class POA_Hel | o, we must
includethefile Hel | o_skel . h.

HerewedefineHel | o_i npl asaclass derived from POA Hel | o and
Ref Count Ser vant Base. Ref Count Ser vant Base ispart of the Por t abl eSer ver
namespace and provides reference counting.

Our implementation class must implement all operations from the IDL interface. In this
case, thisisjust the operation say_hel | o.

The implementation for Hel | o_i npl looks as follows:

/] C++

#i ncl ude <i ostream h>
#i ncl ude <OB/ CORBA. h>
#i nclude <Hel |l o_i npl . h>

void Hello_inpl::say_hello() throw CORBA:: SystenmExcepti on)
{

}

cout << "Hello World!'" << endl;

We must include OB/ CORBA. h, which contains definitions for the standard CORBA
classes, aswell asfor other useful things.

We must also includethe Hel | o_i npl class definition, contained in the header file
Hel o_i npl . h.

Thesay_hel | o function simply prints “Hello World!” on standard output.

Save the class definition &€l | o_i npl in the fileHel | o_i npl . h and the implementa-

tion ofHel | o_i npl in the fileHel | o_i npl . cpp.

ORBacus 19

Getting Started

Q ©W O NGO ANWNR

1

37

Now we need to write the server program. To simplify exception handling and ORB
destruction, we split our server into two functions: mai n() andrun() . mai n() only cre-
atesthe ORB, and callsr un() :

/] C++

#i ncl ude <OB/ CORBA. h>
#i nclude <Hel |l o_i npl . h>
#i ncl ude <fstream h>

int run(CORBA:: ORB ptr);

nt main(int argc, char* argv[])

i
{

int status = EXI T_SUCCESS;
CORBA: : ORB_var orb;
try
{
orb = CORBA:: ORB_init(argc, argv);
status = run(orb);
}
cat ch(const CORBA: : Excepti on&)
{
status = EXI T_FAI LURE;
}
if(lis_nil(orb))
{
try
{
orb -> destroy();
}
cat ch(const CORBA: : Excepti on&)
{
status = EXI T_FAI LURE;
}
}
return status;
}

Several header files are included. Of these, OB/ CORBA. h provides the standard CORBA
definitions, and Hel | o_i npl . h contains the definition of the Hel | o_i npl class.

20

ORBacus

Implementing the Examplein C++

16

17

19-22

24- 34

36

26

A forward declaration for ther un() function.

Thefirst thing a CORBA program must do isinitialize the ORB. This operation expects
the parameters with which the program was started. These parameters may or may not be
used by the ORB, depending on the CORBA implementation. ORBACUS recognizes cer-
tain options that will be explained later.

Therun() helper function is called.
This code catches and prints all CORBA exceptionsraised by ORB_i nit () orrun().

If the ORB was successfully created, it is destroyed. This releases the resources used by
the ORB. If dest r oy () raisesa CORBA exception, this exception is caught and printed.

The exit statusis returned. If there was no error, EXI T_SUCCESS is returned, or
EXI T_FAI LURE otherwise.

Now we writether un() function:

/] C++
int run(CORBA:: ORB_ptr orb)
{
CORBA: : Obj ect _var poaChj =
orb -> resolve_initial _references("Root POA");
Port abl eServer:: POA var rootPoa =
Por t abl eServer: : POA: : _narrow poaChj);

Port abl eSer ver: : POAManager _var manager =
root Poa -> t he_PQAManager () ;

Hel lo_inpl * hellolnpl = new Hello_inpl();
Port abl eSer ver: : Servant Base_var servant = hell ol npl;
Hel l o_var hello = hellolnpl -> _this();

CORBA String_var s = orb -> object_to_string(hello);
const char* refFile = "Hello.ref";

of streamout (refFile);

out << s << endl;

out. cl ose();

manager -> activate();
orb -> run();

return EXI T_SUCCESS;
}

ORBacus 21

Getting Started

9-10

12-14

16- 20

22-23

2.3.2

N ORN WNR

Using the ORB reference, resol ve_i ni ti al _ref erences() isinvoked to obtain aref-
erence to the Root POA.

The Root POA is used to obtain areference to its POA Manager.

A servant of typeHel | o_i npl is created and assigned to a Ser vant Base_var variable.

The servant is then used to incarnate a CORBA object, using the _t hi s() operation.

Servant Base_var and Hel | o_var, likeall _var types, are “smart” pointer, i.e.,

servant andhel | o will release their assigned object automatically when they go out of
scope.

The client must be able to access the implementation object. This can be done by saving a
“stringified” object reference to a file, which can then be read by the client and converted
back to the actual object referercéhe operatiombj ect _to_string() converts a

CORBA object reference into its string representation.

The server must activate the POA Manager to allow the Root POA to start processing
requests, and then inform the ORB that it is ready to accept requests.

Save the code forai n() andrun() to a file with the name&er ver . cpp.

Implementing the Client

In several respects, the client program is similar to the server program. The code to initial-
ize and destroy the ORB is the same:

/] C++

#i ncl ude <OB/ CORBA. h>
#i ncl ude <Hell o. h>

#i ncl ude <fstream h>

int run(CORBA:: ORB ptr);

int main(int argc, char* argv[])

{
}

int run(CORBA: : ORB ptr orb)

/1l Same as for the server

1. If your application contains more than one object, you do not need to save object references for
all objects. Usually you save the reference of one object which provides operations that can sub-
sequently return references to other objects.

22

ORBacus

Implementing the Examplein C++

15
16
17
18
19
20
21
22
23
24
25
26
27

3

7-12

16-20

22

24

2.3.3

{
const char* refFile = "Hello.ref";
ifstreamin(refFile);
CORBA: : String_var s;
in >>s;
CORBA: : Obj ect _var obj = orb -> string_to_object(s);
Hel l o_var hello = Hello::_narrowobj);
hello -> say_hello();
return O;
}
In contrast to the server, the client does not need to include Hel | o_i npl . h. Only the gen-

erated file Hel | 0. h is needed.
This code is the same as for the server.

The “stringified” object reference written by the server is read and converted to a
CORBA: : Obj ect object reference. It's not necessary to obtain a reference to the Root
POA or its POA Manager, because they are only needed by server applications.

The_nar r ow operation generatesHel | o object reference from th@RBA: : Qbj ect
object referenceAlthough _nar r owfor CORBA objects works similar to dynami c¢_cast <>

for plain C++ objects, dynam c_cast <> must not be used for CORBA object references. That's
because in contrast ttynani ¢c_cast <>, _nar r ow might have to query the server for type
information.

Thesay_hel | o operation onthehel | o object referenceisinvoked, causing the server to
print “Hello World!”.

Finally, dest r oy is called on the ORB. This releases the resources used by the ORB.

Save this code into the fil@ i ent . cpp.

Compiling and Linking

Both the client and the server must be linked with the compidéto. cpp, which usu-
ally has the nameel | 0. o under Unix andHel | o. obj under Windows. The compiled
Hel | o_skel . cpp andHel | o_i npl . cpp are only needed by the server.

Compiling and linking is to a large degree compiler- and platform-dependent. Many com-
pilers require unique options to generate correct code. To builcth@REprograms, you
must at least link with the ORBuUS library | i bOB. a (Unix) orob. I i b (Windows).

ORBacus 23

Getting Started

Additional libraries are required on some systems, such asl i bsocket.aandl i bnsl . a
for Solarisor wsock32. | i b for Windows.

The ORBAcus distribution includes various READVE files for different platforms which
give hints on the options needed for compiling and the libraries necessary for linking.
Please consult these README files for details.

2.3.4 Runningthe Application
Our “Hello World!” application consists of two parts: the client program and the server
program. The first program to be started is the server, because it must create the file
Hel | o. ref that the client needs in order to connect to the server. As soon as the server is
running, you can start the client. If all goes well, the “Hello World!” message will appear
on the screen.
2.4 Implementing the Example in Java
In order to implement this application in Java, the interface specified in IDL is translated
to Java classes similar to the way the C++ code was created. ThecQRBL-to-Java
translatoy i dl is used like this:
jidl --package hello Hello.idl
This command results in several Java source files on which the actual implementation will
be based. The generated filesiagkl o. j ava, Hel | oHel per. j ava,
Hel | oHol der . j ava, Hel | oOper ati ons. j ava, Hel | oPQA. j ava and
_Hel | oSt ub. j ava, all generated in a directory with the nahe¢ | o.
2.4.1 Implementingthe Server
The server'siel | o implementation class looks as follows:
1 /] Java
2 package hell o;
3
4 public class Hello_inpl extends Hel |l oPCA
5 {
6 public void say_hello()
7 {
8 Systemout.printin("Hello Wrld!'");
9 }
10 }
24 ORBacus

Implementing the Examplein Java

O N RN WNR

The implementation class Hel | o_i npl must inherit from the generated class Hel | oPOA.

Aswith the C++ implementation, the say _hel | o method simply prints “Hello World!”
on standard output.

Save this class to the fileel | o_i npl . j ava in the directonyhel | o.

We also have to write a class which holds the semei's() andrun() methods. We
call this classser ver, saved in the fil&er ver . j ava in the directonhel | o:

/1 Java
package hell o;

public class Server

{

public static void main(String args[])

{

java.util.Properties props = System getProperties();
pr ops. put (" or g. ong. CORBA. ORBCl ass", "com ooc. CORBA. ORB") ;
pr ops. put (" or g. ong. CORBA. ORBSi ngl et onCl ass”,

"com ooc. CORBA. ORBSI ngl et on");

int status = 0;
org.ong. CORBA. ORB orb = nul|;

try

{
orb = org.ong. CORBA. ORB. i nit(args, props);
status = run(orb);

}
cat ch(Exception ex)
{
ex. print StackTrace();
status = 1;
}
if(orb !'= null)
{
try
{
orb. destroy();
}
cat ch(Exception ex)
{

ex. print StackTrace();

ORBacus 25

Getting Started

36
37
38
39
40
41

8-11

18

status = 1;

}

System exit (status);

}

These properties are necessary to use the ORBAcus ORB with JDK 1.2 or later.

The ORB must be initialized using ORB. i ni t . Note that all standard CORBA definitions
arein the package or g. ong. CORBA. That is, you must either import this package, or, as
shown in our example, you must use or g. ong. CORBA explicitly.

19 Therun() helper functioniscalled.
21-25 This code catches and prints all CORBA exceptions raised by ORB. i nit () orrun().
27-38 |f the ORB was successfully created, it is destroyed. This releases the resources used by
the ORB. If dest r oy () raisesa CORBA exception, this exception is caught and printed.
41 Theexit statusisreturned. If there was no error, 0 is returned, or 1 otherwise.
Now wewritether un() method:
1 // Java
2 static int run(org. ong. CORBA. ORB orb)
3 t hrows org. ong. CORBA. User Excepti on
4 {
5 org. ong. Port abl eServer. POA r oot POA =
6 or g. ong. Por t abl eSer ver . POAHel per . nar r owm(
7 orb.resolve_initial_references(“RootPOA"));
8
9 org.omg.PortableServer.POAManager manager =
10 rootPOA.the_ POAManager();
11
12 Hello_impl helloimpl = new Hello_impl();
13 Hello hello = hellolmpl._this(orb);
14
15 String ref = orb.object_to_string(hello);
16 String refFile = "Hello.ref";
17 java.io.PrintWriter out = new java.io.PrintWriter(
18 new java.io.FileOutputStream(refFile));
19 out.printin(ref);
20 out.close();
21
22 manager.activate();
26 ORBacus

Implementing the Examplein Java

23
24
25
26
27

5-10

12-23

15-20

22-23

24.2

O N RN WNR

~
S ©

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

orb.run();
return O;
}
}
A reference to the Root POA is obtained using the ORB reference, and the Root POA is

used to obtain areferenceto its POA Manager.

A servant of type Hel | o_i npl is created and is used to incarnate a CORBA object. The
CORBA object is released automatically when it is not used anymore.

The object reference is “stringified” and written to a file.

The server enters its event loop to receive incoming requests.

Implementing the Client

Save this to a file with the nan@ki ent . j ava in the directoryhel | o:

/1 Java
package hell o;

public class dient

{
public static void main(String args[])
{
/1 Same as for the server
}
static int run(org.ong. CORBA. ORB orb)
{
String refFile = "Hello.ref";
java.io.BufferedReader in = new java.i o. Buf f er edReader (
new java.io. Fil eReader(refFile));
String ref = in.readLine();
org. ong. CORBA. Obj ect obj = orb.string_to_object(ref);
Hel l o hell o = Hel | oHel per. narrow(obj);
hel | 0. say_hel |l o();
return O;
}
}

ORBacus 27

Getting Started

6-9
13-17

19

21

24.3

244

This code is the same as for the server.
The stringified object reference is read and converted to an object.

The object reference is “narrowed” to a referenceHel & o object. A simple Java cast is
not allowed here, because it is possible that the client will need to ask the server whether
the object is really of typeel | o.

Thesay_hel | o operation is invoked, causing the server to print “Hello World!” on stan-
dard output.

Compiling

Ensure that youELASSPATH environment variable includes the current working directory
as well as the OR&:us for Java classes, i.e., tbB. j ar file. If you are using the Unix
Bourne shell or a compatible shell, you can do this with the following commands:

CLASSPATH=. : your _orbacus_directory/lib/ OB.jar: $CLASSPATH
export CLASSPATH

Replaceyour _or bacus_di r ect or y with the name of the directory where ORBIS is
installed.

If you are running ORBcus on a Windows-based system, you can use the following
command within the Windows command interpreter:

set CLASSPATH=. ; your _orbacus_directory\li b\ OB.j ar; UCLASSPATHY
Note that for Windows you must use “;” and not “:” as the delimiter.

To compile the implementation classes and the classes generated by theUSRR.-
to-Java translator, ugavac (or the Java compiler of your choice):

javac hello/*.java

Running the Application
The “Hello World” Java server is started with:
java hel |l o. Server

And the client with:

java hello.dient

Again, make sure that yo@t ASSPATH environment variable includes thB. j ar file.

28

ORBacus

Summary

2.5

2.6

You might also want to use a C++ server together with aJavaclient (or viceversa). Thisis
one of the primary advantages of using CORBA: if something is defined in CORBA IDL,
the programming language used for theimplementationisirrelevant. CORBA applications
can talk to each other, regardless of the language they are written in.

Summary

At this point, you might be inclined to think that thisis the most complicated method of
printing a string that you have ever encountered in your career as a programmer. At first
glance, a CORBA -based approach may indeed seem complicated. On the other hand,
think of the benefits this kind of approach hasto offer. You can start the server and client
applications on different machines with exactly the same results. Concerning the commu-
ni cation between the client and the server, you don't have to worry about platform-specific
methods or protocols at al, provided thereisa CORBA ORB available for the platform
and programming language of your choice. If possible, get some hands-on experience and
start the server on one machine, the client on another. As you will see, CORBA-based
applications run interchangeably in both local and network environments.

Onelast point to note: you likely won't be using CORBA to develop systems as simple as

our “Hello, World!” example. The more complex your applications become (and today’s
applicationsare complex), the more you will learn to appreciate having a high-level
abstraction of your applications' key interfaces captured in CORBA IDL.

Where to go from here

To understand the remaining chapters of this manualyysuhave read the CORBA
specifications in [4], [5], and [6]. You will not be able to understand the chapters that fol-
low without a good understanding of CORBA in general, CORBA IDL and the IDL-to-
C++ and IDL-to-Java mappings.

1. Notethat after the startup of the server program, you have to copy the stringified object refer-
ence, i.e., thefileHel | o. r ef , to the machine where the client program is to be run.

ORBacus 29

Getting Started

30

ORBacus

CHAPTER 3

The ORBacus Code
Gengrators

3.1

3.2

Overview

ORBAcus includes the following code generators:

i dl The ORBAcuUS IDL-to-C++ Translator

jidl The ORBAcus IDL-to-Java Translator

hi dl The ORBAcus IDL-to-HTML Trand ator

ridl The ORBAcus IDL-to-RTF Trandator

i rgen The ORBAcuUSs Interface Repository C++ Code Generator

Synopsis

i dl [optiong] idl-files...
jidl [optiong] idl-files...
hi dI [optiong] idl-files...
ridl [options] idl-files...

i rgen name-base

ORBacus

31

The ORBacus Code Generators

3.3

3.4

Description

i dl isthe ORBAcUSIDL-to-C++ trandator. It translates IDL filesinto C++ files. For each
IDL file, four C++ files are generated. For example,

idl MFile.id

produces the following files:

MFile.h Header file containingyFi | e. i dl 's translated data types
and interface stubs

M/Fi | e. cpp Source file containingyFi | e. i dl 's translated data types
and interface stubs

MyFil e_skel . h Header file containing skeletons farFi | e. i dl 's interfaces

M/Fi | e_skel . cpp Source file containing skeletons f@rFi | e. i dl s interfaces

jidl trandates|DL filesinto Javafiles. For every construct inthe IDL file that mapsto a
Javaclass or interface, a separate classfileis generated. Directories are automatically cre-
ated for those IDL constructs that map to a Java package (e.g., anodul e).

jidl canalso add commentsfrom the IDL file starting with / ** to the generated Java
files. Thisalowsyou to usethej avadoc tool to produce documentation from the gener-
ated Java files. See “Using javadoc” on page 43 for additional information.

hi dl creates HTML files from IDL files. An HTML file is generated for each module and
interface defined in an IDL file. Comments in the IDL file are preserved analdoc

style keywords are supported. The section “Documenting IDL Files” on page 41 provides
more information.

ridl creates Rich Text Format (RTF) files from IDL files. An RTF file is generated for
each module and interface defined in an IDL file. Comments in the IDL file are preserved
andj avadoc style keywords are supported. The section “Documenting IDL Files” on
page 41 provides more information.

i r gen generates C++ code directly from the contents of an Interface Repository. See “The
IDL-to-C++ Translator and the Interface Repository” on page 40 for an example.

Optionsfor idl

-h, --help

Show a short help message.

32

ORBacus

Optionsfor idl

-V, --version

Show the ORBACUS version number.

-e, --cpp NAME

Use NAME as the preprocessor program.

-d, --debug

Print diagnostic messages. This option isfor ORBAcuUS internal debugging purposes only.
- DNAME

Defines NAME as 1. This option is directly passed to the preprocessor.

- DNAVE=DEF

Defines NAME as DEF. This option is directly passed to the preprocessor.

- UNAME

Removes any definition for NAME. This option is directly passed to the preprocessor.
-1DIR

Adds DI Rto theinclude file search path. Thisoption isdirectly passed to the preprocessor.
-E

Runs the source files through the preprocessor without generating code.

- -no-skel etons

Don't generate skeleton classes.

--no-type-codes

Don't generate type codes and insertion and extraction functions for the Any type. Use of
this option will cause the translator to generate more compact code.

--locality-constrained

Generate locality-constrained objects.

--no-virtual -inheritance

Don't use virtual C++ inheritance. If you use this option, you cannot use multiple interface
inheritance in your IDL code, and you also cannot use multiple C++ inheritance to imple-
ment your servant classes.

--tie

ORBacus 33

The ORBacus Code Generators

Generate tie classes for delegate-based interface implementations. Tie classes depend on
the corresponding skeleton classes, i.e., you must not use- - no- skel et ons in combina-
tionwith--tie.

--fwd
Generate separate header files for forward declarations.
--inmpl

Generate exampl e servant implementation classes. An input file Foo. i dl will generate
thefilesFoo_i npl . h and Foo_i npl . cpp. These fileswill not be overwritten, therefore
you must first remove the existing files before new ones can be generated. You must not
use - - no- skel et ons in combination with this option.

--inmpl-all

Similar to - - i npl , but function signatures are generated for all inherited operations and
attributes. You must not use - - no- skel et ons in combination with this option.

--c-suffix SUFFI X

Use SUFFI X as the suffix for sourcefiles. The default valueis. cpp.
--h-suf fix SUFFI X

Use SUFFI X as the suffix for header files. The default valueis. h.
--skel -suffix SUFFI X

Use SUFFI X as the suffix for skeleton files. The default valueis _skel .

--all

Generate code for included files instead of inserting #i ncl ude statements. See “Include
Statements” on page 40.

--no-relative

When generating codedl assumes that the sarie options that are used withil are
also going to be used with the C++ compiler. Therefdiewill try to make all

#i ncl ude statements relative to the directories specified withThe option - no-

rel ati ve suppresses this behavior, in which cagle will not make#i ncl ude state-
ments for included files relative to the paths specified with theption.

--header-dir DR

This option can be used to makienc! ude statements for header files relative to the spec-
ified directory.

ORBacus

Optionsfor jidl

--this-header-dir DR

Likethe - - header - di r option, this option can be used to make #i ncl ude statements
for header files relative to the specified directory. However, this option only appliesto
#i ncl ude statements for the header files of thisIDL file.

--other-header-dir DR

Likethe - - header - di r option, this option can be used to make #i ncl ude statements
for header files relative to the specified directory. However, this option only appliesto

#i ncl ude statementsfor the header files corresponding to IDL filesthat were included in
thisIDL file.

--output-dir DR

Write generated filesto directory DIR.

--file-list FILE

Writealist of all generated filesto file FILE.

--dll-inport DEF

Put DEF in front of every symbol that needs an explicit DLL import statement.
--with-interceptors-args

Generate code with support for arguments, result and exception list values for interceptors.
--no-orb-nedi ation

By default, invocations on collocated servants are mediated by the ORB. Specify this
option to disable ORB mediation.

--no-1| ocal - copy

To ensure strict compliance with CORBA's location transparency semantics, the default
behavior of the translator is to generate code that copies valuetype argument and result
values for collocated invocations. Specify this option to disable strict compliance and gen-
erate more efficient code.

Options for jidl

-h, --help

-V, --version
-e, --cpp NAME
-d, --debug

- DNAME

ORBacus 35

The ORBacus Code Generators

- DNAME=DEF

- UNAME

-IDIR

-E

--no-skel etons
--locality-constrained
--all

--tie

--file-list FILE
--no-1| ocal - copy

These options are the same as for thei dI command.

--no-coment s

The default behavior of j i dl isto add any comments from the IDL file starting with / **
to the generated Java files. Specify this option if you don’t want these comments added to
your Java files.

- - package PKG

Specifies a package name for the generated Java classes. Each class will be generated rela-
tive to this package.

- - prefix-package PRE PKG

Specifies a package name for a particular ptefach class with this prefix will be gener-
ated relative to the specified package.

- - aut o- package

Derives the package names for generated Java classes from the IDL prefixes. The prefix
ooc. com for example, results in the packagen ooc.

--output-dir DR

Specifies a directory wheje dI will place the generated Java files. Without this option
the current directory is used.

--clone
Generates al one method for struct, union, enum, exception, valuetype and abstract

interface types. For valuetypes, only an abstract method is generated. The valuetype
implementer must supply an implementationdbone.

1. Prefix refersto the value of the #pr agnma pr ef i x statement in an IDL file. For example, the
statement #pr agma. prefi x “ooc.com” definesooc.com asthe prefix. The prefix is
included in the Interface Repository identifiers for all types defined in the IDL file.

ORBacus

Optionsfor hidl

3.6

--inmpl

Generates exampl e servant implementation classes. For IDL interface types, aclassis gen-
erated in the same package as the interface classes, having the same name as the interface
with the suffix _i npl . The generated class extends the POA class of theinterface. For IDL
valuetypes, a class is generated in the same package as the valuetype with the suffix

Val ueFact ory_i npl . You must not use - - no- skel et ons in combination with this
option.

--inmpl-tie

Similarto - - i mpl , but implementation classes for interfaces implement the Oper at i ons
interface to facilitate the use of TIE classes. You must not use - - no- skel et ons in com-
bination with this option.

--with-interceptors-args
Generate code with support for arguments, result and exception list values for interceptors.

Note that use of this option will generate proprietary stubs and skeletons which are not
compatible with ORBs from other vendors.

Options for hidl

-h, --help

-V, --version
-e, --cpp NAME
-d, --debug

- DNAMVE

- DNAVE=DEF

- UNAVE

-IDIR

-E

--all

These options are the same as for thei dl command.
--no-sort

Don't sort symbols alphabetically.
--ignore-case

Sort case-insensitive.

--output-dir DR

Write HTML files to the directory DIR.

ORBacus 37

The ORBacus Code Generators

3.7

Options for ridl

-h, --help

-V, --version
-e, --cpp NAME
-d, --debug

- DNAMVE

- DNAVE=DEF

- UNAMVE

-IDIR

-E

--all

These options are the same as for thei dl command.
--no-sort

Don't sort symbols alphabetically.
--ignore-case

Sort case-insensitive.

--output-dir DR

Write RTF files to the directory DIR.
--single-file FILE

Create a singlert f file called FILE.

--w th-index

Create index entries.

--font NAME

Use font NAME as the font for the text body.
--literal -font NAMVE

Use font NAME as the font for literals.
--title-font NAME

Use font NAME as the font for the title.

- - headi ng- f ont NAME

Use font NAME as the font for headings.

38

ORBacus

Optionsfor irgen

--font-size SIZE

Text body font sizein points.

--literal -font-size SIZE

Literal font sizein points.

--title-font-size Sl ZE

Title font sizein points.

- -headi ng-font-size SIZE

Heading font size in paints.

Optionsfor irgen

-h, --help

-v, --version
--no-skel et ons
--no-type-codes
--locality-contrained
--no-virtual -i nheritance
--tie

--inmpl

--inmpl-al

--c-suffix SUFFI X
--h-suffix SUFFI X

--skel -suffix SUFFI X
--header-dir DR
--other-header-dir DR
--output-dir DR
--file-list FILE
--dll-inport DEF
--with-interceptors-args
--no-1| ocal - copy

These options are the same as for thei dI command.

The argument to i r gen is the pathname to use as the base hame of the output filenames.
For example, if the pathname you supply isout put/fi | e, theni r gen will produce
output/file.cpp,output/file.h,output/file_skel.cppandoutput/
file_skel.h.

Notethat i r gen will generate code for all of the type definitions contained in the Inter-
face Repository server.

ORBacus 39

The ORBacus Code Generators

3.9

3.10

See Chapter 15 for more information on the Interface Repository.

The IDL-to-C++ Trandlator and the Interface Repository

The ORBAcus IDL-to-C++ and IDL-to-Javatranslators internally use the Interface
Repository for generating code. That is, these programs have their own private Interface
Repository that is fed with the specified IDL files. All code is generated from that private
Interface Repository.

It is also possible to generate C++ code from a global Interface Repository. First, the com-
mand i r ser v must be used to start the Interface Repository. Then the Interface Reposi-
tory must be fed with the IDL code, using the command i r f eed. Finally, thei r gen
command can be used to generate the C++ code. For example:

irserv --ior > IntRep.ref &
i rfeed - ORBrepository ‘catIntRep.ref file.idl
irgen -ORBrepository ‘cat IntRep.ref* file

The IDL-to-C++ trandator idl performs all these steps at once, in asingle process with a
private Interface Repository. Thus, you only have to run a single command:

idl file.idl

See Chapter 15 for more information on the Interface Repository.

Include Satements

If you usethe #include statement in your IDL code, the ORBAcUS IDL-to-C++ tranda-
toridl does not create code for included IDL files. Instead, the translator inserts the
appropriate #include statementsin the generated header files. Please note that there are
several restrictions on where to place the #include statementsin your IDL filesfor this
feature to work properly:

e #i ncl ude may only appear at the beginning of your IDL files.#lhcl ude
statements must be placed before the rest of your IDLcode.

* Type definitions, such ast er f ace orst ruct definitions, may not be split among
several IDL files. In other words, it ncl ude statement may appear within such
definitions.

If you don’t want these restrictions to be applied, you can use the translator-etion

with i dl . With this option, the IDL-to-C++ translator treats code from included files as if

1. Preprocessor statementslike#def i ne or #i f def may be placed before your #i ncl ude
statements.

40

ORBacus

Documenting IDL Files

311

the code appeared in your IDL file at the position where it isincluded. This meansthat the
compiler will not place #i ncl ude statements in the automatically-generated header files,
regardless of whether the code comes directly from your IDL file or from files included by
your IDL file.

Note that when generating code from an Interface Repository using i r gen, the translator
behavesidentically toi dl withthe--al | option. In other words, thei r gen command
does not place #i ncl ude statements in the generated files, but rather generates code for
all IDL definitions in the Interface Repository.

Documenting IDL Files

With the ORBAcuUs IDL-to-HTML and IDL-to-RTF trandlators, hi dl andri dl , you can
easily generate HTML and RTF files containing IDL interface descriptions. The tranda-
tors generate a nicely-formatted file for each IDL module and interface. Figure 3.1 shows
an HTML example and Figure 3.2 an RTF example.

The formatting syntax supported by hi dl andri dl issimilar to that used by j avadoc.
The following keywords are recognized:

@ut hor aut hor

Denotes the author of the interface.

@xception exception-name description

Adds an exception description to the exception list of an operation.
@renber nmenber-name description

Adds amember description to the member list of a struct, union, enum or exception type.
@ar am par anet er - name description

Adds a parameter description to the parameter list of an operation.
@eturn description

Adds descriptive text for the return value of an operation.

@ee reference

Adds a “See also” note.

@i nce since-text

Comment related to the availability of new features.

@ersion version

ORBacus 41

The ORBacus Code Generators

o 1L 10 recemssndwiien o "D - Kaiscaps

'El" Em ‘.Fl" fie Conmaersid E_H'

A 3 abadidl o
Tl "eokwats K Locsion ik v p A =]

Module OC1

The Open Comroms:abors (mierfacs (D01 The defaibions = this meduk: groside s uniforrn mferfece o neheok
protocols This allaws far easw plog-n of arw prosacols of ofter Comorcalion rmechagisms g OF.Bs that srebeeen
e OCI Fodfigisore, piotd 0ol srpleiesiahiic sl auly [e Wi dis sl s Oes be reiised wall ol 0T
oxphiet ORE Far peare pfermaban, pleade sed ke O] documenlaam

Nodule Index

jafury
Thix macule contame tnber Bas ek o gather mfrmmaton en the [0F OF] pheg-m

Interface Index

Ao EeEairy

A regpstry for Accepoan
AceepICE

Aa mderfuce b accept callback obpacl
‘u"irll:

Aa merface for an Accepbor chyesct wioch i used by CORBA s=reers to acoept chest comrschan raquesis
Acrepiorind

leSHTOEINE 6 & O] Accepior ol
Fulln

A mderlece e & lrifTer
ChpeCE

Aa mierfece for o choss callback abject
cenlackey

A fcvary for Cannechor obpscis
CenFaclaylab

W Coomcamest: [it Rk 2|

Il..l

g

Figure 3.1: Documentation generated with the IDL-to-HTML translator

The interface’s version number.

Like j avadoc, hi dl andri dl use the first sentence in the documentation comment as
the summary sentence. This sentence ends at the first period that is followed by a blank,
tab or line terminator, or at the firgt

ORBacus

Using javadoc

3.12

W M saandt W - ool |
[Fitte ot e Juet Forst foch T Wk tek =lelx]
DEE&dy Bad- - e EoEnad @1 - - J
[hors s wecwermn s s B 4§ EWMEE [SE®E -S4
E i I r 1 - i . i ' '-EI

Iefoaduabe CWCT
|
Th# Dy 0 ervbioddlinas [refers (0D Ths defrniuns i iked medile givvads o uiifeim sieees

i sl profaele. Ths ellass Ba ewdy phig-m of aew grolosali o olier oo mechrmoas mlo
OFEy i 1o lepan the 001 Furitbsrmors, prodocal usp s memisione rasd ochy ko b wrttan coce weed
e thism b remed welh 2 OUT coomplend OB Por mars mformaien, plass o8 b O] desurantstian

EAETH

Hullerfiny

eyredsf saguemesiSuffacs BefferSag:
ik Tod & detipaeda e of baelegy

10K
cypedef IDF: :IDR LDR:

*Bak Tor an B0IR

Predile W
cypedef [LF: :Foofileld Frofileld:

i Tod & jmalie pl

Frodle ldSey
cypedef aguemcss Frofilslds Frofilsldisg:

SR Tor & gl s of poodls jils
Ohjer iy
cypedef maguemcsiacte s Thjsctiey:
B Tod s ofvpact bew, whash o0 & Beuetnde of oaotel

'EEIIII!I I

[Poge 7 Sec i e e in €

Figure 3.2: Documentation generated with the IDL-to-RTF trandator

ri dl understands most basic HTML tags and produces an equivalent format in the gener-
ated RTF files. The following HTML tags are supported:

 <CODE> <HR> <P> <>

Using javadoc

If not explicitly suppressed with the - - no- conment s option, the ORBAcus IDL-to-Java
translator j i dl adds IDL comments starting with/ ** to the generated Javafiles, so that

ORBacus 43

The ORBacus Code Generators

j avadoc can be used to generate documentation (as long as the comments are in aformat
compatible with j avadoc).

Hereis an example that shows how to include documentation in an IDL interface descrip-
tion file. Let's assume we have an interfadae a modulevt

/1 1DL
nmodul e M
{
/**
*
* This is a cooment related to interface |I.
*
* @ut hor Une Sei net
*
* @ersion 1.0
*
**/
interface |
{
/**
*
* This comment describes exception E
*
**/
exception E { };
/**
*
* The description for operation S
*
* @aram arg A dummy argument.
*
* @eturn A dunmy string.
*
* @xception E Raised under certain circunstances.
*
**/
string S(in long arg)
rai ses(E);
s

ORBacus

Using javadoc

b

When running j i dl on thisfile, the comments are automatically added to the generated
JavafilesM | . javaand M | Package/ E. j ava. For | . j ava, the generated code looks as
follows:

/1 Java
package M

I

/1 1DL:M1:1.0
11

/**

* This is a coment related to interface I.
*

* @ut hor Uwe Sei net

*

* @ersion 1.0

*

**/
public interface | extends org. ong. CORBA Obj ect
{

11

[/ I1DL:MI1/S: 1.0

11

/**

*

* The description for operation S

*

* @aram arg A dummy argument.

*

* @eturn A dummy string.

*

* @xception M I Package. E Rai sed under certain circunstances.

**/
public String
S(int arg)
throws M | Package. E;
}

Notethatj i dl automatically inserts the fully-qualified Java name for the exception E
(M 1 Package. E in this case).

ORBacus 45

The ORBacus Code Generators

These are the contents of | Package/ E. j ava:

/1 Java
package M | Package;

11

/[l IDL:MI/E 1.0

/1

/**

*

* This comment describes exception E
*

**/
final public class E extends org.ong. CORBA. User Excepti on

{
public
E()
{
}
}

Now you can usej avadoc to extract the comments from the generated Javafiles and pro-
duce nicely-formatted HTML documentation.

For additional information please refer to thej avadoc documentation.

46

ORBacus

ORB and OA Initialization

CHAPTER 4
4.1 ORB Initialization
4.1.1 Initializing the C++ ORB
In C++, the ORB isinitialized with CORBA: : ORB_i ni t () . For example:
Il C++
int main(int argc, char* argv[])
{
CORBA: : ORB_var orb = CORBA:: ORB_init(argc, argv);
...
}
The CORBA: : ORB_i ni t () call interprets arguments starting with - ORB and - QA. All of
these arguments, passed through the ar gc and ar gv parameters, are automatically
removed from the argument list so, once the call completes, only those arguments remain
that are not of interest to the ORB.
4.1.2 Initializing the Java ORB for Applications

A Java application can initialize the ORB in the following manner:

/'l Java
i mport org. ong. CORBA. *;

ORBacus 47

ORB and OA Initialization

4.1.3

4.2

421

public static void main(String args[])

{
ORB orb = ORB.init(args, new java.util.Properties());

/1
}

TheORB. i ni t () cal interprets arguments starting with - ORB and - OA. Unlike the C++
version, these arguments are not removed (see “Advanced Property Usage” on page 62 for
more information).

Initializing the Java ORB in JDK 1.2

The ORB implementation included in JDK 1.2 and beyond can be considered a “minimal”
ORB, suitable primarily for use in basic client-oriented tasks. In order to use the-ORB
cus ORB instead of the JDK'’s default ORB, you must start your application with the fol-
lowing properties:

java - Dorg. ong. CORBA. ORBCl ass=com ooc. CORBA. ORB \
- Dor g. ong. CORBA. ORBSI ngl et onCl ass=com ooc. CORBA. ORBSi ngl et on \

M App

An alternative is to set these properties in your program before initializing the ORB. For
example:

/1 Java
i nport org.ong. CORBA. *;
public static void main(String args[])

{
java. util.Properties props = System getProperties();
pr ops. put (" or g. ong. CORBA. ORBC ass", "com ooc. CORBA. ORB") ;
pr ops. put (" or g. ong. CORBA. ORBSI ngl et onCl ass",
"com ooc. CORBA. ORBSI ngl et on");
ORB orb = ORB.init(args, props);
I
}

OA Initialization

Initialization of the OA in C++

A POA and POA Manager are initialized when they are created. In the case of the Root
POA and Root POA Manager, creation occurs when the Root POA is first resolved. For
example:

48

ORBacus

OA Initialization

O N KN WNR

7-8

10-13

15-16

Il C++
CORBA: : Obj ect _var poaQbj
= orb -> resolve_initial _reference("Root POA");

POAs (other than the Root POA) are created using the standard POA: : cr eat e_POA oper-

ation in the Por t abl eSer ver module. POA Managers can be created by passing anil
POAMENnager argument to the POA: : cr eat e_PQOA operation. An alternative for creating

POA Managersisto use the proprietary POAMVanager Fact or y object of the

OBPor t abl eSer ver module. Using the POAManager Fact or y object allowsthe creation

of named POA Managers that can be configured using the ooc. or b. poananager . *

properties described in “Properties” on page 51. (Note thatKoB8creates the Root

POA Manager with the nanfot POAManager .) The following example shows how to

get references to the Root POA and its POA Manager and how to create a new POA Man
ager calledwPOAManager and a new POA that uses this POA Manager.

/] C++
CORBA: : Obj ect _var poaChj =

orb -> resolve_initial _reference("Root POA");
Port abl eServer:: POA var rootPoa =

Por t abl eSer ver: : POA: : _narrow poaChj);

Por t abl eSer ver : : POAManager _var root Manager =
root Poa -> t he_PQAManager () ;

CORBA: : Obj ect _var nmgrfoj =
orb -> resolve_initial _reference("POAManager Factory");
OBPort abl eSer ver: : POAManager Fact ory_var ngrFactory =
OBPort abl eSer ver: : POAManager Factory:: _narrow(ngrf Qbj);

Por t abl eSer ver : : POAManager _var myManager =
nmgr Factory -> create_poa_nanager (" MyPOAManager ") ;

CORBA: : Pol i cyLi st policies;

Port abl eServer:: POA var nyPoa =
root Poa -> create_POA("MyPOA", nyManager, policies);

Get a reference to the Root POA.
Using the Root POA, get a reference to its POA Manager.
Get a reference to tiOAManager Fact or y object.

Create a new POA Manager with the naweQAManager .

ORBacus 49

ORB and OA Initialization

18

20-21

4.2.2

4.3

Create an empty policy list for the new POA. (For information on creating policies see[4];
for a description of ORBACUS proprietary policies refer to Chapter 16.)

Create a new POA with the name My POA that uses the new POA Manager.

Using multiple POAs and POA Managers offers great flexibility. For example, it allows
different concurrency models for different groups of servants within the same server, and
allows serversto listen on multiple ports for incoming connections. For alist of all possi-
ble configuration properties see “Properties” on page 51.

Initialization of the OA in Java

In Java, the OA initialization is very similar. The example from the previous section would
look as follows:

/1 Java

i nport org.ong. CORBA. *;

i mport org.ong. Portabl eServer. *;
11

PQA root PCA = PQAHel per. narrow
orb.resolve_initial_references("Root PQA"));

POAManager nanager = root POA. t he_POAManager () ;

org. ong. CORBA. Obj ect mgrfGhj =
orb.resolve_initial_reference("POAManager Factory");
com ooc. OBPor t abl eSer ver . POAManager Fact ory ngrFactory =
com ooc. OBPor t abl eSer ver . POAManager Fact or yHel per. narr ow
ngr f Qoj) ;

POAManager nyManager =
nmgr Fact ory. cr eat e_poa_nanager (" MyPOAManager ") ;

Policy[] policies = new Policy[0];

PQOA nmyPoa = root Poa. creat e_PQOA(" MyPCA", nyManager, policies);

Configuring the ORB and OA

ORBAcus applications can tailor the behavior of the ORB and OAs using a collection of
propertieé. These properties can be defined in a number ways:

e using the Windows Registry (Windows NT/C++)

50

ORBacus

Configuring the ORB and OA

431

e using a configuration file

e using system properties (Java)
e using command-line options

e programmatically at run-time

Properties

The ORB:cus configuration properties are described in the sections below. Unless other-
wise noted, every property can be used in both C++ and Java applications.

ooc.config
Value:filename

Selects the default configuration file. This property is only available in Java applications
and is equivalent to thHeRBACUS_CONFI G environment variable in C++. See “Using a
Configuration File” on page 58 for more information on configuration files.

ooc.orb.add_iiop_connector
Value:true, f al se

Determines whether the ORB should register an IIOP connector during initialization. The
default value is r ue. Setting this property tbal se can be useful if other protocol plug-
ins are installed and IIOP should be disabled.

ooc.orb.client_shutdown_timeout
Value:timeout >= 0

If the client is not able to gracefully disconnect from the serveémeout seconds, a con-
nection shutdown is forced. If this property is set to zero, then the client will not force a
connection shutdown. If the property is not set, a default timeout value of two seconds is
used.

ooc.orb.client_timeout

Value:timeout >= 0

1. Notethat these properties have nothing to do with the Property Service as described in
Chapter 11.

ORBacus 51

ORB and OA Initialization

The client actively closes a connection that has been idle for timeout seconds once that
connection has no more outstanding replies. Note that the application must use the
threaded client-side concurrency model if connection timeouts are desired. If this property
is set to zero, or not set at all, then the client does not close idle connections.

ooc.orb.conc_model
Value: bl ocki ng, reacti ve, t hr eaded

Selects the client-side concurrency model. The reactive concurrency model is not cur-
rently availablein ORBAcus for Java. The default value isbl ocki ng for both C++ and
Java applications. See Chapter 17 for more information on concurrency models.

ooc.orb.default_init_ref
Value: URL

Specifiesapartial URL. If an application calls the ORB operation

resol ve_initial _references and no match isfound, the ORB appends a slash (/")
character and the service identifier to the specified URL and ingoké®g_t o_obj ect
to obtain the initial reference.

ooc.orb.default_wcs
Value:string

Specifies the default wide character code set for the ORB. Note that the CORBA specifica-
tion states that a default wide character code set does not exist. Therefore, this option
should only be used when communicating with a broken ORB that expects a particular
wide character code set and does not correctly support the negotiation of wide character
code sets.

ooc.or b.giop.max_message size
Value:max>= 0

Specifies the maximum GIOP message size in bytes. If set to 0, no maximum message size
will be used. If a message is sent or received that exceeds the maximum size, the ORB will
raise the IMP_LIMIT system exception.

ooc.orb.id

Value:id

52

ORBacus

Configuring the ORB and OA

Specifies the identifier of the ORB to be used by the application.

ooc.orb.native_cs
Value: string
Specifies the native character code set for the ORB. The default is 1SO 8859-1.

ooc.orb.native_wcs
Value: string
Specifies the native wide character code set for the ORB. The default is UTF-16.

ooc.orb.raise_dii_exceptions
Vaue: true, fal se

Determines whether system exceptions that occur during Dynamic Invocation Interface
(DII) operations are raised immediately or are stored only in the CORBA: : Envi r onnent
object. Thisproperty isonly availablefor Javaapplications. The default valueisf al se for
JDK 1.1.x,and t r ue for later JIDK versions. Note that specifying avalue of f al se when
using JDK 1.2 or later may result in unexpected behavior.

ooc.or b.server_name

Value: string

Specifies the name of the server, asregistered with the Implementation Repository (IMR).
Note that you should not put this property in a configuration file that is shared by several
IMR-enabled servers. Furthermore, this property should not be specified for servers that
are not registered with the IMR.

ooc.orb.server _shutdown_timeout
Value: timeout >= 0

If the server is not able to gracefully disconnect from the client in timeout seconds, a con-
nection shutdown is forced. If this property is set to zero, then the server will not force a

connection shutdown. If the property is not set, a default timeout value of two secondsis

used.

ORBacus 53

ORB and OA Initialization

ooc.orb.server _timeout
Value: timeout >= 0

The server actively closes a connection that has been idle for timeout seconds once that
connection has no more outstanding replies. Note that the application must use one of the
threaded server-side concurrency model if connection timeouts are desired. If this property
is set to zero, or not set at all, then the server does not close idle connections.

ooc.or b.service.name
Vaue: ior

Adds an initial service to the ORB'’s internal list. This list is consulted when the applica-
tion invokes the ORB operatioresol ve_i ni ti al _r ef er ences. hameis the key that

is associated with an IOR or URL. For example, the property

ooc. or b. servi ce. NaneSer vi ce adds “NameService” to the list of initial services.
See “Initial Services” on page 102 for more information.

ooc.or b.trace.connections
Value:level >= 0

Defines the output level for diagnostic messages printed byaOBBthat are related to
connection establishment and closure. A level of 1 or higher produces information about
connection events, and a level of 2 or higher produces code set exchange information. The
default level is 0, which produces no output.

ooc.orb.traceretry
Value:level >= 0

Defines the output level for diagnostic messages printed byaAOBRBthat are related to
transparent re-sending of failed messages. A level of 1 or higher produces information
about re-sending of messages, and a level of 2 or higher also produces information about
use of individual IOR profiles. The default level is 0, which produces no output.

ooc.orb.oa.add_iiop_acceptor
Vaue true, fal se

Determines whether POA Managers should register an IIOP acceptor during initialization.
The default value isr ue.

ORBacus

Configuring the ORB and OA

ooc.orb.oa.conc_model

Vaue: reactive, threaded, thread_per_client,thread_per_request,
t hr ead_pool

Selects the server-side concurrency model. Ther eact i ve concurrency model is not
available in ORBAcus for Java. The default valueisr eact i ve for C++ applications and
t hr eaded for Java applications. See Chapter 17 for more information on concurrency
models. If this property issettot hr ead_pool , then the property

ooc. orb. oa. t hr ead_pool determines how many threads are in the pool.

This property is also used to determine the default value of the communi cations concur-
rency model for POA Managers (see ooc. or b. poamanager . manager. conc_nodel
below). If the value of ooc. or b. oa. conc_nodel isreacti ve, thedefault value for the
communications concurrency model isr eact i ve, otherwise the default valueis

t hr eaded.

ooc.or b.oa.host
Vaue: hostname

Explicitly defines the hostname to be used in generated object references. The default
value isthe canonical hostname of the machine. This property is especially useful if a host
has more than one name. Note that this property isignored if ooc. or b. oa. nureri c is
true.

ooc.orb.oa.numeric
Vaue: true, f al se

If true, object references are generated using the internet (1P) address in dotted decimal
notation instead of the canonical hosthame. The default valueisf al se.

ooc.orb.oa.port
Value: 0 < port <= 65535

Specifies the port number on which the Root POA Manager should listen for new connec-
tions. If no port is specified, one will be selected automatically by the server. Use this
property if you plan to publish an IOR (e.g., in afile, anaming service, etc.) and you want
that IOR to remain valid across executions of your server. Without this property, your
server islikely to use adifferent port number each time the server is executed. See
Chapter 6 for more information.

ORBacus 55

ORB and OA Initialization

ooc.orb.oa.thread_pool
Vaue:n> 0

Determines the number of threads to reserve for servicing incoming requests. The default
valueis 10. This property is only effective when the ooc. or b. oa. conc_nodel property
hasthevauet hr ead_pool .

ooc.or b.poamanager.manager.add_iiop_acceptor

Vaue true, fal se

Determines whether the POA Manager with name manager should register an 11OP accep-
tor during initialization. The default value is determined by the value of
ooc. orb. oa. add_i i op_acceptor.

ooc.or b.poamanager.manager.host
Value: hostname

Explicitly defines the hostname to be used in object references generated by the POA
Manager with name manager. The default value is determined by the value of

ooc. or b. oa. host . Note that this property isignored if

00cC. or b. oa. poananager . manager. nuneri c istr ue.

00c.or b.poamanager.manager.numeric
Value: true, f al se

If true, the POA Manager with name manager will generate object references that contain
an internet (IP) address in dotted decimal notation instead of the canonical hostname. The
default value is determined by the value of ooc. or b. oa. nureri c.

00c.or b.poamanager.manager.port
Value: 0 < port <= 65535

Specifies the port number on which the POA Manager with name manager server should
listen for new connections. If no port is specified, onewill be selected automatically by the
server.

56

ORBacus

Configuring the ORB and OA

4.3.2 Command-line Options

There are equivalent command-line options for many of the ORBAcuUS properties. The
options and their equivalent property settings are shown in Table 4.1. Refer to “Properties”
on page 51 for a description of the properties.

Option Property
- QAhost host ooc. or b. oa. host =host
- QAnuneric ooc. or b. oa. nuneri c=true
- QAport port ooc. or b. oa. port =port
-QAreactive ooc. or b. oa. conc_nodel =reacti ve
- QAt hr eaded ooc. or b. oa. conc_nodel =t hr eaded
- QAt hread_per _client ooc. or b. oa. conc_nodel =t hread_per _cl i ent
- QAt hr ead_per _request ooc. or b. oa. conc_nodel =t hr ead_per _r equest
- QAt hread_pool n ooc. or b. oa. conc_nodel =t hr ead_pool
ooc. orb. oa.thread_pool =n
- ORBbl ocki ng ooc. or b. conc_nvodel =bl ocki ng
- ORBDef aul t | ni t Ref URL ooc.orb.default _init_ref=URL
-ORBi d id ooc. orb. i d=id
- ORBI ni t Ref name=ior ooc. or b. servi ce. name=ior
- ORBnat i ve_cs name ooc. orb. nati ve_cs=name
- ORBnat i ve_wcs name ooc. orb. nati ve_wcs=name
- ORBnani ng ior ooc. orb. servi ce. NameSer vi ce=ior
-ORBreactive ooc. orb. conc_nodel =reacti ve
- ORBr eposi tory ior ooc. orb. servi ce. I nt erfaceReposi t or y=ior
- ORBser ver _nane string ooc. or b. server _nane=string
- ORBser vi ce nameior ooc. or b. servi ce. name=ior
- ORBt hr eaded ooc. or b. conc_nvodel =t hr eaded

Table 4.1: Command-line Options

ORBacus 57

ORB and OA Initialization

Option

Property

- ORBt race_connecti ons leve

ooc. orb. trace. connecti ons=level

-ORBtrace_retry leve

ooc. orb.trace. retry=leve

Table 4.1: Command-line Options

A few additional command-line options are supported that do not have equivalent proper-
ties. These options are described in Table 4.2.

Option Description

- ORBconf i g filename | Causes the ORB to load the configuration file specified
by filename.

- ORBver si on Causes the ORB to print its version to standard output.

-ORBl i cense Causes the ORB to print its license to standard output.

Table 4.2: Additional Command-line Options

4.3.3 UsingaConfiguration File

A convenient way to define a group of propertiesisto use a configuration file. A sample
configuration file is shown below:

Concurrency nodel s

ooc. or b. conc_nvodel =t hr eaded

ooc. or b. oa. conc_nodel =t hr ead_pool
ooc. orb. oa.thread_pool =5

Initial services

ooc. orb. servi ce. NameSer vi ce=cor bal oc: : myhost : 5000/ NaneSer vi ce

ooc. orb. servi ce. Event Servi ce=cor bal oc: : nyhost : 5001/ Def aul t Event Channel
ooc. orb. servi ce. Tradi ngSer vi ce=cor bal oc: : nyhost: 5002/ Tr adi ngSer vi ce

Note that trailing blanks are not ignored but are a part of the property.

You can define the name of the configuration file! using a command-line option, an envi-
ronment variable (C++), or a system property (Java):

1. ORBAcus for Java aso accepts a URL specification as the filename.

58

ORBacus

Configuring the ORB and OA

434

e Command-line option:

- ORBconfi g filename
e Environment variable:

ORBACUS_CONFI G=filename
» Java system property:

ooc. confi g=filename
When an ORB is initialized, it first checks for the presence of the environment variable or
system property. If present, the ORB loads the configuration file. Next, the ORB loads the
configuration file specified by theORBconf i g option. Therefore, the properties loaded
from the file specified by ORBconf i g will override any existing properties, including

those loaded by a configuration file specified in the environment variable or system prop-
erty. See “Precedence of Properties” on page 62 for more information.

Configuration files are only loaded during ORB initialization. Changes made to a configu-
ration file after an ORB has been initialized have no effect on that ORB.

Using the Windows NT Registry

Another convenient mechanism for use with C++ applications under Windows NT is to
use the system regisir;Properties can be stored in the registry under the following regis-
try keys:

HKEY_LOCAL_MACHI NE\ Sof t war e\ OOC\ Properties
HKEY_CURRENT_USER\ Sof t war e\ OOC\ Pr operti es

Individual properties are defined as sub-keys of the base. For example, the property
ooc. orb. trace_l evel =5 is stored in the registry as the following key containing a
value namedr ace_| evel with a REG_SZ data member equatdb :

Software\OOC\Properties\ooc\orb

RegUpdate

The ORBAcus distribution includes autility called RegUpdate. Thetool first removesall
sub-keys defined under the specified registry key. Next, all values defined in an ORBACUS
configuration file are transferred to the registry.

1. Use caution when defining ORBACUS propertiesin the registry, as they become global proper-
tiesthat will be used in every ORBACUS for C++ application. For example, subtle errors can
occur if the ooc.orb.oa.port property is defined on aglobal basis.

ORBacus 59

ORB and OA Initialization

4.3.5

a AN WN R

Synopsis
RegUpdate [-ORBconfig file] HKEY_LOCAL_MACH NE| HKEY_ CURRENT USER

Optionsfor RegUpdate
-ORBconfig file

Read the properties from this configuration file. If the - ORBconf i g option isnot specified
the properties are read from the file defined by the ORBACUS_CONFI G environment vari-
able.

Example:
RegUpdat e - ORBconfi g ob. conf HKEY_LOCAL_MACHI NE

This command reads the properties defined in the file ob. conf and writes the values
under the following registry key:

HKEY_LOCAL_MACHI NE\ Sof t war e\ OOC\ Properties
Defining Properties

Propertiesin Java

Java applications can use the standard Java mechanism for defining system properties
because ORBAcus will also search the system properties during ORB initialization.

For example:

/1 Java

java. util.Properties props = System getProperties();
props. put ("ooc. orb. conc_nodel ", "threaded");

props. put ("ooc. orb. oa.port", "10000");
org. ong. CORBA. ORB orb = org. ong. CORBA.ORB.init(args, null);

Obtain the system properties.
Define ORBACUS properties.
Initialize the ORB.

Javavirtual machinestypically allow you to define system properties on the command
line. For example, using Sun’s JVM you can do the following:

java - Dooc. orb. oa. port=5000 MyServer

60

ORBacus

Configuring the ORB and OA

AN WN R

N

You can also usethej ava. util . Properties object that is passed to the ORB. i ni t ()
method to provide ORBAcUS property definitions:

/1 Java
java.util.Properties props = new java.util.Properties();
props. put ("ooc. orb. oa. nuneric", "true");

org. ong. CORBA. ORB orb = orb. ong. CORBA ORB.init(args, props);

Createaj ava. util . Properti es object to hold our properties.
Define ORBACUS properties.

Initialize the ORB using thej ava. uti |l . Properti es object.

Propertiesin C++

In C++, the ORBAcCus-specific class OB: : Properti es can be used to define properties:

/] C++
cl ass Properties

{
11

public:
Properties();
Properties(Properties_ptr p);
~Properties();

static Properties_ptr _duplicate(Properties_ptr p);
static Properties_ptr _nil();

static Properties_ptr getDefaul tProperties();

voi d setProperty(const char* key, const char* val ue);
const char* getProperty(const char* key) const;

/1
b

For exampl e, to add the threaded concurrency model to a property set that is used to ini-
tialize the ORB:

/] C++
OB::Properties_var dflt = OB::Properties::getDefaultProperties();
OB: : Properties_var props = new OB:: Properties(dfit);

ORBacus 61

ORB and OA Initialization

4.3.6

4.3.7

props -> setProperty("ooc.orb.conc_nodel", "threaded");
CORBA: : ORB_var orb = OBCORBA:: ORB_init(argc, argv, props);

Create an OB: : Properti es object that is based on the default properties. Thisisimpor-
tant because, unlike or g. onmg. CORBA. ORB. i ni t , OBCORBA: : ORB_i ni t does not read
the default propertiesif the property parameter is not null.

Define ORBACUS properties.
Initialize the ORB using the ORBAcus-specific OBCORBA: : ORB_i ni t operation.

Precedence of Properties

Given that properties can be defined in several ways, it's important to establish the order of
precedence used by OR8Us when collecting and processing the property definitions.

The order of precedence is listed below, from highest to lowest. Properties defined at a
higher precedence override the same properties defined at a lower precedence.

Command-line options

2. Configuration file specified at the command-line
3. User-supplied properties
4. Configuration file specified by tHeRBACUS_CONFI G environment variable (C++) or

theooc. confi g system property (Java)
5. System properties (Java only)
6. HKEY_CURRENT_USER!\ Sof t war e\ OOC\ Properties (Windows NT/C++ only)
7. HKEY_LOCAL_MACH NE\ Sof t war e\ OOC\ Pr operti es (Windows NT/C++ only)

For example, a property defined using a command-line option overrides the same property
defined in a configuration file.

Advanced Property Usage

With the methods for ORB initialization discussed in the previous sections, the command-
line arguments are not processed until a callGRBA: : ORB_i ni t (C++),

OBCORBA: : ORB_i nit (C++), oror g. ong. CORBA. ORB. i ni t (Java). Hence, the set of
properties that will be used by the ORB is not available until after the ORB is initialized.
This poses a problem if the properties need to be validated prior to ORB initialization.

If you need access to an ORB'’s property set before it is initialized, then you may elect to
use the ORBcus-specific operation§B: : Par seAr gs (C++) or
com ooc. CORBA. ORB. Par seAr gs (Java). The following examples check the value of

62

ORBacus

Configuring the ORB and OA

R Q © ® NN WNR

=

n
@

N

5-10

~
© 0N OGN WNRK ~

N

theooc. or b. conc_nodel property to ensurethatitissettoreacti ve ort hreaded. If
not, the code chooses thet hr eaded concurrency model.

Il C++
OB::Properties_var dflt = OB::Properties::getDefaultProperties();
OB: : Properties_var props = new OB:: Properties(dfit);
OB: : ParseArgs(argc, argv, props, OB::Logger::_nil());
const char* orbModel = props -> getProperty(“ooc.orb.conc_model”);
if(strcmp(orbModel, “threaded”) != 0 &&

strcmp(orbModel, “reactive”) I= 0)

{

}
CORBA::ORB_var orb = OBCORBA::ORB_init(argc, argv, props);

props -> setProperty(“ooc.orb.conc_model”, “threaded”);

Create an OB::Properties object that is based on the default properties.

Initialize the properties for the ORB. After invoking OB::ParseArgs , props contains
the ORB propertiesand argv no longer contains any -ORB or -OA command-line argu-
ments. The OB::ParseArgs operation takes an optional Logger object, which
ParseArgs will useto display any warning or error messages. In this example, a custom
Logger object is ot used, so the code passes a nil value.

Retrieve the ooc.orb.conc_model property and set it to threaded if itsvalueis not
valid.

Initialize the ORB.

I/l Java

java.util.Properties props = System.getProperties();

args = com.ooc.CORBA.ORB.ParseArgs(args, props, null);
String orbModel = props.get(“ooc.orb.conc_model”);
if(lorbModel.equals(“threaded”))

{

}
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(arg, props);

props.put(“ooc.orb.conc_model”, “threaded”);

Create ajava.util.Properties object.

Initialize the properties for the ORB. After invoking com.ooc. CORBA.ORB.ParseArgs
props containsthe ORB properties. The return value of ParseArgs isastring array with
al -ORB and -OA arguments removed. Asin the C++ example, aLogger object is not
used.

ORBacus 63

ORB and OA Initialization

4-8 Retrievetheooc. orb. conc_nodel property and setittot hr eaded if itsvalueis not
valid.

9 Initialize the ORB.

4.4 ORB Destruction

4.4.1 Destroyingthe C++ ORB

Applications must destroy the ORB before returning from nwi n so that resources used by
the ORB are properly released. To destroy the ORB, invoke dest r oy on the ORB:

Il C++

CORBA: : ORB var orb = // Initialize the orb
...

orb -> destroy();

4.4.2 Destroying the Java ORB

Asin C++, Javamust destroy the ORB so that resources are properly released. In Java, the
ORB is destroyed as follows:

/1 Java
org.ong. CORBA.ORB orb = // Initialize the orb
11

orb. destroy();

In JDK 1.2, the ORB interface does not define the standard dest r oy method. Hence, it is
necessary to cast the ORB reference to the type com ooc. CORBA. ORB when calling
destroy:

/1 Java

org.ong. CORBA.ORB orb = // Initialize the orb
...

((com ooc. CORBA. ORB) or b) . destroy();

45 Server Event Loop

A server’s event loop is entered by callP@AManager : : act i vat e on each POA Man-
ager, and then callingrRB: : r un. For example, in Java:

/1 Java
org.ong. CORBA.ORB orb = ... // Initialize the orb
or g. ong. Port abl eServer. POAManager nanager = ... // Get Root PQA manager

manager . activate();

ORBacus

Server Event Loop

NN WNR

orb.run();

Andin C++:

Il C++

CORBA: : ORB var orb = ... // Initialize the orb

Port abl eServer: : PQAVanager _var manager = ... // Get the Root PQA nanager

manager -> activate();
orb -> run();

You can deactivate a server by calling ORB: : shut down, which causes ORB: : run to
return. For example, consider a server that can be shut down by aclient by calling a
deact i vat e operation on one of the server’s objects. First the IDL code:

/1 1DL
i nterface ShutdownObj ect

{
}s

On the server sidshut downObj ect can be implemented like this:

voi d deactivate();

/] C++
cl ass Shut downObj ect _i npl
publ i ¢ POA_Shut downthj ect,
publ i ¢ Portabl eServer: : Ref Count Ser vant Base

{
CORBA: : ORB var orb_;
public:
Shut downChj ect _i npl (CORBA: : ORB_ptr orb)
orb_(CORBA:: ORB: : _duplicate(orhb))
{
}
virtual void deactivate() throw CORBA: : SystenException)
{
orb_ -> shutdown(fal se);
}
1

A servant class foghut downObj ect is defined. For more information on how to imple-
ment servant classes, see Chapter 5.

An ORB is needed to cadhut down.

ORBacus 65

ORB and OA Initialization

9-12

14-17

4.6

46.1

4.6.2

The constructor initializes the ORB member.

deact i vat e calls shut down on the ORB. Note that shut down is called with the argu-
ment f al se to avoid adeadlock. A f al se argument instructs shut down to terminate
reguest processing without waiting for executing operations to complete. A t r ue argu-
ment instructs shut down to return only once all operations have completed. If shut down
wereto be called with at r ue argument in this example, it would deadlock. That is
because shut down(t r ue) would be invoked from within an operation and, therefore,
could not ever return.

The client can usethe deact i vat e call as shown below:

/] C++
Shut downChj ect _var shutdownCbj = ... // Get a reference sonehow
shut downCbj -> deactivate();

Applets

Compatibility with Netscape

The Javamapping in ORBACUS 4 uses the portable stream-based stubs as specified in [6].
These stubs are not compatible with Netscape’s built-in ORB. Therefore, in order to write
applets using ORBcus 4, you will need to disable or replace Netscape’s built-in ORB.

The Netscape ORB classes are contained in theifdp10. j ar, located in th¢ ava/

cl asses subdirectory of the Netscape installation. To disable the ORB, rename this file
(e.g.,tai i opl0_ol d. j ar). With the ORB disabled, applets can download the &R
classes along with the applet.

To replace the built-in ORB with ORBUS, rename théi op10. j ar file as described
above, and copy theB. j ar file to the same directory, giving it the naimieop10. j ar.
For example:

cd <net scape- hone>/j aval cl asses
nmv iiopl0.jar iiopl0_old.jar
cp <orbacus-home>/1ib/OB.jar iiopl0.jar

Initializing the Java ORB for Applets

A different overloading oERB. i ni t () is provided for use by applets:

/1 Java
i mport org.ong. CORBA. *;
public void init()

66

ORBacus

Applets

4.6.3

4.6.4

4.6.5

ORB orb = ORB.init(this, new java.util.Properties());
I

}

Adding ORBacus Appletsto Web Pages

Like any other applet, ORBAcuUS applets can be added to HTML pages with the APPLET
tag:

<APPLET CODE="Client.class” ARCHIVE="0OB.jar” WIDTH=500 HEIGHT=300>
</APPLET>

It is necessary to tell the Web browser where to find the ORBAcuS Java classes. Thisis
best done with the ARCHIVEattribute as shown above. An alternative isto use the
CODEBASHEttribute and to extract the OB.jar archive in the directory defined by
CODEBASH-or more information, please consult your Java Development Kit documenta-
tion.

Defining ORB Optionsfor an Applet

The PARAMag isused in HTML to define parameters for an applet. When initialized by an
applet, the ORB looks for the ORBparams parameter, whose value should be command-
line options separated by spaces.

For example, the HTML code below usesthe -ORBconfig option to specify the URL of
the ORB configuration file:

<APPLET CODE="Client.class” ARCHIVE="OB.jar" WIDTH=500 HEIGHT=300>
<PARAM NAME="ORBparams” VALUE="-ORBconfig http://www/orb.cfg">
</APPLET>

Your applet can also define ORBAcus configuration properties using Java system proper-
ties, or using the java.util.Properties object passed to
org.omg.CORBA.ORB.init() . See “Properties” on page 51 for more information.

Defining the ORB Class Parameters

Some Web browsethave a built-in ORB. In order to use ORBJs instead of this built-
in ORB, you must set the following applet parameters:

<APPLET CODE="Client.class” ARCHIVE="0OB.jar” WIDTH=500 HEIGHT=300>

1. For example, Netscape v4 has a built-in ORB.

ORBacus 67

ORB and OA Initialization

4.6.6

<PARAM NAME="0org.omg.CORBA.ORBClass”
VALUE="com.ooc.CORBA.ORB™>
<PARAM NAME="0org.omg.CORBA.ORBSingletonClass”
VALUE="com.ooc.CORBA.ORBSingleton">
</APPLET>

Security | ssues

Web browsers generally place several security restrictions on applets that you need to be
aware of when developing an applet using ORBAcuS:

« Applets can only communicate with the host from which the applet was downloaded.
« Applets cannot accept connections from any host.

The first limitation forces you to run any CORBA server applications that your applet
communicates with on your Web server hoShe second limitation prevents your applet
from acting as a CORBA server, which is often necessary when a client wishes to receive
callbacks from a server.

These limitations are the most common causes of security exceptions in an applet. You
must ensure that any object references used by your applet refer to objects on the Web
server host. Furthermore, you must not attempt to enable CORBA server functionality in
your applet by using the POA.

1. Netscape v4 also does not normally allow CORBA appletsto be loaded from aloca (i.e,, filesys-
tem) HTML file, causinga Secur i t yExcept i on when the applet attempts to connect to the
CORBA server. To work around this problem, CORBA applets must be downloaded from a Web
server.

68

ORBacus

CHAPTER 5

n

CORBA Object

5.1

Overview

A CORBA object is an object with an interface defined in CORBA IDL. CORBA objects
have different representationsin clients and servers.

e A server implements a CORBA object in a concrete programming language, for
example in C++ or Java. This is done by writing raplementation class for the
CORBA object and by instantiating this class. The resulting implementation object is
called aservant.

« Aclient that wants to make use of an object implemented by a server creates an object
that delegates all operation calls to the servant via the ORB. Such an object is called a

Proxy.

When a client invokes a method on the local proxy object, the ORB packs the input
parameters and sends them to the server, which in turn unpacks these parameters and
invokes the actual method on the servant. Output parameters and return values, if any, fol
low the reverse path back to the client. From the client’s perspective, the proxy acts just
like the remote object since it hides all the communication details within itself.

A servant must somehow be connected to the ORB, so that the ORB can invoke a method
on the servant when a request is received from a client. This connection is handled by the
Portable Object Adapter (POA), as shown in Figure 5.1.

ORBacus 69

CORBA Objects

5.2

NGO NWNR

Client

Proxy

\

Server

Servant

POA

ORB

Figure5.1: Servants, Proxiesand the Object Adapter

The Portable Object Adapter in ORBAcus replaces the deprecated “Basic Object

Adapter” (BOA). (The BOA was deprecated by the OMG because it had a nhumber of seri-
ous deficiencies and was under-specified.) The POA is a far more flexible and powerful
object adapter than the BOA. The POA not only allows you to write code that is portable
among ORBs from different vendors, it also provides a number of features that are essen-
tial for building high-performance and scalable servers.

| mplementing Servants

In this section, we will implement servant classes (or “implementation classes”) for the

IDL interfaces defined below:

/1 1DL
interface A

{
b

void op_a();

interface B

{
b

voi d op_b();

interface | : A B

{
}s

void op_i();

70

ORBacus

Implementing Servants

7-10

12-15

521

N AN WNR

Aninterface A is defined with the operation op_a.
An interface B is defined with the operation op_b.

Interface | is defined, which is derived from A and B. It also defines a new operation
op_i.

Implementing Servantsusing I nheritance

ORBAcus for C++ and ORBAcus for Java both support the use of inheritance for inter-
face implementation. To implement an interface using inheritance, you write a servant
class that inherits from a skeleton class generated by the IDL translator. By convention,
the name of the servant class should be the name of the interface with the suffix _i npl ,
e.g., for aninterfacel , the implementation classisnamed | _i npl 1

Inheritance using C++

In C++, 1 _i npl must inherit from the skeleton class POA | that was generated by the
IDL-to-C++ translator. If | inherits from other interfaces, for example from the interfaces
Aand B, then | _i npl must aso inherit from the corresponding implementation classes

A inpl andB_i npl .

/1l C++
class A inpl : virtual public POA A
{
public:
virtual void op_a() throw CORBA:: Syst enException);
I
class B_inpl : virtual public POA B
{
public:
virtual void op_b() throw CORBA:: SystenException);
I

class | _inpl : virtual public POA I,
virtual public A_inmpl,
virtual public B_inpl

public:

1. These naming rules are not mandatory, they are just a recommendation.

ORBacus 71

CORBA Objects

19
20

8-13

14-20

NSO AN WNR

virtual void op_i() throw CORBA:: SystenException);
H

The servant class A_i npl is defined, inheriting from the skeleton classPOA_A. If op_a
had any parameters, these parameters would be mapped according to the standard IDL-to-
C++ mapping rules[4].

Thisisthe servant classfor B_i npl .

The servant classfor | _i npl isnot only derived from POA_I , but also from the servant
classesA i npl andB_i npl .

Notethat vi rt ual publ i c inheritance must be used. The only situation in which the
keyword vi rt ual isnot necessary isfor aninterface | which does not inherit from any
other interface and from which no other interface inherits. This means that the implemen-
tation class| _i npl only inherits from the skeleton class POA | and no implementation
classinheritsfrom |1 _i npl .

It is not strictly necessary to have an implementation class for every interface. For exam-
ple, it issufficient to only havetheclass| _i npl aslongas! _i npl implementsall inter-
face operations, including the operations of the base interfaces:

/] C++

class | _inpl : virtual public POA_I

{

public:
virtual void op_a() throw CORBA:: Syst enException);
virtual void op_b() throw CORBA:: Syst enException);
virtual void op_i() throw CORBA:: SystenException);

1

Now I _i npl isonly derived from PQA | , but not from the other servant classes.
I _i npl must implement all operationsfrom theinterfacel aswell asthe operations of all
interfaces from which | is derived.

Inheritance using Java

Severd files are generated by the ORBAcus IDL-to-Java trandator for an interfacel ,
including:

e |.java, which defines a Java interface&ontaining public methods for the
operations and attributes lof and

e | POA java, which is an abstract skeleton class that serves as the base class for

servant classes.

72

ORBacus

Implementing Servants

In contrast to C++, Java'’s lack of multiple inheritance currently makes it impossible for a
servant class to inherit operation implementations from other servant classes, except wher
using delegation-based implementation. For our inteffatés therefore necessary to
implement all operations in a single servant clagsml , regardless of whether those
operations are defined inor in an interface from which is derived.

1 /] Java
2 public class | _inmpl extends |POA
3 {
4 public void op_a()
5 {
6 }
7
8 public void op_b()
9 {
10 }
11
12 public void op_i()
13 {
14 }
15 }

2-15 The servant clads i npl is defined, which implements_i , as well as the inherited
operationsp_a andop_b.

5.2.2 Implementing Servantsusing Delegation

Sometimes it is not desirable to use an inheritance-based approach for implementing an
interface. This is especially true if the use of inheritance would result in overly complex
inheritance hierarchies (for example, because of use of an existing class library that
requires extensive use of inheritance). Therefore, another alternative is available for
implementing servants which does not use inheritance. A special class, knotia as a
class, can be used to delegate the implementation of an interface to anothér class.

Delegation using C++

The ORBcus IDL-to-C++ translator can automatically generate a tie class for an inter-
face in the form of a template class. A tie template class is derived from the corresponding
skeleton class and has the same name as the skeleton, with thetswffappended.

1. Notethat tie classes are rarely necessary. Not only is the inheritance implementation less com-
plex, but it also avoids a number of problems that arise with the life cycle of objects, particularly
in threaded servers. We suggest that you use the tie approach only if you have no other option.

ORBacus 73

CORBA Objects

NGO NWNR

For the interface| from the C++ example above, the template POA | _ti e isgenerated
ements all operations of | . By convention,
the name of this class should be the name of the interface with _i npl _ti e appended.l

and must be instantiated with a class that impl

In contrast to the inheritance-based approach,

instance oPOA | _ti e delegates all operat
5.2.

POA |

L

POA_|_tie

| _impl_tie

l_?—l

-

it is not necessary for the class implement-
ing | 's operations, i.el,_i npl _ti e, to be derived from a skeleton class. Instead, an
ion callsltoi npl _ti e, as shown in Figure

?delegates to

Figure5.2; ClassHierarchy for Delegation | mplementation in C++

Here is our definition of _i npl _ti e:

Il C++
class | _inpl_tie
{
public:
virtual void op_a() throw CORBA:: Syst enException);
virtual void op_b() throw CORBA:: Syst enException);
virtual void op_i() throw CORBA:: SystenException);
H
| _i npl _ti e is defined and not derived from any other class.
I _i npl _ti e mustimplement all of's operations, including inherited operations.

1. Again, you are free to choose whatever name yol

u like. Thisisjust arecommendation.

74

ORBacus

Implementing Servants

~
Q ©W®» N RANWNR

~
~

N
©

A servant classfor | can then be defined using the | _skel _ti e template:

Il C++
typedef POA | tie< | _inpl_tie > 1 _inpl;

Theservant class| _i npl isdefined as atemplate instance of POA | _ti e, parameterized
withl _i npl _tie.

Thetietemplate generated by the IDL compiler contains functions that permit you change
the instance denoted by thetie:

Il C++
t enpl at e<cl ass T>
class POA | tie : public PQA_I

{
public:
...
T* _tied_object();
void _tied_object(T& obj);
void _tied_object(T* obj, CORBA::Bool ean rel ease = 1);
/1
}

The_ti ed_obj ect function permitsyou to retrieve and change the implementation
instance that is currently associated with the tie. The first modifier function callsdel et e
on the current tied instance before accepting the new tied instance if ther el ease flagis
currently true; ther el ease flag for the new tied instance is set to false. The second mod-
ifier function also callsdel et e on the current tied instance before accepting the new
instance but setsther el ease flag to the passed value.

Delegation using Java

For every IDL interface, the IDL-to-Java mapping generates an “operations” interface
containing methods for the IDL attributes and operations. This operations interface is also
used to support delegation-based servant implementation. For an intetfaeéollowing
additional class is generated:

e | POATI e. j ava, the tie class that inherits fronPQOA and delegates all requests to an
instance of QOper ati ons.

To implement our servant class using delegation, we need to write a class that implements
thel Oper ati ons interface:

ORBacus 75

CORBA Objects

1 // Java

2 public class | _inmpl _tie inplenents | Operations
3 {

4 public void op_a()
5 {

6 }

7

8 public void op_b()
9 {
10 }
11
12 public void op_i()
13 {
14 }
15 }

2 Theservant class| _i npl _ti e isdefined to implement the | Oper at i ons interface.

-14 | _i npl _ti e mustimplement all of | 's operations, including inherited operations.

Figure 5.3 illustrates the relationship between the classes generated by the IDL-to-Java
translator and the servant implementation classes.

[POA

[_impl IPOATIe O—delegatestc | Operations

| _impl_tie

Figure5.3: ClassHierarchy for Inheritance and Delegation mplementation in Java

76

ORBacus

Creating Servants

N G RANWNR

NNNNMNNNRRRRRRRRRR
GONWNRKROOONDUWANWNRKOOCO©

9-14

16-21

5.3

As noted earlier, Java’s lack of multiple inheritance makes it impossible to inherit an
implementation from another servant class. Using tie classes, however, does allow imple-
mentation inheritance, but only in certain situations.

For example, let's implement each of our sample interfaces using delegation.

/1 Java
public class A_inpl inplenents AQperations
{
public void op_a()
{
}
}
public class B_inpl inplenents BOperations
{
public void op_b()
{
}
}
public class | _inpl extends B_inpl inplenents | Operations
{
public void op_a()
{
}
public void op_i()
{
}
}
ClassA_i npl is defined as implementingper at i ons.

ClassB_i npl is defined as implementir@Dper at i ons.

Classl _i npl inherits the implementation op_b from B_i npl , and provides an imple-
mentation obp_a andop_i . Since a Java class can only extend one class, it's not possi-
ble forl _i npl to inherit the implementations of bath_a andop_b.

Creating Servants

Servants are created the same way in both C++ and Java: once your servant class is writ-
ten, you simply instantiate a servant witw!

ORBacus 77

CORBA Objects

53.1

N

N WN R

AN WN R

3,4

Creating Servantsusing C++

Hereis how to create servants using C++:

/] C++
| _inpl* servant_pointer = new | _inpl;
| _inmpl* another_servant_pointer = new | _inpl;

Two servants are created with new Note that this merely instantiates the servants but does
not inform the ORB that these servants exist yet. The ORB server-side run time only
learns of the existence of the servants once you activate them.

In case the servant class was written using the delegation approach, an object of the class
implementing | ’s operations must be passed to the servant’s constructor:

/] C++

| _inmpl _tie* inpl = new | _inpl_tie;

POA | tie< | _inpl_tie >* tie_pointer =
new POA | tie< | _inpl_tie >(inpl, 1);

A newl _inpl _tie is created witmew.

An instance oPQA | _ti e parameterized with_i npl _ti e is created, takingnpl as a
parameter. All operation calls td e will then be delegated impl .

In this example, the lifetime ofpl is coupled to the lifetime of the servant tie. That is,
when the tie is destroyedel et e i npl is called by the tie’s destructor. In case you don’t
want the lifetime of npl to be coupled to the lifetime of the tie, for example, because you
want to create a servant on the stack and not on the heap (making it illegatiéd ead

on the tie), use the following code:

Il C++
| _impl _tie inpl;
POA | tie< | _inpl_tie >* tie =
new POA | tie< | _inpl_tie >(& npl, 0);

A newl _i npl _ti e is created, this time on the stack, not on the heap.

An instance oPQA | _ti e is created. The parameter tellsi e not to calldel et e on
i mpl .

1. You can aso instantiate servants on the stack. However, this only works only for some POA pol-
icies, so servants are usually instantiated on the heap.

78

ORBacus

Creating Servants

532

N

OO N WN R

Creating Servantsusing Java

Every tie class generated by the IDL-to-Javatransator has two constructors:

/1 Java
public class | POATi e extends | PCA
{
public | POATi e(l Operations delegate) { ... }
public | POATi e(l Operations delegate, POA poa) { ... }
}

The second constructor allows a POA instance to be supplied, which will be used as the

return value for the tie’sdef aul t _POA method. If the POA instance is not supplied, the
_def aul t _PQOA method will return the root POA of the ORB with which the tie has been
associated.

This example demonstrates how to create servants using Java:

/'l Java

| _inmpl inpl = new I _inpl();
| _inmpl anotherlnpl = new | _inpl();

Two servantsi, npl andanot her | npl , are created withew

In case the servant class was written using the delegation approach, an object implement:
ing thel Oper at i ons interface must be passed to the tie’s constructor:

/'l Java

| _inpl_tie inpl = new I _inmpl_tie();
| POATi e tie = new | POATI e(inpl);

Anewl _inpl _tieiscreated.

An instance of POATI e is created, takingnpl as a parameter. All operation callg te
will then be delegated fiampl .

The tie class also provides methods for accessing and changing the implementation objec!

/1 Java
public class | POATi e extends | PCA
{
public | Qperations _delegate() { ... }
public void _del egate(l Operations del egate) { ... }

ORBacus 79

CORBA Objects

5.4

54.1

N =

}

This method returns the current delegate (i.e., implementation) object.

This method changes the delegate object.

Activating Servants

Servants must be activated in order to receive requests from clients. Servant activation
informs the ORB run time which particular servant represents (or incarnates) a particular
CORBA object. Activation of a servant assigns an object identifier to the servant. That
object identifier is also embedded in every object reference that is created for an object
and servesto link the object reference with its servant.

The POA'sI dAssi gnnment Pol i cy value controls whether object IDs are assigned by the
POA or the server application code. T8¥STEM | D policy value directs the ORB to
assign a unique object identifier to the CORBA object represented by the servant; the
USER | D policy value requires the server application code to supply an ID that must be
unigue within the servant’s POA.

Servants can be activated implicitly or explicitly. Implicit activation takes place when you
create the first object reference for a servant. Explicit activation requires a separate API
call. Typically, you will use implicit activation for transient objects and explicit activation
for persistent objects. THawpl i ci t Acti vati onPol i cy controls whether explicit or
implicit is in effect. Explicit activation requires tinN® | MPLI CI T_ACTI VATI ON policy

value on the servant's POA, whereas implicit activation requires the

| MPLI CI T_ACTI VATI ON policy value.

Implicit Activation of Servantsusing C++

The following code shows how to implicitly activate a servant:

/] C++

| _inmpl inpl;
I _var iv =inpl -> _this();

A new servant npl is created.
The new servant is activated implicitly by callinghi s.

Note that implicit activation as shown requires®EEAI N, | MPLI CI T_ACTI VATI ON,
andSYSTEM | D policies on the servant’s POA. The servant is activated with the POA that
is returned by the servant'slef aul t _POA member function. (The default implementa-

80

ORBacus

Activating Servants

54.2

5.4.3

AN WN R

tion of _def aul t _PQOA returns the Root POA; if you want servants activated on a differ-
ent POA, you must override _def aul t _PQA in the implementation class to return the
POA you want to use.)

Implicit Activation of Servantsusing Java

Thisis how Java servants are implicitly activated:

/1 Java

org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonehow
| _impl inpl = new I _inpl();

I lref = inpl._this(orb);

To activate a servant, we need the ORB.
A new servanti npl is created.

The new servant is activated (using the POA returned by the servants aul t _POA
operation).

As shown above, a servant in Java must be associated with an ORB, and cannot be asso«
ated with multiple ORBs. The first call ta hi s() must supply the ORB reference; sub-
sequent calls tot hi s() for the same servant can omit the ORB reference.

An alternative way to associate a servant with an ORB is to calkthelel egat e
method defined imr g. ong. CORBA 2_3. ORB.

/1 Java
org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonehow
((org. ong. CORBA 2_3. ORB)orb).set_del egate(inpl);

Explicit Activation of Servantsusing C++

If NO_I MPLI CI T_ACTI VATI ON andSYSTEM | D are in effect for a servant’s POA, you
activate the servant by callirgt i vat e_obj ect :

| _inpl inpl
Port abl eServer:: POA var poa = inpl._default_PQA();
poa -> activate_object (& npl);

The code instantiates a servant.
To activate a servant, we need the servant’s POA.

activat e_obj ect creates a unique ID for the servant.

ORBacus 81

CORBA Objects

GO N WN R

54.4

N

AN WN R

Once a servant is activated, callsto _t hi s on the servant return an object reference that
contains the ORB-assigned ID for the object.

If NO_I MPLI CI T_ACTI VATI ON and USER | D are in effect for servant’'s POA, you acti-
vate the servant by supplying the ID value as an octet sequence to
activate_object_with_id:

| _inmpl inpl;
Port abl eServer:: POA var poa = inpl._default_PQA();
Port abl eServer:: Qbjectld_var oid =
Port abl eServer::string_to_Objectld("MOhjectNane");
poa -> activate_object_with_id(oid, & npl);

Thestring_to_Object!d helper function converts a string into an octet sequence.
activate_obj ect _wi t h_i d uses the octet sequence as the object ID for the servant.

You can use any suitable key value as an object ID. Typically, the key will be part of the
object’s state, such as a social security number. However, you can also use keys that are
not directly related to object state, such as database record identifiers. Once the servant is
activated, calls tot hi s on the servant return an object reference that contains the ID you
assigned to the object.

Explicit Activation of Servantsusing Java

Servant activation in Java also usesi vat e_obj ect (for SYSTEM | D) and
activate_obj ect_wi th_id (for USER I D). With SYSTEM | D, the code looks as fol-
lows:

| _impl inpl = new I _inpl();
orb. ong. Port abl eServer. POA poa = inpl._default_PQA();
poa. acti vat e_obj ect (i npl);

ForUSER | D, you must provide the Object ID:

| _impl inpl = new I _inpl();

org. ong. Port abl eServer. POA poa = inpl._default_PQA();
byte[] id = "My/Qbj ect Nane". get Byt es();

poa. activate_object_with_id(id, inpl);

82

ORBacus

Deactivating Servants

5.5

551

55.2

553

N WN R

AN WN R

Deactivating Servants

Deactivation of Servantsusing C++

A servant can be deactivated. Deactivating a servant breaks the association between the
CORBA object and the servant; requests that arrive from clients thereafter result in an
OBJECT_NOT_EXI ST exception (or a TRANSI ENT exception, if the server is down at the
time arequest is made).

To deactivate a servant, call thedeact i vat e_obj ect member function on the servant’s
POA:

/] C++

Port abl eServer:: POA var poa = inpl._default_PQOA();

Port abl eServer:: Chjectld_var id = poa -> servant _to_id(& npl);
poa -> deactivate_object(id)

The code obtains a reference to the servant’s POA by callisfcaul t _PQOA. (This
assumes thatdef aul t _PQA is correctly overridden to return the appropriate POA if the
servant is not activated with the Root POA.)

The call toser vant _t o_i d on the servant’s POA returns the object ID with which the
servant is activated.

The call todeact i vat e_obj ect breaks the association between the CORBA object and
the servant.

Note thatdeact i vat e_obj ect returns immediately, even though the servant may still
be executing requests, possibly in a number of different threads.

Deactivation of Servantsusing Java

Deactivation of a servant in Java is analogous to C++:

/1 Java

org. ong. Port abl eServer. POA poa = inpl._default_PQA();
byte[] id = poa.servant _to_id(inpl);

poa. deacti vate_obj ect (i d);

Transient and Persistent Objects

A POA has either th€RANSI ENT or thePERSI STENT policy value. A transient POA gen-
erates transient object references. A transient object reference remains functional only for

ORBacus 83

CORBA Objects

5.6

aslong asits POA remains in existence. Once the POA for atransient referenceis
destroyed, the reference becomes permanently non-functional and client requests on such
areferenceraise either OBJECT_NOT_EXI ST or TRANSI ENT (depending on whether or not
the server is running at the time the request is sent). Transient references remain non-func-
tional even if you restart the server and re-create a transient POA with the same name as
was used previously. Transient POAs almost always use the SYSTEM | D policy as a mat-
ter of convenience (although the combination of TRANSI ENT and USER | Dislegal).

Object references created on a persistent POA continue to be valid beyond the POA's life
time. That is, if you create a persistent reference on a POA, destroy the POA, and then rec-
reate that POA again (with the same POA name), the original reference continues to
denote the same CORBA object (even if the server was shut down and restarted). Persis-
tent references require the same POA name and object ID to be used to denote the same
object. This means that persistent references rely on the combina®BRSISTENT and

USER | D. USER_| D must be used in conjunction witl® | MPLI CI T_ACTI VATI ON, SO

servants for persistent references are always activated explicitly.

Factory Objects

It is quite common to use the Factory [2] design pattern in CORBA applications. In short,
a factory object provides access to one or more additional objects. In CORBA applica-
tions, a factory object can represent a focal point for clients. In other words, the object ref-
erence of the factory object can be published in a well-known location, and clients know
that they only need to obtain this object reference in order to gain access to other objects in
the system, thereby minimizing the number of object references that need to be published.

The Factory pattern can be applied in a wide variety of situations, including the following:

e Security - A client is required to provide security information before the factory
object will allow the client to have access to another object.

« Load-balancing - The factory object manages a pool of objects, often representing
some limited resource, and assigns them to clients based on some utilization
algorithm.

« Polymorphism - A factory object enables the use of polymorphism by returning
object references to different implementations depending on the criteria specified by a
client.

These are only a few examples of the potential applications of the Factory pattern. The
examples listed above can also be used in any combination, depending on the require-
ments of the system being designed. Note that the factory pattern applies equally to persis-
tent and transient objects.

ORBacus

Factory Objects

Q ©W O NGO ANWNR

~

o
o

7-10

5.6.1

NN WNR

A simple application of the Factory pattern, in which a new object is created for each cli-
ent, isillustrated below. The implementation uses the following interface definitions:

/1 1DL
i nterface Product

{
b

voi d destroy();
i nterface Factory
{
H

The Product interface is defined. The dest r oy operation allows a client to destroy the
object when it is no longer needed.

Pr oduct createProduct();

TheFact ory interface is defined. The cr eat ePr oduct operation returns the object ref-
erence of anew Pr oduct .

Factory Objectsusing C++

First, we'll implement thér oduct interface:

Il C++
cl ass Product _i npl
public virtual PQA Product,
public virtual Portabl eServer:: Ref Count Servant Base

{
public:
virtual void destroy() throw CORBA:: SystenExcepti on)
{
Port abl eServer:: POA var poa = _default_POA();
Port abl eServer:: Qbjectld_var id = poa -> servant _to_id(this);
poa -> deactivate_object(this);
}
H

The servant claga oduct _i npl is defined as an implementation of #reduct inter-
face. In additionPr oduct _i npl inherits fromRef Count Ser vant Base, which makes
the servant reference counted.

ORBacus 85

CORBA Objects

8-13

O N RN WNR

11-14

Thedest roy() operation deactivatesthe servant with the POA. Asaresult, the POA will
release all references it maintains to the servant. Since there are no other references to the
servant left, the servant’s reference count will drop to zero, and thus the servant is
destroyed.

Next, we'll implement the factory:

/] C++
class Factory_inpl : public virtual POA Factory
{
public:
virtual Product_ptr
creat eProduct () throw(CORBA: : Syst emExcepti on)
{
Port abl eServer:: Servant Base_var result =
new Product _i npl (orb_);
Port abl eServer:: POA var poa = ... // Get servant’s POA
PortableServer::Objectld_var id = ... // Assign an ID
poa -> activate_object_with_id(id, result);
return result -> _this();
}
h

The servant class Factory_impl is defined as an implementation of the Factory inter-
face.

A new reference counted Product servant is instantiated. The servant is assigned to a
ServantBase_var , which decrements the servant’s reference count when it goes out of
scope.

Activates the servant and returns an object reference to the client.

It is important to understand how the servant is eventually destroyed. The

Ref Count Ser vant Base class from which the servant inherits implements a reference
count. When the servant is instantiated,RéfeCount Ser vant Base constructor sets this
reference count to 1. When the servant is activated with the POA, the POA increases the
reference count by at least 1. When $eevant Base_var we assigned the servant to
goes out of scope, the reference count is decremented by 1. This means that when
creat eProduct () returns, only the POA is “holding” a reference to the servant. Later,
then the servant is deactivatedi#st r oy() , the POA decrements the reference count by
exactly the same number it used to increment the reference count upon activation. This
causes the reference count to drop to zero, in which case the servant will be implicitly
deleted.

86

ORBacus

Factory Objects

56.2

© N O WNRK

N

O N RN WNR

4-11

Note that whenever the ORB starts to dispatch a request on the servant, the reference
count isincreased by 1. After request dispatching is finished, the count is decremented by
1. This ensures that a reference counted servant cannot be deleted while arequest is exe-
cuting.

Factory Objectsusing Java

Hereis our Javaimplementation of the Pr oduct interface:

/1 Java
public class Product_inpl extends Product POA

{
public void destroy()

{
byte[] id = _default_POA().servant_to_id(this);
_defaul t _PQA() . deactivate_object(id);

}

Servant class Pr oduct _i npl isdefined as an implementation of the Pr oduct interface.

The dest r oy operation deactivates the servant with the POA. Aslong as no other refer-
ences to the servant are held in the server, the object will be eligible for garbage collection.

Here’s our implementation of the factory:

/1 Java
public class Factory_inpl extends FactoryPOA
{
publ i ¢ Product createProduct()
{
Product _impl result = new Product _inmpl (orb_);
org.omg.PortableServer.POA poa = ... // Get servant's POA
byte[] id = ... // Assign an ID
poa.activate_object_with_id(id, result);
return result._this(orb_);
}

}

Servant class Factory_impl isdefined as an implementation of the Factory interface.

The createProduct ~ operation instantiates a new Product servant, activates it with the
POA, and returns an object reference to the client.

ORBacus 87

CORBA Objects

5.6.3 Caveats

In these simple examples, the factory objects do not maintain any referencesto the

Pr oduct servantsthey create; it isthe responsibility of the client to ensure that it destroys
aProduct object when it isno longer needed. This design has a significant potential for
resource leaks in the server, asit is quite possible that a client will not destroy its Product
objects, either because the programmer who wrote the client forgot to invoke dest r oy, or
because the client program crashed before it had a chance to clean up. You should keep
these issues in mind when designing your own factory objects.

5.6.4 Obtainingthe POA for a Servant

As mentioned in the previous sections, every servant inherits a_def aul t _PQA function
fromits skeleton class. The default implementation of this function returns the Root POA.
If you instantiate servants on anything but the Root POA, you must override the function
in the servant; otherwise, callsto _t hi s will create incorrect object references. Usually,
thisinvolves remembering the POA reference for a servant in a private member variable
and returning that reference from acall to _def aul t _PQOA. (If all servantsfor objects of a
particular interface type use the same POA, you can use a static member variable.)

In C++, you can use an approach similar to the following:

1 /] C++

2 class Product _i npl

3 public virtual PQOA _Product,

4 public virtual Portabl eServer:: Ref Count Servant Base

5 {

6 Port abl eServer:: POA var poa_;

7

8 public:

9 voi d Product _i npl (Portabl eServer:: POA ptr poa)
10 . poa_(Portabl eServer::POA : _duplicate(poa))
11 {

12 }

13

14 virtual Portabl eServer::POA ptr _default_PQOA()
15 {

16 return Portabl eServer:: PQA:: duplicate(poa)

1. Two possible strategies for handling thisissue include: time-outs, in which a servant that has not
been used for some length of time is automatically released; and expiration, in which an object
referenceis only valid for acertain length of time, after which a client must obtain a new refer-
ence. The implementation of these solutionsis beyond the scope of this manual.

ORBacus

Factory Objects

17 }
18 };

9-12 The constructor accepts a POA reference and remembers that reference in a private mem-
ber variable.

14-17 The_defaul t _PQA function returns the servant’s POA.

In Java, the approach is very similar:

I/ Java
public class Product_inpl extends Product POA
{

org. ong. Port abl eServer. POA poa_;

publ i c Product _i npl (org. ong. Port abl eServer. POA poa)
{

}

poa_ = poa;

public org.ong. Portabl eServer. POA
_defaul t _PQA()

{
}

return poa_;

5.6.5 Gettingthe POA for a Currently Executing Request

The ORB provides access to an object of tyget abl eServer:: Current:

/1 1DL
nodul e Port abl eServer

{
interface Current : CORBA:.: Current

{
exception NoContext { };

POA get _PQA() raises(NoContext);
hj ectld get_object_id() rai ses(NoContext);
s
b

This interface provides access to the POA and the object ID for an executing request. Note
that these operations must be invoked only from within the context of an executing opera-
tion inside a servant; otherwise, they ras€ont ext . TheCur r ent object provides a

useful way to obtain access to a servant's POA and object ID without having to store the

ORBacus 89

CORBA Objects

POA reference in amember variable, at the cost of being accessible only from within an
operation implementation. You can obtain areference to the Cur r ent object from
resol ve_initial _references. In C++, the code looks something like this:

Il C++
CORBA: : ORB var orb = ... // Get the ORB sonehow
CORBA: : Obj ect _var obj =

orb -> resolve_initial_references("POACurrent");
Port abl eServer:: Current _var current =

Port abl eServer:: Current::_narrow obj);
i f(!CORBA: :is_nil(current))

[/l Got Current object OK

You can keep the reference to the Cur r ent object in avariable and use it from within any
executing operation in a servant. There is no need to “refresuthent reference for

the current operation, not even for threaded servers. The ORB takes care of ensuring that
operation invocations on ti@r r ent object return the correct data.

In Java, the code to obtain ter r ent reference looks like this:

/1 Java
org.ong. CORBA.ORB orb = ... // Get the ORB sonehow
org. ong. CORBA. Obj ect obj =

orb.resolve_initial _references("PQACurrent");
org. ong. Port abl eServer. Current current =

org. ong. Port abl eServer. Current Hel per. narrow(obj);
if(current !'= null)

/1l Got Current object K

90

ORBacus

L ocating Objects

CHAPTER 6
6.1 Obtaining Object References

Using CORBA, an object can obtain a reference to another object in a multitude of ways.
One of the most common ways is by receiving an object reference as the result of an oper-
ation, as demonstrated by the following example:

1 // 1D

2 interface A

3 {

4}

5

6 interface B

7 {

8 A get A();

9 };

2-4 Aninterface Ais defined.
6-9 Aninterface Bis defined with an operation returning an object reference to an A.

On the server side, A and B can be implemented in C++ as follows:

1 /] C++

2 class A inpl : public POA A,

3 publ i ¢ Portabl eServer: : Ref Count Ser vant Base

ORBacus 91

L ocating Objects

[SSERNERORNS) N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

7-28

14-17

19-22

24-27

N WN R

{
s
class B_inpl : public POA B,
publ i ¢ Portabl eServer: : Ref Count Ser vant Base
{
Aiml* a_;
public:
B_impl ()
{
a_ = new A inpl();
}
~B_i npl ()
{
a_ -> _renove_ref();
}
virtual A ptr getA() throw CORBA: : SystenException)
{
return a_ -> _this();
}
1
Theservant class A i npl isdefined, which inherits from the skeleton class POA_A and the

class Ref Count Ser vant Base which provides a reference counting implementation.

The servant classB_i npl inherits from the skeleton class POA_B and the reference count-
ing class Ref Count Ser vant Base.

Aninstance of the servant class A i npl is created in the constructor for B_i npl .

In the destructor for B_i npl , the reference count for the servant A_i npl is decremented,
which leads to the destruction of the servant.

get Areturns an object referenceto the A_i npl servant (implicitly creating and activating
the CORBA object if necessary).

In Java, the interfaces can be implemented like this:

/1 Java

public class A_inpl extends APOA
{

}

92

ORBacus

Obtaining Object References

21

11-15

17-20

public class B_inpl extends BPOA

{
org. ong. CORBA. ORB orb_;
Aiml a_;
public B_inpl (org. onmg. CORBA. ORB or b)
{
orb_ = orb;
a_ = new Ainpl();
}
A get A()
return a_. _this(orb_);
}
}

The servant class A i npl is defined, which inherits from the skeleton class APQA.
The servant classB_i npl is defined, which inherits from the skeleton class BPOA.
B_i npl ’'s constructor stores a reference to the orb and createsA& hepl servant.

get Areturns an object reference to the npl servant (implicitly creating and activating
the CORBA object if necessary).

A client written in C++ could use code like the following to get referencas to

[l C++
B var b
A var a

/1 CGet a B object reference sonehow
b -> getA();

And in Java:

I/ Java
Bb=...//] Gt a B object reference sonehow
A a = b.getA();

In this example, once your application has a referenc® tabgect, it can obtain a refer-
ence to am object usingyet A. The question that arises, however, is How do | obtain a
reference to & object? This chapter answers that question by describing a number of
ways an application cdwootstrap its first object reference.

ORBacus 93

L ocating Objects

6.2

6.2.1

6.2.2

Lifetime of Object References

All of the strategies described in this chapter involve the publication of an object reference
in some form. A common source of problems for newcomersto CORBA isthe lifetime
and validity of object references. Using I1OP, an object reference can be thought of as
encapsulating several pieces of information:

* hostname
e port number
e oObject key

If any of these items were to change, any published object references containing the old
information would likely become invalid and its use might result TRANSI ENT or
OBJECT_NOT_EXI ST exception. The sections that follow discuss each of these compo-
nents and describe the steps you can take to ensure that a published object reference
remains valid.

Hosthame

By default, the hosthame in an object reference is the canonical hostname of the host on
which the server is running. Therefore, running the server on a new host invalidates any
previously published object references for the old host.

ORBAcus provides the QAhost option to allow you to override the hostname in any

object references published by the server. This option can be especially helpful when used
in conjunction with the Domain Name System (DNS), in which th&host option spec-

ifies a hostname alias that is mapped by DNS to the canonical hostname.

See “Command-line Options” on page 57 for more information on@Akost option.

Port Number

Each time a server is executed, the Root POA manager selects a new port number on
which to listen for incoming requests. Since the port number is included in published
object references, subsequent executions of the server could invalidate existing object ref-
erences.

To overcome this problem, ORBUS provides the QAport option that causes the Root
POA manager to use the specified port number. You will need to select an unused port
number on your host, and use that port number every time the server is started.

See “Command-line Options” on page 57 for more information on@Agor t option.

94

ORBacus

Stringified Object References

6.2.3

6.3

6.3.1

N

Object Key

Each object created by a server is assigned a unique key that is included in object refer-
ences published for the object. Furthermore, the order in which your server createsits
objects may affect the keys assigned to those objects.

To ensure that your objects always have the same keys, activate your objects using POAs
with the PERSI STENT life span policy and the USER | D object identification policy.

Sringified Object References

The CORBA specification defines two operations on the ORB interface for converting
object references to and from strings.

/1 1DL
nodul e CORBA
{
interface ORB
{
string object_to_string(in Cbject obj);
Chject string_to_object(in string ref);
b

b

Using “stringified” object references is the simplest way of bootstrapping your first object
reference. In short, the server must create a stringified object reference for an object and
make the string available to clients. A client obtains the string and converts it back into an
object reference, and can then invoke on the object.

The examples discussed in the sections below are based on the IDL definitions presentec
at the beginning of this chapter.
Using aFile

One way to publish a stringified object reference is for the server to create the string using
obj ect _to_string and then write it to a well-known file. Subsequently, the client can
read the string from the file and use it as the argumedttrtong_t o_obj ect . This

method is shown in the following C++ and Java examples.

First, we’ll look at the relevant server code:

/] C++
CORBA: : ORB var orb = ... // Get a reference to the ORB sonehow
B inpl* blmp = new B_inpl ();

ORBacus 95

L ocating Objects

© 0 N O KA

© N 0N WNRK

Port abl eSer ver: : Servant Base_var servant = blnpl;
B var b = blmpl -> _this();

CORBA: : String_var s = orb -> object_to_string(b);
of stream out ("obj ect.ref")

out << s << endl;

out . cl ose();

A servant for the interface B is created and is used to incarnate a CORBA object.
The object reference of the servant is “stringified”.
The stringified object reference is written to a file.

In Java, the server code looks like this:

/1 Java
org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonehow
B inpl blmpl = new B_inpl();
B b = blnmpl. _this(orb);
String ref = orb.object_to_string(b);
java.io.PrintWiter out = new java.io.PrintWiter(
new java.io. Fil eCut put Strean("object.ref"));
out.println(ref);
out . cl ose();

A servant for the interfacgis created and is used to incarnate a CORBA object.
The object reference of the servant is “stringified”.

The stringified object reference is written to a file.

Now that the stringified object reference resides in a file, our clients can read the file and

convert the string to an object reference:

/] C++

CORBA: : ORB var orb = ... // Get a reference to the ORB sonehow
ifstreamin("object.ref");

string s;

in >> s;

CORBA: : Obj ect _var obj = orb -> string_to_object(s.c_str());
B var b = B::_narrow obj);

The stringified object reference is read.

string_to_object creates an object reference from the string.

96

ORBacus

Stringified Object References

7 Sincethereturn value of string_t o_obj ect isof type CORBA: : Chj ect _ptr,
B: : _narrow mustbeusedtoget aB ptr (whichisassigned to aself-managed B_var in
this example).

/1 Java
org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonehow
java.io.BufferedReader in = new java. i o. Buf f er edReader (
new java.io. Fil eReader (" object.ref"));
String ref = in.readLine();
org. ong. CORBA. Ohj ect obj = orb.string_to_object(ref);
B b = BHel per. narrow obj);

NO AN WNR

3-5 Thestringified object referenceis read.
6 string_to_object createsan object reference from the string.

7 UseBHel per. nar r owto narrow the return valueof st ri ng_t o_obj ect toB.

6.3.2 UsingaURL

It is sometimes inconvenient or impossible for clients to have access to the same filesys-
tem asthe server in order to read a stringified object reference from afile. A moreflexible
method is to publish the referencein afile that is accessible by clientsasa URL. Your cli-
ents can then use HTTP or FTP to obtain the contents of the file, freeing them from any
local filesystem requirements. This strategy only requires that your clients know the
appropriate URL, and is especially suited for use in applets.

Note: Thisexampleisshown only in Javabecause of Java’s built-in support for URLs, but
the strategy can also be used in C++.

1 /] Java

2 inmport java.io.*;

3 inport java.net.*;

4

5 String location = "http://ww. mywebserver/object.ref";

6 org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonehow
7

8

URL url = new URL(Il ocati on);
9 URLConnection conn = url.openConnection();
10 BufferedReader in = new BufferedReader(

11 new | nput StreanReader (conn. get |l nput Stream()));
12 String ref = in.readLine();

13 in.close();

14

ORBacus 97

L ocating Objects

15
16

8-13
15

16

6.3.3

GO N WN R

org. ong. CORBA. Obj ect object = orb.string_to_object(ref);
B b = BHel per. narrow obj ect);

| ocati on isthe URL of the file containing the stringified object reference.
Read the string from the URL connection.
Convert the string to an object reference.

Narrow the reference to a B object.

Using Applet Parameters

In addition to using the URL method described in the previous section, an applet can also
use an applet parameter to obtain a stringified object reference. The following HTML
illustrates this concept:

<APPLET CODE="Client.class" ARCH VE="OB.jar" W DTH=500 HEI GHT=300>
<PARAM NAME="ref" VALUE="I|CR 000012031...">
</ APPLET>

The stringified object referenceisinserted directly into the HTML file and passed to the
applet as aparameter. The applet can retrieve this parameter and convert it to an object ref-
erence as shown below:

/1 Java

org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonehow
String ref = getParaneter("ref");

org. ong. CORBA. Ohj ect object = orb.string_to_object(ref);

B b = BHel per. narrow obj ect);

Obtain the applet parameter r ef .
Convert the string to an object reference.
Narrow the object reference to a B object.

The presence of the stringified object reference in the HTML file could present a mainte-
nance problem. One solution isfor the server to write the entire HTML file, thereby ensur-
ing that the object referenceis always up to date. You can find an example of this approach
inthe deno/ hel | o subdirectory.

See “Applets” on page 66 for more information on using @88 in applets.

98

ORBacus

Object Reference URL s

6.4

6.4.1

Object Reference URLs

Prior to the adoption of the Interoperable Naming Service (INS) [10], the only standard
format for stringified object references was the cumbersome | OR: format. The INS intro-
duced two new, more readable formats for object references that use a URL -like syntax.
Object reference URLSs can be passed to st ri ng_t o_obj ect, just likel OR: references.
The two new URL formats are described in detail in the specification, but will be briefly
discussed here. The optional fi | e: URL format is also discussed, as well as the propri-
etaryrel fil e: URL format.

corbaloc: URLSs

Thecor bal oc: URL supports any humber of protocols; the format of the URL depends
on the protocol in use. The general format of a corbaloc: URL is shown below:

corbal oc: [protocol]: <protocol -speci fic>

ORBAcuUS supports two standard protocols, i i op andrir.

Thecor bal oc: URL for thei i op protocol has the following structure:
corbal oc:[iiop]:[version@host[:port]/object-key

The components of the URL are as follows:

e iiop- Thisis the default protocol fawor bal oc: URLS, and therefore is optional.

e version - The lIOP version number imaj or. m nor format. The default i$. 0.

* host - The hostname of the server.

e port - The port on which the server is listening. The defadlo&o.

e obj ect - key - A stringified object key.

The specification allows a URL to contain multiple addresses, but the semantics are ven-

dor-specific. In ORBcus, each address is used in turn until one is found that works or
until the ORB has tried them all and failed to contact the object.

Therir protocol is a shortcut for the ORB operati@sol ve_i ni ti al _ref erences.
Thecor bal oc: URL for theri r protocol has the following structure:

corbaloc:rir:[/id]
The components of the URL are as follows:

e rir - The protocol.

ORBacus 99

L ocating Objects

* id - The identifier of the service to be resolved. The identi&ereSer vi ce is used
if i d is not supplied.

Some examples efor bal oc: URLs are:

cor bal oc: : nshost : 10000/ NanmeSer vi ce
cor bal oc: : nyhost : 10000/ MyQbj ect I d
corbal oc:rir:/ NanmeService

In the above exampleNameSer vi ce andMyObj ect | d are used as object keys. Nor-

mally, object keys contain the information necessary to uniquely identify a POA and a ser-
vant within the POA. However, the object keys used above do not contain information
which identifies both the POA and the servant (unless some assumptions are made, e.g., a
default POA name). To solve this problem, ORBs defines the interfaces

Boot Manager andBoot Locat or. (See Appendix A for a detailed description.)

TheBoot Manager : : add_bi ndi ng operation binds an object id to an object reference.
TheBoot Manager : : r enove_bi ndi ng operation is used to remove a binding. A

Boot Locat or object can be registered with tBeot Manager using theset _| ocat or
operation and is used to dynamically locate a reference for a given object id. The follow-
ing example illustrates how a server can add a binding for the objdotigl ect | d.

First, in C++:

/] C++
CORBA: : Ohj ect _var obj // ... Areference to a persistent object
CORBA: : Obj ect _var bmgrOoj =
orb -> resolve_initial _references("Boot Manager");
OB: : Boot Manager _var boot Manager =
OB: : Boot Manager: : _narrow bngr Qoj) ;
Port abl eServer:: Cbhjectld_var objld =
Port abl eServer::string_to_Objectld("MOhjectld");
boot Manager -> add_bi ndi ng(objld, obj);

© ® N AN WNR

@
o)

Get a reference to tiBoot Manager object by invoking
resolve_initial _references (see 6.5.1 on page 102) on the ORB.

7-8 Create the object id.
9 Create the new binding.

Or in Java:

1 // Java
org. ong. CORBA. hj ect obj = ... // Areference to a persistent object
3 org.ong. CORBA. Obj ect bngrOhj =

N

100 ORBacus

Object Reference URL s

6.4.2

6.4.3

[SSERNERORNS) N

orb.resolve_initial _references("Boot Manager");
com ooc. OB. Boot Manager boot Manager =

com ooc. OB. Boot Manager Hel per. narr ow(bngr Qbj) ;
byte[] objld = "My/Objectld". getBytes();
boot Manager . add_bi ndi ng(obj 1 d, obj);

Get areference to the Boot Manager object by invoking
resol ve_initial _references (see6.5.1 on page 102) on the ORB.

Create the object id.
Create the new binding.

corbaname: URLSs

A cor baname: URL provides additional flexibility by incorporating use of the Naming
Serviceinthestring_t o_obj ect operation. The cor bananme: URL extends the capa
bilities of the cor bal oc: URL to alow the obj ect - key to identify abinding in aNam-
ing Service. For example, consider this URL:

cor banane: : ns1: 5001/ NameSer vi ce#ct x/ MyCbj ect

When the ORB interprets this URL, it attempts to resolve a naming context object located
at host ns1 on port 5001 and having the object key NaneSer vi ce. Once the naming con-
text has been resolved, the ORB attempts to lookup the binding named My Qbj ect in the
naming context ct x. If successful, the result of st ri ng_t o_obj ect isthe object refer-
ence associated with the binding.

filee URLS

Afile: URL providesaconvenient way to obtain object references using an IOR or
URL referencethat isin afile. Theformat of afil e: URL is:

file:/<absolute file nanme>

Usingthefi | e: URL and given that thefileobj ect . ref islocated inthe/t np direc-
tory, the client side example of 6.3.1 on page 95 may be simplified as follows:

/] C++
CORBA: : ORB var orb = ... // Get a reference to the ORB sonehow
CORBA: : Obj ect _var obj
= orb -> string_to_object("file:/tnp/object.ref");
B var b = B::_narrow obj);

/'l Java

ORBacus 101

L ocating Objects

6.4.4

6.5

6.5.1

N

org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonehow

org. ong. CORBA. Obj ect obj =
orb.string_to_object("file:/tnp/object.ref");

B b = BHel per. narrow obj);

relfile: URLSs

ORBAcus also provides the proprietary rel fi | e: URL. ThisURL isthe same asthe
file: URL except that it takes arelative file name instead of an absolute file name.

Initial Services

The CORBA specification provides a standard way to bootstrap an object reference
through the use of initial services, which denote a set of unique services whose object ref-
erences, if available, can be obtained using the ORB operation

resol ve_initial _references, whichisdefined asfollows:

/1 1DL
nodul e CORBA
{
interface ORB
{
typedef string Objectld;
exception InvalidNarme {};
hject resolve_initial _references(in hjectld identifier)
rai ses(| nval i dName) ;
b

b

Initial servicesareintended to have well-known names, and the OM G has standardized the
names for some of the CORBAservices[9]. For example, the Naming Service has the
name NaneSer vi ce, and the Trading Service has the name Tr adi ngSer vi ce.

Resolving an Initial Service

An examplein which the ORB is queried for a Naming Service object reference will dem-
onstrate how to user esol ve_i ni ti al _ref er ences. The example assumes that the
ORB has already been initialized as usual. First the Java version:

/1 Java
org. ong. CORBA. Obj ect obj = null;
org. ong. CosNam ng. Nam ngContext ctx = null;

102

ORBacus

Initial Services

5-12

19-23

N ORNWNR

try
{
obj = orb.resolve_initial _references("NanmeService");
}
cat ch(or g. ong. CORBA. ORBPackage. | nval i dNanme ex)
{
// An error occured, service is not avail abl e
}
if(obj == null)
{
/1 The object reference is invalid
}
ctx = org.ong. CosNam ng. Nam ngCont ext Hel per. narr ow(obj) ;
if(ctx == null)
{
/1 This object does not inplement a Nanmi ngCont ext
}
Try to resolve the name of a particular service. If a service of the specified nameis not

known to the ORB, an | nval i dName exception is thrown.

The service type was known. Now the object reference hasto be narrowed to the particular
service type. If thisfalils, the serviceis not available.

And here’s the C++ version:

Il C++
CORBA: : oj ect _var obj;
CosNami ng: : Nami ngCont ext _var ctx;

try
{

obj = orb -> resolve_initial _references("NaneService");
}
cat ch(CORBA: : ORB: : | nval i dNane&)
{

/1 An error occured, service is not available

}
i f(CORBA::is_nil(obj))
{

/1l The object reference is invalid

ORBacus 103

L ocating Objects

17
18
19
20
21
22
23

6.5.2

}

ctx = CosNani ng: : Nam ngCont ext:: _narrowobj);
i f(CORBA: :is_nil(ctx))

{

}

This is the same as the Java version above.

/1 This object does not inplement Nam ngCont ext

Configuring the Initial Services

When an application uses initial services that are not locality-constrained, the application
must register the object references for these objects with the ORB. ORBAcuUS supportsthe
standard - ORBI ni t Ref and - ORBDef aul t I ni t Ref command-line options for register-
ing initial service object references:

- ORBI ni t Ref nane=URL
- ORBDef aul t I nit Ref URL

For example, starting an application as shown below will enable the client to resolve the
NanmeSer vi ce initial reference;

mycl i ent -ORBInitRef NaneServi ce=corbal oc:: nshost: 10000/ NaneSer vi ce

The - ORBconf i g option is an alternative method for defining alist of initial services, and
is often preferable when a number of services must be defined.

See “Configuring the ORB and OA” on page 50 for more information on these command-
line options. Also refer to the INS specification [10] for detailed information on the stan-
dard options ORBI ni t Ref and- ORBDef aul t | ni t Ref .

In addition to using command-line parameters, a program can add to the list of initial ser-
vices using the ORB operatioegi ster _initial _refer encek:

/1 1DL
nodul e CORBA
{

interface ORB
{

void register_initial _reference(in hjectldid, in Cbject obj)
rai ses(| nval i dNane) ;

1. Thiswill become part of the ORB interface when the Portable Interceptor specification is
adopted.

104

ORBacus

Initial Services

N

s
b
For example, in C++:;
Il C++
CORBA: : Ohj ect _var obj = ... // Get a nane service reference sonehow
orb -> register_initial_reference("NaneService", obj);

Get areference to the naming service, for example by reading a stringified object refer-
ence and converting it with st ri ng_t o_obj ect, or by any other means.

3 Add the reference to the ORB'’s list of initial references.
Orin Java:
1 // Java
2 org.ong. CORBA. Ohject obj = ...// Get a nane service reference
somehow
3 orb.register_initial_reference("NanmeService", obj);

1-3

This is the same as the C++ version above.

ORBacus 105

L ocating Objects

106 ORBacus

«oens 1NE IMPlEMentation
Repostory

The ORBacus | mplementation Repository (IMR) provides support for the indirect bind-
ing! of persistent object references. The key advantage of indirect binding isthat it loosens
the coupling between clients and servers so that the |ocation of the server can change with-
out affecting the client. In practical terms, this is accomplished by providing the client
with an IOR that actually refersto the IMR, rather than to the server itself. The IMR aso
provides the ahility to start servers on demand using the Object Activation Daemon
(OAD).

The CORBA specification does not standardize how servers and the IMR interact, it only
suggests functionality for vendors to implement. Hence, the interface between servers and
the IMR is gtrictly proprietary. Due to the proprietary interface between servers and the
IMR, serversusing the IMR must be devel oped using ORBacus for C++ or Java. However,
the interaction between clients and the IMR is strictly specified by the GIOP specification,
so any client that is CORBA compliant may interact with the IMR.

1. Binding refersto the process of opening a connection and associating an object reference with its
servant.

ORBacus 107

The Implementation Repository

7.1

711

712

Background

How It All Works

When aserver is using the IMR, object references created by one of its persistent POAs
refer to the IMR rather than to the server itself. When the client makes arequest using this
reference, the IMR receives the request, activates the server (if necessary) using the OAD,
and returns a new object reference to the client that identifies the server at its current host
and port. The client then establishes a connection with the server using the new object ref-
erence and communicates directly with the server, without the intervention of the IMR.
However, should the server fail, awell-behaved client will contact the IMR again, which
may restart the server and allow the client to resume its activities.

Information Managed by the MR

The IMR provides support for the indirect binding and automatic activation of servers
within agiven domain. In order to provide this support, the IMR manages three types of
entities: OADs, servers, and POAs.

OADs

An OAD isresponsible for the activation of servers on a given host. Each OAD isregis-
tered in the IMR using a host name. The IMR also maintains the status of each OAD. If
the OAD isrunning and in aready stateit will have astatus of up, otherwise, its statuswill
be down.

Servers

Servers are registered with a name that is unique within the domain and the host corre-
sponding to the OAD that is responsible for the server. Since, the name is unique within
thedomain, it is not currently possible to register the same server with multiple OADs.
The server namethat isregistered in the IMR can be any string, but it must be the same as
the name used by the server (i.e., the name specified by the - ORBser ver _nane option, or
equivalent property). The attributes of a server that are stored by the IMR are summarized
bel ow:

host The host corresponding to the OAD that is responsible for the server.
exec The path of server executable (the . exe extension must be included on
Windows platforms).
108 ORBacus

Background

args The arguments to be supplied when startingthe server executable. Note
that “- ORBser ver _nane server-name” is automatically appended to
the arguments before the server process is started.

node The activation mode. The possible values shar ed, only one server
process is created which is used by all cligmés;_cl i ent , a server
process is created for every client process;merdsi st ent , the
server process is started when the IMR starts and is used by all clients.

activate_poas If this attribute is set tor ue (default), then all persistent POAs will be
registered automatically. If settal se, then persistent POAs are not
registered automatically.

updat e_t i neout The amount of time (in milliseconds) to wait for server status updates.
failure_timeout The amount of time (in seconds) to wait for the server to start.
max_spawns The maximum number of tries to start the server.

The IMR al'so maintains various state information for each server:

 The internal ID of the server.

e The status of the server process. The valid valuefsoatteed, st ar t i ng, r unni ng,
st oppi ng, andst opped.

* Whether or not the server was started manually.
e The number of times that the server process has been spawned.

Server processes inherit environment settings from the environment in which the OAD
was started. Hence, path, library path, and class path environment variables can be used b
the server application. This is especially useful in the case of shared library and class path
settings. (Note that the class path may also be set & tfeeattribute.)

On Windows platforms, thexec attribute may refer to an executable or batch file. On
UNIX platforms, theexec attribute may refer to an executable or a shell script with

#! interpreter

as its first line. However, if a batch file or shell script is used, then it should accept the
ORBser ver _name option since it is automatically appended toahgs attribute by the
IMR.

In the case of Java servers, #xec attribute should be set to the Java interpreter and the
class implementing the server should be specified iarthe attribute. An alternative is
to create a batch file or shell script for the Java server.

ORBacus 109

The Implementation Repository

1.2

7.2.1

7.2.2

POAs

The IMR alows implicit registration of POAs when the server is started. This can be
enabled or disabled for each server using the act i vat e_poas server attribute. If implicit
registration is enabled, then the user does not have to register any of the POAS; instead, the
server transparently notifiesthe IMR whenever acall to cr eat e_POA is made by the
application code.

If the user disables implicit registration, then the user must register all persistent POAs
(i.e., POAswiththe PERSI STENT life span policy). POAs are registered using the name of
its server and the name of the POA. Note that any transient POAs (POAs with the
TRANSI ENT life span policy) created by the server are not registered with the IMR.

The IMR also maintains the status for each POA, which indicates the state of its POA
Manager. The valid values arei nacti ve, act i ve, hol di ng, and di scar di ng.

Synopsis
Usage

The ORBAcus Implementation Repository and Object Activation Daemon are currently
only provided with ORBAcus for C++. The IMR and OAD executablesarei nr and oad,
respectively. No arguments other than the - ORB and - QA options may be specified.

Configuration Properties

In addition to the standard configuration properties described in Chapter 4, the IMR and
OAD also support the following properties:

ooc.inr.dbdir=DI R Specifies the directory in which the IMR maintains its
database files. The IMR and the OAD can share the
same directory, if desired. If not specified, the current
working directory is used. The IMR creates two files,
oad. db andi nr. db, in the database directory.

ooc. i nr. forward_port=PORT Specifies the IMR’s public port, which is used by
clientsfor server requests. If not specified, the port
9998 is used.

ooc. i nr. host =HOSTNAME Specifies the host on which the IMR is running.

110

ORBacus

Connecting to the Service

7.3

ooc. i nr. port =PORT Specifiesthe IMR’s administrative port. Thisisthe port
that the OADs and IMR-enabled servers use to
communicate with the IMR. For security reasons,
access to this port can be restricted. If not specified,
port 9999 is used.

ooc.inr.trace. oad=LEVEL Defines the output level for IMR diagnostic messages
related to communications with the OADs. The default
level is O, which produces no output.

ooc.inr.trace.server_status Definestheoutput level for IMR diagnostic messages
=LEVEL related to the status of servers and POAs. The default
level is 0, which produces no output.

ooc.inr.trace. process_control Definesthe output level for IMR diagnostic messages
=LEVEL related to the forking and death of server processes.
The default level is 0, which produces no output.

ooc. oad. dbdi r=DI R Specifiesthe directory in which the OAD will maintain
its database files. If not specified, the current working
directory is used. The OAD will create afile called
oad- hot . db in the database directory.

ooc. oad. port =PORT Specifiesthe port used by the OAD. Note that all of the
OADsin adomain must use the same port. If not
specified, the port 9999 is used.

ooc. oad. trace_| evel =LEVEL Defines the output level for diagnostic messages
printed by the OAD. The default level is 0, which
produces no output.

Connecting to the Service

Serversthat use the IMR must be configured with the IMR initial reference. The object
key of the IMR is Domai n, hence, a URL-style object reference of the IMR service run-
ning on host i nr host at port 10000 would be:

corbal oc: :inrhost: 10000/ Domai n

Using this object reference, aserver can configure the IMR initial reference with the prop-
erty:

ooc. orb. service. | MR=corbal oc: :i nrhost: 10000/ Donai n

An alternative to using the above property isto use the - ORBI ni t Ref command-line
option. Refer to Chapter 6 for more information on URLs and configuring initial services.

ORBacus 111

The Implementation Repository

1.4

74.1

Utilities

Implementation Repository Administration

Thei nr admi n utility provides complete control over the IMR, OADs and serversin a

domain. Its command interface is shown below:

-h, --help
--add-oad [hogt]

--add-server server-name exec [host]

- - add- poa server-name poa-name
--renmove-oad [host]
--renove-server server-name
--renpve- poa Server-name poa-name
--get-oad-status [host]

--get-server-info server-name

--get - poa- st at us server-name poa-name
--1ist-oads

--list-servers

--list-poas server-name

--tree

--tree-oad [host]

--tree-server server-name

--set-server server-name {exec| host |
ar gs| node| acti vat e_poas|
update_tinmeout|failure_tineout|
max_spawns} value

--reset-server server-name

Display thisinformation.
Register an OAD for the specified host.

Register a server under the OAD specified
by host with the given exec attribute.

Register a POA for the specified server.
Unregister an OAD.

Unregister a server.

Unregister a POA.

Get the status of an OAD.

Get the attributes and state information for a
server.

Get the status of a POA.
List all OADs.

List all servers.

List all POAs.

Display all OADs, serversand POAsina
tree like format.

Display an OAD and its associated servers
and POAsin atree like format.

Display aserver and its associated POAsin
atreelike format.

Set an attribute of a server (e.g.,
--set-server srv max_spawns 2
sets the max_spawns attribute for the
server srv to 2).

Reset a server.

112

ORBacus

Getting Started with the Implementation Repository

7.4.2

7.5

Note that thei nr adni n utility also needs to be configured with the IMR initial reference
(see “Connecting to the Service” on page 111).

The host argument is optional. Host is not specified the local host name is used. The
ser ver - nane argument refers to the name of the server. The format pbtherane
argument igoal/ poa2/ poa3, wherepoal is a child of the Root POAa? is a child of
poal, andpoa3 is a child ofpoa2. Refer to “Information Managed by the IMR” on

page 108 for further details.

In very rare circumstances, it's possible for the IMR and OAD to become confused as to
the state of a server. In this case it might be necessary to manually reset the state of the
server using the-r eset - ser ver command. It is also necessary to use this command if
the server continually crashes on startup and has reached the maximum number of retries
specified by itsrax_spawns attribute. This prevents the OAD from continually starting

the same broken server.

Making References

Thenkr ef utility creates IMR-based object references for use by clients. Since the Object
ID is required to create a reference, this utility can only be used to create references for
objects created by POAs using ti&ER | D object identification policy. Its usage is

shown below.

nkref server-nane object-id poall poa2l.. .| poan

server-name The name of the server as registered in the IMR.
object-id The Object ID used by the object.
poal/poa?/.../[poan The POA which creates the object, where poal is a child of the Root

POA, poa2 is a child of poal, and so on.

Thenkr ef utility uses theoc. i nr. f orward_port andooc. i nr. host properties (see
“Configuration Properties” on page 110). If these properties are not setktheh will
use the values 9998 ahdcal host, respectively.

Getting Started with the Implementation Repository

To use the IMR, several steps must be taken. These steps are presented below and are
explained by way of example. In this example we assume thah@QREhas been

installed in the directoryusr /| ocal / ORBacus and the executablés, oad,

i nradmi n andnkr ef all exist in a directory that is in the search path.

ORBacus 113

The Implementation Repository

Determine the physical architecture.

In this example, we have a network with three hosts: mast er, sl avel and sl ave2.
The host mast er isused to run only the IMR. The hosts sl avel and sl ave2 are
used to run individual CORBA servers.

Create configuration files for the IMR and OADs.
We assign ports 10000 and 10001 to the IMR, and 10002 to the OADs. Create a con-
figuration file for the IMR containing the following:

#i mr. conf
ooc.inr.forward_port=10000
ooc.inr.port=10001

ooc. i nr.dbdi r=/usr/ | ocal / ORBacus/ db
ooc. i nr. host =nast er

ooc. oad. port =10002

This configuration file can also be used by the nkr ef utility. Next, create a configura-
tion file for the OADs containing:

oad. conf

ooc.inr.port=10001

0oc. i nr. host =nast er

ooc. oad. dbdi r=/usr/ | ocal / ORBacus/ db
ooc. oad. port =10002

We place these filesin the new directory / usr/ | ocal / ORBacus/ et c.

Start the IMR.

On host nast er, run:

inr -ORBconfig /usr/local/ORBacus/etc/inr.conf

Usethei nr admi n utility to add each OAD.

i ntradmi n - ORBI ni t Ref | MR=cor bal oc: : mast er: 10000/ Dorai n \
--add- oad sl avel

i nradm n - ORBI ni t Ref | MR=cor bal oc: : mast er: 10000/ Dorrai n \
--add-oad sl ave2

Start the OADs.

On host sl avel, run:

oad -ORBconfig /usr/local /ORBacus/ et c/ oad. conf

On host sl ave2, run:

oad -ORBconfig /usr/local /ORBacus/ et c/ oad. conf

Usethei nr admi n utility to add each server.

114

ORBacus

Getting Started with the Implementation Repository

In our example, wewill run one server on each OAD. The server names are Ser ver 1

and Ser ver 2. The server executables are located in/ usr/ | ocal / bi n.

First, we add the servers:

i nradm n - ORBI ni t Ref | MR=cor bal oc: : mast er: 10000/ Dorrai n \
--add-server Serverl "/usr/local/bin/serverl" slavel

i nradm n - ORBI ni t Ref | MR=cor bal oc: : mast er: 10000/ Dorrai n \
--add-server Server2 "/usr/local/bin/server2" slave2

Next, we set the server arguments;
i nradm n - ORBI ni t Ref | MR=cor bal oc: : mast er: 10000/ Dorrai n \
--set-server Serverl args \
- ORBI ni t Ref | MR=cor bal oc: : mast er: 10000/ Domai n"
i nradm n - ORBI ni t Ref | MR=cor bal oc: : mast er: 10000/ Dorrai n \
--set-server Server2 args \
- ORBI ni t Ref | MR=cor bal oc: : mast er: 10000/ Domai n"

(Note that the space between the double quote and - ORBI ni t Ref is necessary to pre-
vent i nt admi n from consuming the arguments)

In this example, the servers are registered without setting theact i vat e_poas
attribute, so the attribute defaultstot r ue. Hence, al persistent POAswill beregis-
tered automatically. If this were not the case, the POAs would have to be registered
manually.

7. Configure your serversto use the IMR.

There are two ways to IMR-enable a server: using the - ORBser ver _name command-
line option, or using the ooc. or b. ser ver _nane configuration property. Further-
more, the ooc. or b. ser ver _nane configuration property may be set in a configura-
tion file or programmatically prior to initializing the ORB in a server.

In this example, the IMR isresponsible for starting the servers. Hence, when the
server is started, the - ORBser ver _nane option is automatically added to the argu-
ment list.

8. Create object references for use by the clients.

Assume each servers has a single primary object. Ser ver 1 uses Obj ect 1 for its
Object ID and Ser ver 2 uses bj ect 2. Also, each server creates a persistent POA
called Mai n to hold its objects. We can export object references for these objects
using the nkr ef utility asfollows:
nmkref -ORBconfig /usr/local/ORBacus/etc/inr.conf \

Serverl Cbjectl Main > (bjectl.ref
nkref -ORBconfig /usr/local/ORBacus/etc/inr.conf \

ORBacus 115

The Implementation Repository

7.6

O N RN WNR

R R R R RRKRRR
N A WN R OO

[sy)

Server2 Cbject2 Main > Cbject?2.ref
Thei nr. conf configuration file contains the properties needed by the nkr ef utility.

If the server’s Main POA uses tB¥STEM | D object identification policy then the
nkr ef utility cannot be used. In this case the servers are responsible for creating the
object references.

Programming Example

In this section, we will show how to modify the C++ version of the “Hello World” server
(see Chapter 2) to use a persistent object reference. This will allow the server to use the
IMR for indirect binding. Modifications to the Java version of the server are similar. The
code for both the C++ and Java persistent “Hello World” servers may be found in the
deno/ hel | o_i nr directories of the ORBcus for C++ and Java distributions.

The “Hello World” server presented in Chapter 2 uses the Root POA to activate its Hello
servant. Since the Root POA usesTRaNSI ENT life span policy, the object reference it
creates will not be persistent. Hence, the “Hello World” server must be modified so that
the Hello servant is activated using a child POA withRiERSI STENT life span policy.

The new child POA will also use thUSER | D object identification policy so that the

nkr ef utility may be used. Further, the Hello servant is no longer activated under the Root
POA, so it becomes necessary for it to override tied aul t _POA method. The modified
servant’s class declaration is shown below:

/] C++
#i ncl ude <Hell o_skel . h>

class Hello_inpl : public POA Hell o,
publ i c Portabl eServer: : Ref Count Ser vant Base

{ Port abl eServer:: POA var poa_;

public:
Hel | o_i npl (Port abl eServer:: POA ptr);
virtual void say_hello() throw CORBA: : SystenException);
virtual Portabl eServer::POA ptr _default_ PQOA();

H

Private member to store the servant’s default POA.

116

ORBacus

Programming Example

12

16

1
2
3
4
5

© © NO®

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A constructor must be defined to allow the assignment of the servant’s default POA.

Declaration of the def aul t _POA method.

The remainder of the class declaration is unchanged. The definition of the constructor and

_def aul t _POA method follow:

/] C++

Hel lo_i npl::Hello_inpl(Portabl eServer:: POA ptr poa)
poa_(Portabl eServer:: POA:: _duplicate(poa)

{
}

Port abl eServer:: POA ptr Hello_inpl:: _defaul t _PQA()
{

}

return Portabl eServer:: PQA:: _duplicate(poa);

The modified portion of the server program is shown below:

Il C++

i nt
run(CORBA: : ORB_ptr orb, int argc)
{
CORBA: : Obj ect _var poaChj =
orb -> resolve_initial_references("Root POA");
Port abl eServer:: POA var rootPoa =
Port abl eServer: : POA: : _narrow poaChj);

Por t abl eSer ver: : POAManager _var nanager =
root Poa -> t he_PQAManager () ;

CORBA: : Pol i cyLi st pl(2);

pl .l ength(2);

pl[0] = rootPQA -> create_lifespan_policy(
Por t abl eSer ver: : PERSI STENT) ;

pl[1] = rootPQA -> create_id_assignment_policy(
Por t abl eServer:: USER_I D) ;

Port abl eServer:: POA var hell oPOA =
root PQA -> create_PQOA("hell 0", manager, pl);

Hel lo_i npl * hellolnpl = new Hell o_i mpl (hel | oPQA) ;

ORBacus

117

The Implementation Repository

25 Port abl eSer ver: : Servant Base_var servant = hell ol npl;
26 Port abl eServer:: Qbjectld_var oid =

27 Port abl eServer::string_to_Objectld("hello");

28 hel | oPOA -> activate_object_with_id(oid, servant);
29 Hel l o_var hello = hellolnmpl -> _this();

30

31 CORBA String_var s = orb -> object_to_string(hello);
32 of streamout ("Hello.ref");

33 out << s << endl;

34 out. cl ose();

35

36 manager -> activate();

37 orb -> run();

38

39 return O;

40 }

14-22 Create anew POA using PERSI STENT life span policy and the USER | D object identifica-
tion policy.

24-25 Create the Hello servant.
26-27 Usingthe string " hel | 0", create an object id.

28 Activate the servant with the new POA.

The remainder of the code is unchanged.

118 ORBacus

woens 1NE IMPIEMentation
Repogtory Console

The ORBAcus Implementation Repository (IMR) includes a graphical client for adminis-
tering the service called the ORBAcus IMR Console. The ORBAcus IMR Console pro-
vides complete control over the IMR, OADs and serversin a domain.

ORBacus 119

The Implementation Repository Console

8.1

8.11

8.12

8.1.3

8.2

821

Synopsis
Usage

com ooc. | MRConsol e. Mai n
[--1ook CLASS] [--windows] [--motif] [--mac] [-h,--help]

--1 ook CLASS Use the specified Look & Fed class.

--wW ndows Use the Windows Look & Feel (if available).

--notif Usethe Motif Look & Feel (if available).

--mac Use the Macintosh Look & Feel (if available).

: E]hel D Display the command-line options supported by the program.

CLASSPATH Requirements

The ORBAcus IMR Console requires the classesin OB. j ar, OBl MR. j ar, OBUt i | . j ar
and the Java Foundation Classes (JFC). Note, JFC is part of version 1.2 (or greater) of
JDK.

Implementation Repository Service L ookup

In order to locate an IMR Service, the application uses the initial IMR Service, as pro-
vided to the ORB with options such as - ORBser vi ce or - ORBconf i g. If the serviceis
not found, an error is displayed and the IMR Consol e exits.

The Menus

The menus provide accessto all of the features of the application. In addition, the most
common actions are also available in the toolbar, as well asin a popup menu that is dis-
played when pressing the right mouse button over an item in the binding table or context
tree.

TheFile Menu

The File menu contains the Exit menu item, which is used to exit the ORBAcus IMR Con-
sole.

120

ORBacus

TheMenus

8.2.2

8.2.3

The Edit Menu

The operationsin the Edit menu provide the means for manipulating OADs, servers and
POAs.

Create Create anew OAD, server, or POA.

M odify Modify the selected object.

Delete Delete the selected object.

Cut Move the selected server to the clipboard.

Paste Insert the server contained in the clipboard under the selected OAD.
Reset Reset the state of the selected server.

The Create menu item creates a child object under the selected object. OADs are created
under the “IMR Domain” root object, servers are created under OADs, and POAs are cre-
ated under servers.

TheModify menu item applies to all objects. However, servers are currently the only
objects that have attributes that can be modified.

To delete an object, thzelete menu item is used. This operation recursively deletes all
children under the selected item.

The Cut andPaste menu items only apply to servers and are used to move servers to differ-
ent hosts. Note that OAD for the desired host must be selected wheRassing

In very rare circumstances, it's possible for the IMR and OAD to become confused as to
the state of a server. In this case it might be necessary to manually reset the state of the
server using thReset menu item. It also necessary to use this item if the server continually
crashes on startup and has reached the maximum number of retries specified by its
max_spawns attribute. This prevents the OAD from continually starting the same broken
server.

TheView Menu

TheView menu contains thRefresh menu item. Th®efresh menu item is used to update
the console when the contents of the IMR have been changed from outside the console.
Note that clicking or expanding an item will refresh the item.

ORBacus 121

The Implementation Repository Console

8.3 The Toolbar and the Popup Menu

In addition to the operations offered by the menu bar, some frequently needed functions
are available by icons located in the toolbar. The toolbar contains all of the items of the

Edit menu and the Refresh item of the View menu. The toolbar is shown below in Figure
8.1.

Dfelx] (4@ [&] |o]

Figure 8.1: A closer look at the toolbar

When selecting an OAD, server or POA with the right mouse button, a popup menu with a
choice of operations will be displayed as shown in Figure 8.2. This popup menu provides

Create...
Modify...
Delete...
Cut

Reset...

Refresh

Figure 8.2: The popup menu

the same operations as the tool bar.

122 ORBacus

CHAPTER 9

ORBacus Names

9.1

911

A CORBA object is often represented by an object reference in the form of a “stringified”
IOR, a lengthy string that is difficult to read and cumbersome to use. It is much more nat-
ural to think of an object in terms of its name, which is a core feature of the CORBA Nam-
ing Service. In the Naming Service, objects are registered with a unique name, which can
later be used to resolve their associated object references.

ORBAcus Names is compliant with [10]. This chapter does not provide a complete
description of the service. It only provides an overview, suitable to get you started. For
more information, please refer to the specification.

Synopsis
Usage
ORBaAcus includes functionally equivalent implementations of the Naming Service in
C++ and Java.
C++
nanmeserv
[-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]

[-s,--start] [-d,--database FILE] [-t,--timeout M NS]
[-c, --callback-tineout SECS]

ORBacus 123

ORBacus Names

912

Java

com ooc. CosNam ng. Server
[-h,--help] [-v,--version] [-i,--ior] [-n,--no-updates]
[-s,--start] [-d,--database FILE] [-t,--tineout M NS]
[-c, --callback-timeout SECS]

Options
: t]hel D Display the command-line options supported by the server.
-V . .
-_version Display the version of the server.
: ' i or Prints the stringified IOR of the server to standard output.
-n Disables automatic updates, i.e., callbacks that notify interested
- - no- updat es clients of changes to the naming service.
-S Use this option only when starting a persistent server using a
--start new database.
Enables persistence for the server. All of the bindings created by
-d FILE the server will be saved to the specified file. If you are starting
--dat abase FILE the server for thefirst time using this database, you must also
use the - s command-line option.
-t MRS Specifies the timeout in minutes after which a persistent server

automatically compacts its database. The default timeout isfive

--timeout M NS .
minutes.

Specifies the timeout in seconds to be used for the ORBACUS
timeout policy (OB: : Ti meout Pol i cy). The default
timeout is five seconds. See Chapter 16 for more information.

-c¢ SECS
--cal |l back-tinmeout SECS

Windows NT Native Service

The C++ version of ORBAcuUs Names is also available as a native Windows NT service.

nt nameservi ce
[-h,--help] [-i,--install] [-s,--start-install]

124

ORBacus

Synopsis

[-u,--uninstall] [-d,--debug]
: f]h elp Display the command-line options supported by the server.
I i nstall Install the service. The service must be started manually.

-S

. Install the service. The service will be started automatically.
--start-install

-u
--uninstall

-d
- -debug

Uninstall the service.

Run the service in debug mode.

In order to use the Naming Service as a native Windows NT service, it isfirst necessary to

add the NaneSer vi ce initia reference to the HKEY_LOCAL_MACHI NE NT registry key

(see “Using the Windows NT Registry” on page 59 for more details). If the service is to be
persistent, the path to the database file must be stored in the following pﬂoperty:

HKEY_LOCAL_MACHI NE\ Sof t war e\ OOC\ Pr operti es\ ooc\ nani ng\ dat abase

Next the service should be installed with:

nt naneservi ce -i

This adds th©RBacus Nani ng Servi ce entry to theSer vi ces dialog in the Control

Panel. To start the naming service, selecORBacus Nani ng Servi ce entry, and press

St art . If the service is to be started automatically when the machine is booted, select the
ORBacus Nami ng Servi ce entry, then clickSt art up. Next selecBt art up Type -

Aut omat i ¢, and pressX. Alternatively, the service could have been installed using the

- s option, which configures the service for automatic start-up:

nt nameservi ce -s
If you want to remove the service, run:
nt nameservice -u

Note: If the executable for the Naming Service is moved, it must be uninstalled and
re-installed.

1. Please note that services do not have access to network drives, so the path to the database must be
on aloca hard drive.

ORBacus 125

ORBacus Names

9.13

914

Any trace information provided by the service will be placed in the Windows NT Event
Viewer with the title Nari ngSer vi ce. To enable tracing information (such as connection
tracing, etc.), set the following property to aREG Sz value of at least 1:

HKEY_LOCAL_MACHI NE\ Sof t war e\ OOC\ Properti es\ ooc\orb\trace_| evel

Configuration Properties

In addition to the standard configuration properties described in Chapter 4, ORBACUS
Names also supports the following properties:

ooc. nam ng. cal | back_t i meout =SECS Equivalent to the - ¢ command-line option.

ooc. nam ng. dat abase=FI LE
ooc. nam ng. di spl ay_root _i or
ooc. nam ng. no_updat es

ooc. nam ng. port =PORT

ooc. nam ng. ti meout =M NS

ooc. nam ng.trace_| evel =LEVEL

Persistence

Equivalent to the - d command-line option.
Equivaent tothe-i command-line option.
Equivalent to the - n command-line option.

Specifies the port number on which the service
should listen for new connections. Note that this
property isonly considered if the ooc. oa. port
property is not set.

Equivaent to the-t command-line option.

Defines the output level for diagnostic messages
printed by ORBACUS Names. The default level
is 0, which produces no output. A level of 1 or
higher produces messages related to database
operations, alevel of 2 or higher produces
messages related to adding and removing listeners,
and alevel of 3 or higher produces messages
related to binding operations.

ORBAcus Names can optionally be used in a persistent mode, in which all data managed
by the serviceis saved in afile. If you do not run the service in its persistent mode, all of
the datawill be lost when the service terminates.

It is also important to note that when using the service in its persistent mode, you should
always start the service on the same port (see Chapter 4 for more information).

126

ORBacus

Connecting to the Service

9.1.5 CLASSPATH Requirements

ORBAcus Names for Java requires the classesin OB. j ar and OBNami ng. j ar.

9.2 Connecting to the Service

The object key of the Naming Serviceis NameSer vi ce, which identifies an object of type
CosNani ng: : OBNani ngCont ext . The OBNani ngCont ext interfaceisderived from the
standard interface CosNami ng: : Nanmi ngCont ext Ext and provides additional ORBA-
cus-specific functionality. For a description of the OBNani ngCont ext interface, please
refer to the documented IDL file nami ng/ i dl / OBNami ng. i dl .

The object key can be used when composing URL-style object references. For example,
the following URL identifies the naming service running on host nshost at port 10000:

cor bal oc: : nshost: 10000/ NaneSer vi ce

Refer to Chapter 6 for more information on URLs and configuring initial services.

9.3 Using the Naming Service with the IMR

The Naming Service may be used with the Implementation Repository (IMR). However, if
used with the IMR, it is important to note that the cor bal oc URL-style object reference

described in the previous section cannot be used. If the IMR is used, then the object refer-
ence for the Naming Service must be created using one of the following methods (where

Nani ngSer ver refersto the server name configured with the IMR):

« start the Naming Service with the options:
--ior -ORBserver_nane Nani ngServer
causing the Naming Service to print its reference to standard output.

e use tharkref utility:
nkref Nam ngServer NaneServi ce Root Cont ext POA

When using the Naming Service with the IMR, the service must be started with the option
- ORBser ver _nanme Nami ngSer ver, whereNani ngSer ver refers to the server name
configured with the IMR. When the IMR is configured to start the Naming Service, this
option is automatically added to the service’s arguments. However, when the Naming Ser-
vice is started manually, the option must be present. For further information on configur-
ing a service with the IMR, refer to “Getting Started with the Implementation Repository”
on page 113.

ORBacus 127

ORBacus Names

9.4

94.1

Naming Service Concepts

Bindings

Object references registered with the Naming Service are maintained in a hierarchical
structure similar to afilesystem. A filein afilesystem is analogousto an object binding in
the Naming Service. The equivalent for afolder in afilesystem is anaming context in
Naming Service terms. The pieces of information stored in a Naming Service are called
bindings. A binding consists of an object’s name and its type, as defined in the
CosNani ng module:

/1 1DL
typedef string Istring;

struct NameConponent

{

Istring id;

I string Kind;
s

typedef sequence<NaneConponent> Nane;

enum Bi ndi ngType

{
nobj ect ,
ncont ext
b
struct Binding
{
Nane bi ndi ng_nane;
Bi ndi ngType bi ndi ng_t ype;
b

As you can see, each name consists of one or more components, like a file is fully speci-
fied by its path in a filesystem. Each name component consists of two strirayg]

ki nd, which could be likened to a file's name and its extension. Generally, the filesystem
analogy works very well when describing the Naming Service structures.

A new Naming Service entry, i.e., a binding, is created with the following operations:

/1 1DL
void bind(in Nane n, in Object obj)
rai ses(Not Found, Cannot Proceed, |nvalidName, AlreadyBound);

128

ORBacus

Naming Service Concepts

94.2

voi d bind_context (in Nane n, in Nam ngContext nc)
rai ses(Not Found, Cannot Proceed, |nvalidName, AlreadyBound);

Nami ngCont ext new_context () ;

Nami ngCont ext bi nd_new _cont ext (i n Nane n)
rai ses(Not Found, Cannot Proceed, |nvalidName, AlreadyBound);

bi nd registers anew object with the Naming Service, whereas anew context is registered
with bi nd_cont ext . For each operation, an object reference and a Nare are expected as
parameters. New naming context objects are created with new_cont ext or

bi nd_new _cont ext . bi nd_cont ext and bi nd_new_cont ext throw an

Al r eadyBound exception if the name is already in usein the target context.

To create a new binding without being concerned if the specified binding already exists,
use the following operations:

/1 1DL
void rebind(in Name n, in Cbject obj)
rai ses(Not Found, Cannot Proceed, I|nvalidNane);

voi d rebind_context(in Name n, in Nam ngContext nc)
rai ses(Not Found, Cannot Proceed, I|nvalidNane);

Use the unbi nd operation to delete a particular binding:

/1 1DL
voi d unbi nd(in Name n)
rai ses(Not Found, Cannot Proceed, I|nvalidNane);

Name Resolution

Besides registering objects, an equally important task of the Naming Service is name reso-
lution. A name is passed to ther esol ve or r esol ve_st r operation and an object refer-
enceisreturned if the name exists.

/1 1DL
Chj ect resolve(in Nane n)

rai ses(Not Found, Cannot Proceed, I|nvalidNane);
hj ect resolve_str(in StringName n)

rai ses(Not Found, Cannot Proceed, I|nvalidNane);

Theresol ve andr esol ve_st r operations are only useful when aparticular nameis
known in advance. Sometimes it is necessary to ask for alist of al bindings registered
with a particular naming context. Thel i st operation returnsalist of bindings.

ORBacus 129

ORBacus Names

9.5

951

NO N WNR

/1 1DL
t ypedef sequence<Bi ndi ng> Bi ndi ngLi st ;

void list(in unsigned | ong how_many,
out BindingList bl, out Bindinglterator bi);

If the number of bindingsis especialy large, the Bi ndi ngl t er at or interfaceisprovided

so that you don't have to query for all available bindings at once. Simply get a certain
number of bindings specified wittow_nmany, and get the rest, if any, using the

Bi ndi nglterator.

/1 1DL
i nterface Bindinglterator

{

bool ean next _one(out Bi nding b);

bool ean next _n(in unsigned | ong how_nany,
out Bindi ngList bl);

voi d destroy();
b

Make sure that you destroy the iterator object when it is no longer needed.

Programming Example

ORBAcus includes simple C++ and Java examples that demonstrate how to use the
CORBA Naming Service. These examples are located in the foddéng/ demo. We

will concentrate on the Java example, but the C++ example works similarly. The example
expects a Naming Service server to be already running and that the server’s initial refer-
ence can be resolved by the ORB. Because of its volume we have split the code into sev-
eral parts for the discussion below.

I nitialization

The first code fragment deals with initializing the ORB.

/1 Java
java. util.Properties props = System getProperties();
props. put (" or g. ong. CORBA. ORBCl ass", "com ooc. CORBA. ORB");
props. put (" or g. ong. CORBA. ORBSI ngl et onCl ass",

"com ooc. CORBA. ORBSI ngl et on") ;

org. ong. CORBA. ORB orb = nul|;

130

ORBacus

Programming Example

8 try
9 {
10 orb = ORB.init(args, props);
11
12 org. ong. CORBA. Obj ect poaCbhj = null;
13 try
14 {
15 poaCbj = orb.resolve_initial_references("Root PCA");
16 }
17 cat ch(org. ong. CORBA. ORBPackage. | nval i dNanme ex)
18 {
19 t hrow new Runti nmeException();
20 }
21 PQA root POA = POAHel per. narr ow(poathj) ;
22 POAManager nanager = root POA. t he_POAManager () ;
23
24 org. ong. CORBA. Obj ect obj = null;
25 try
26 {
27 obj = orb.resolve_initial _references("NanmeService");
28 }
29 cat ch(org. ong. CORBA. ORBPackage. | nval i dNanme ex)
30 {
31 t hrow new Runti nmeException();
32 }
33
34 if(obj == null)
35 {
36 t hrow new Runti neException();
37 }
38
39 Nami ngCont ext Ext nc = Nami ngCont ext Ext Hel per. narr ow(obj) ;
40 if(nc == null)
41 {
42 t hrow new Runti neException();
43 }

10- 22 Usually the application isinitialized in the mai n method. For more information on ORB
initialization see Chapter 4.

24- 32 In the next step we try to connect to the Naming Service by supplying “NameService” to
resolve_initial _references. If | nval i dName is thrown, there is no Naming Ser-
vice available because the ORB doesn’t know anything about this service.

ORBacus 131

ORBacus Names

34-43 If cdlingresol ve_initial _references was successful, the object referenceis
checked and narrowed in order to verify that it's a Naming Service instancendfrthew
operation returns a null reference, the object returned is not a Naming Service instance but
something else. This is considered to be an error because we explicitly asked for a Naming
Service instance.

9.5.2 Binding
In the next step some sample bindings are created and bound to the Naming Service.
1 // Java
2 Named_i npl i mpl A = new Naned_i npl ();
3 Named_i npl i mpl A1 = new Naned_i npl ();
4 Named_i npl i mpl A2 = new Naned_i npl ();
5 Nanmed_i npl i npl A3 = new Naned_i npl ();
6 Nanmed_i npl i npl R = new Naned_i npl ();
7 Nanmed_i npl i npl C = new Naned_i npl ();
8 Named a = inpl A. _this(orb);
9 Named al = inpl Al. _this(orb);
10 Named a2 = inpl A2. _this(orb);
11 Nanmed a3 = inpl A3. _this(orb);
12 Nanmed b = inpl B. _this(orb);
13 Nanmed ¢ = inpl C. _this(orb);
14
15 try
16 {
17 NanmeConponent[] nclNane = new NaneConponent|[1];
18 nclNane[0] = new NanmeConponent ();
19 nclNane[0].id = "ncl";
20 nclName[0] . kind = "";
21 Nami ngCont ext ncl = nc. bi nd_new_cont ext (nc1Nane);
22
23 NanmeConponent[] nc2Nane = new NaneConponent|[2];
24 nc2Nane[0] = new NanmeConponent () ;
25 nc2Nane[0].id = "ncl";
26 nc2Name[0] . kind = "";
27 nc2Name[1] = new NameConponent () ;
28 nc2Name[1] .id = "nc2";
29 nc2Nane[1] . kind = ""
30 Nami ngCont ext nc2 = nc. bi nd_new_cont ext (nc2Nane) ;
31
32 NanmeConmponent [] aName = new NameConponent[1];
33 aName[0] = new NaneConponent () ;
34 aNanme[0].id = "a";
132 ORBacus

Programming Example

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

aName[0] . kind = "";
nc. bi nd(aNane, a);

NaneConmponent[] alName = new NaneConponent[1];
alNane[0] = new NameConponent ();

alNanme[0].id = "al";

alName[0] . kind = "";

nc. bi nd(alNane, al);

NaneConmponent[] a2Nanme = new NaneConponent[1];
a2Nane[0] = new NameConponent () ;

a2Nanme[0].id = "a2";

a2Nanme[0] . kind = "";

nc. bi nd(a2Nane, a2);

NaneConmponent[] a3Nanme = new NaneConponent[1];
a3Nane[0] = new NameConponent ();

a3Nanme[0].id = "a3";

a3Nanme[0] . kind = "";

nc. bi nd(a3Nane, a3);

NaneConmponent[] bNanme = new NanmeConponent [2];
bNane[0] = new NaneConponent () ;

bNane[0].id = "ncl";

bNane[0] .kind = "";

bNane[1] = new NaneConponent () ;

bNarme[1].id = "b";

bNarme[1] . kind = ""

nc. bi nd(bNane, b);

NanmeConmponent [] cName = new NameConponent [3] ;
cName[0] = new NaneConponent () ;
cName[0].id = "ncl";

cName[0] . kind = ""

cNanme[1] = new NaneConponent () ;
cName[1].id = "nc2";

cName[1] . kind = "";

cName[2] = new NaneConponent () ;
cName[2].id = "c";
cName[2].kind = ""

nc. bi nd(cNanme, c);

ORBacus 133

ORBacus Names

2-13

Several sample objects are created that will later be bound to our Naming Service. These
objects implement an interface called Naned. In this example, the details of thisinterface
are not important. Naned might even be an interface without any operations defined in it.

17-75 Create and bind some new contexts and bind the sample objects to these contexts. Each
binding name consists of several NameConponent Sthat are similar to the path compo-
nents of afilelocated somewherein afilesystem. Objects are bound with the Naming Ser-
vice’sbi nd operation; for contexts, the corresponding operationd_cont ext is used.
In addition to the object’s IOR, both operations expect a unique binding name. If a name
already exists, aAl r eadyBound exception is thrown. There are also other exceptions
you might encounter at this stage, el.g§l, egal Narme if an empty string was provided as
part of aNameConponent .

9.5.3 Exceptions
This code fragment deals with exceptions that may be thrown by the Naming Service
operations.
1 // Java
2 cat ch(Not Found ex)
3 {
4 System.err.print("Got a ‘NotFound’ exception (");
5 switch(ex.why.value())
6 {
7 case NotFoundReason._missing_nod:
8 System.err.print("missing node");
9 break;
10
11 case NotFoundReason._not_context:
12 System.err.print("not context");
13 break;
14
15 case NotFoundReason._not_object:
16 System.err.print("not object");
17 break;
18 }
19
20 System.err.printin(")");
21 ex.printStackTrace();
22 throw new SystemException();
23 }
24 catch(CannotProceed ex)
25 {
26 System.err.printin("Got a ‘CannotProceed’ exception™);
134 ORBacus

Programming Example

27 ex. print StackTrace();

28 t hr ow new Syst enException();

29 }

30 catch(lnval i dNane ex)

31 {

32 System.err.printin("Got an ‘InvalidName’ exception™);
33 ex.printStackTrace();

34 throw new SystemException();

35 }

36 catch(AlreadyBound ex)

37 {

38 System.err.printin("Got an ‘AlreadyBound’ exception™);
39 ex.printStackTrace();

40 throw new SystemException();

41 }

2-41 Catch exceptions. Don't ever forget to do this. It can be useful tprdallt St ackTr ace
on the exception object in order to get detailed information about the program flow caus-
ing the exception.

954 TheEvent Loop

Next we start listening for requests.

1 /] Java
2 try
3 {
4 manager . activate();
5 }
6 cat ch(org. ong. Port abl eServer. POAMVanager Package. Adapt er | nacti ve
ex)
{

7
8 t hrow new Runti neException();
9
0

}

orb.run();

2-10 Everything is ready now, so we can listen for requests by caltingavat e on the POA
Manager and un on the ORB.

9.55 Releasing Resources

Some cleanup work should be done before exiting the program. Every binding must be
properly unbound and the ORB must be destroyed.

ORBacus 135

ORBacus Names

1 /] Java
2 nc. unbi nd(cNane) ;
3 nc. unbi nd(bNane) ;
4 nc. unbi nd(aNane) ;
5 nc. unbi nd(alNane) ;
6 nc. unbi nd(a2Nan®) ;
7 nc. unbi nd(a3Nan®) ;
8 nc. unbi nd(nc2Nane) ;
9 nc. unbi nd(nc1Nane) ;
10 }
11 catch(Runti meException ex)
12 {
13 status = 1;
14 }
15
16 if (orb !'= null)
17 {
18 try
19 {
20 orb. destroy();
21 }
22 catch(const Runti neException ex)
23 {
24 status = 1;
25 }
26 }
27

28 Systemexit(status);

2-9 All bindings are unbound.
16-26 destroy iscalled onthe ORB. This releases the resources used by the ORB.

The complete example can be found in the folder nani ng/ deno included with the ORBA-
cus distribution.

136 ORBacus

CHAPTER 10

ORBacus Names Console

10.1

1011

ORBAcus Names includes a graphical client for administering the service called the
ORBAcus Names Console. The application can manage any CORBA-compliant Naming
Service, but additional features are provided when used with ORBAcCUS Names.

Synopsis

Usage

com ooc. CosNam ngConsol e. Mai n
[-f,--file FILE] [-i,--i0or] [-n,--no-updates] [--1ook CLASS]
[--windows] [--motif] [--mac] [-h,--help] [-v, --version]

-f FILE . :

__file FILE Read the Naming Service IOR from FI LE.

: ' i or Print the stringified |OR of the Naming Service to standard output.

-n Disables automatic updates, i.e., callbacks that notify interested clients of

- - no- updat es changes to the naming service.

--1 ook CLASS Use the specified Look & Fedl class.
- - W ndows Use the Windows Look & Fedl (if available).

ORBacus 137

ORBacus Names Console

10.1.2

10.1.3

10.2

10.2.1

--notif Usethe Motif Look & Feel (if available).
--mac Use the Macintosh Look & Feel (if available).

Display the command-line options supported by the program.

CLASSPATH Requirements

The ORBAcus Names Console requires the classesin OB. j ar, OBNami ng. j ar,

OBUt i | . j ar and the Java Foundation Classes (JFC). Note, JFC is part of version 1.2 (or
greater) of JDK.

Naming Service L ookup

In order to locate a Naming Service, the application takes the following steps on start-up:

» First it checks whether a Naming Service reference was given with the -f option.

« If this is not the case, then the initial Naming Service is used, as provided to the ORB
with options like -ORBservice or -ORBconfig.

If both of the above steps fail, an error window is displayed and the Names console exits.

The Menus

The menus provide access to all of the features of the application. In addition, the most
common actions are also available in the toolbar, as wellag®jap menu that is displayed
when pressing the right mouse button over an item in the binding table or context tree.

TheFileMenu
This menu contains operations that create bindings and define the current root context.

New Window Opens an additional control window.

Switch Root Context Selects anew root naming context.

Load Context Recursively loads a naming context from afile.
Save Context As Recursively saves the selected naming context to afile.
Save |IOR to File Saves the stringified |OR of the currently selected item to afile.
Close Window Closes the current window.
Exit Quits ORBACUS NAMES.
138 ORBacus

TheMenus

After starting the application, the current root context is the naming context corresponding

to the IOR specified on the command line or theinitial Naming Service, as provided to the
ORB with options like -ORBservice or -ORBconfigby. You can make another naming
context the root context using Switch Root Context. The new root context’s IOR is speci-
fied in theEnter 10R dialog window, as shown in Figure 10.1. The IOR can be entered

| T - |

Torget i0R = Foom Fie i s |

[on || cancs

Figure 10.1: Entering an IOR

directly or can be read from a file. If an IOR is entered manually you usually either use the
URL-style notation as described in Chapter 6, or you copy a stringified object reference
into the dialog box using “Cut & Paste”. After selectBi@wse a file containing an IOR

can be selected.

Sometimes it is not desirable to completely replace the currently visible root context by
another root context. For example, you may need to copy bindings from one context to
another. If this is the case, simply open an additional window for the new root context
usingNew Window. You can then switch the root context in only one window without
affecting the information displayed in the other one. Using two windows, you can easily
transfer bindings from one context to another using “Cut & Paste”.

Complete naming contexts can be loaded from a special file with naming context informa-
tion. Such a file, which was previously created v@#tie Context As, is loaded with_oad
Context. The bindings saved to this file are added to the current naming context.

When saving a haming context, the console checks each context for accessibility. If a con-
text cannot be accessed, i.e., if its contents cannot be saved, a message is displayed in tt
error window. You also get an error message if the console detects a recursion. The bind-
ings contained in the naming context leading to the recursion is not saved.

UseSave |OR to File in order to create a file that contains the stringified IOR of the cur-
rently selected binding or context.

With Close Window the current window is closed. Closing the last window causes the
application to terminaté&xit can be used to terminate the application regardless of how
many windows are open.

ORBacus 139

ORBacus Names Console

10.2.2 The Edit Menu

The operations in this menu provide the means for creating and deleting objects and for
changing the Naming Service structure.

New Context Creates a new naming context.

New Binding Creates a new binding for an object.
Delete Deletes the selected items.

Link Creates a new binding for an existing naming context.
Unlink Unbinds the selected items.

Cut Moves the selected items to the clipboard.
Copy Copies the selected items to the clipboard.
Paste Inserts the clipboard contents.

Change D Editsthe ID field of the selected item.
ChangeKind Edits the Kind field of the selected item.
Change IOR Edits the IOR of the selected item.

Select all Selects all itemsin the object table.
Invert Selection Inverts the current selection.

New contexts and bindings are created with the operations New Context and New Binding,
respectively. If one of these functions is selected, a new context or object binding with a
unique name is added to the current context. For new object bindings an IOR can be spec-
ified.

Use Delete to remove the selected items from a naming context. Deleting Naming Service
entries removes all selected bindings from their parent context. The objects belonging to
these bindings are not affected. Destroying Naming Service information only affects the
actual Naming Service data, not the objects themselves.

Use Link to create a new binding for an existing naming context, where the naming con-
text is specified by an IOR. The operation Unlink unbinds the selected items. For objects,
Unlink is equivalent to Delete, but for contexts, Unlink differsin that the context is not
destroyed. Since a context is not destroyed using Unlink, it should only be used when
there are multiple bindings to a context in order to avoid orphaned contexts.

The consol e supports aclipboard that you can use to move bindings between different
contexts. Dataistransferred to the clipboard using the Cut or Copy commands. Cut moves
the currently selected itemsto the clipboard and deletes the original entries, whereas Copy

140

ORBacus

TheMenus

10.2.3

simply creates a copy in the clipboard but keeps the source entry unchanged. When new
dataistransferred to the clipboard, the old clipboard contents are replaced. Using Paste,
you can add the clipboard data into a naming context. The clipboard contents are not
changed by this operation, i.e., you can Paste the same items several times. Note that if
naming contexts are transferred to the clipboard, their contents are not evaluated before
they are pasted. It is during the Paste operation that the bindings of a context are dupli-
cated. This meansthat if new bindings are added to a context after a Cut or Copy opera-
tion, these bindings will be present after pasting this context.

An item registered with the Naming Service has three modifiable attributes: its D, its
Kind and its IOR. The ID and Kind attributes can be edited by simply double-clicking the
ID or Kind field in the table. You can also change binding attributes with the correspond-
ing menu operations Change I D, Change Kind and Change | OR. Entering anew IOR for an
existing name effectively replaces an object registered with the Naming Service by
another object with the same name.

Use Select all to select all of the entries in the binding table. The current table selection can
be inverted using Invert Selection.

TheView Menu

The operationsin this menu control the appearance of the console window as well asthe
presentation of the Naming Service data.

Toolbar Toggles the toolbar visibility.

Status Bar Toggles the statusbar visibility.

Error Window Toggles the error message window visibility.
SimpleList Displays minimum object information.
Details Displays additional object information.

Sort Sets sorting mode for object list.

Refresh Updates the compl ete window contents

A toolbar that gives access to frequently needed operations is normally present below the

menu. If you don't have a need for this toolbar or if you just want to save space on the
screen, you can switch it off with tiieolbar toggle button. The same applies to the status
bar where information about the currently selected item is displayed. The status bar dis-
plays an object’s repository ID, the host where this object is located and the port it is
bound to. If an item with a nil object reference is selected or if multiple items are selected,
the status bar is empty.

ORBacus 141

ORBacus Names Console

If an error occurs while editing bindings, the console automatically displays a new win-
dow with information about what went wrong. Usually this information consists of excep-
tion data. The visibility of thiswindow can be explicitly controlled with the Error Window
toggle button.

If the console is connected to ORBAcuUs Names, as described in Chapter 9, the console
can display timestamp information for each binding by making use of proprietary features
of ORBAcus Names. Thisinformation is shown in the binding table if the Details display
mode instead of the Simple List mode is active.

Usually the console sorts the items in the binding table in ascending al phabetical order,
with naming contexts being listed at the top. You can change this order with the options
available in the Sort menu. Bindings can be sorted by their ID or Kind fields. If the
extended attributes are displayed, items can a so be sorted by date and time. You can
reverse the sort order by selecting the current sorting mode a second timein the View
menu or by clicking on the table header cells. In this case, the display switches from
ascending to descending order and vice versa.

If the contents of a naming context have been changed by a third party and you want to
update the information displayed in the console window, selecting Refresh updates the dis-
play. If the console is connected to ORBAcus Names, arefresh is done automatically each
time a change occurs.

10.2.4 The ToolsMenu

The operations available in this menu are meant astools for your everyday work.

Ping Checks the accessibility of the selected items.
Clean up Unbinds inaccessible objects from the current context.

Sometimesit is useful to check if an object bound to aname still exists or if the object ref-
erence associated with it has become invalid, for example, because of a server crash. To
perform such a check, select all the objects you want to check and start the Ping operation.
The console triesto contact each of the selected objects and displays the timeit took to get
a connection to them in a separate window. Thisis very similar to the Windows or Unix
pi ng command for an IP address or a host name. If thereis atime-out while trying to con-
tact an object, thisinformation is displayed in the Ping Window and the console continues
with the next object.

If you want objects that cannot be contacted, for example because of a server breakdown,
to be unbound from the current context, Clean up does the job. Clean up non-recursively
tries to connect to the selected objects. If there is a communication failure or the

142

ORBacus

The Toolbar

10.3

gl Flacws Mamos Fmg Whnidow

Firgaing "Sopied [luke.acfbeare.Boukec.de)' ... Ll == L

Firggarny “Jcpkesl [damzrophs.sac.koukerc.dei’ ... L0 =

Firejirs] “Jophed |loks.scfrwsrs. boulsc.dei’ ... 0 e

Firsgarey “Aophesd dewssaphes . so0, BOUNEL. 08 ! [T

FLiJarey A0pES] LS. SEICWaLe, BEOUNEL.d8] " L]

Firmiry “Jophked [dema=aphe_ese. Foubker.de]' ... I0 &=

Firggzrey “Sopkes |loks.szftesre Eoubse_ds)' .. IO =

Firsgire] ‘Jophed |[desssophs.sic.toulsc.dsi’ ... 0 =

Firegured Hopied | luks. acfrmare, POUREL .08 (L™]

FLirjhie] HopES] SRSl S5E, BEUNELLAET " R

Tirgiy “Jopkesd [luke.acftware.boukerc.dei' ... L0 =

TFirggarng “Jcphes]l [damzraphs.sac.koukec.de)’ ... D0 =

Firgars] Jophed |loks.scfcwscs,bouiec.dei’ ... 10 =

Firsgarey ‘doplhesd (desssophs.sap, poumsL.dei Tl T

Filipfiiy A0pES] jLuks.SPfrwaie, BOUNEL-d8]" 10 S

Firgemg “Jopiked [desazophs._esc.Fouker.dei' .- I0 &= -55

Firgursy “Sopkad | loks.ssftesce.Eouksc.ds)’ ... § a3

Firggire] “Jophsd |desamophs.sec, boulsc.ds)’ ... D ==

Firequred “dopEed | Luks, Acfrmape, POUREL.d8 ¢ [B
-

Figure 10.2: The Ping Window

_non_exi st ent () operation returns true for a particular object, the corresponding bind-
ing is automatically removed. Clean up should be used with care.

The Toolbar

In addition to the operations offered by the menu bar, some frequently needed functions
are available by icons located in the toolbar, as shown in Figure 10.3.

i I 9 = A

Figure 10.3: A closer look at the toolbar

The icon on the toolbar’s left is thupwards icon which changes the naming context to the
parent of the context currently being displayed. The next five icons correspondNesthe
Context, New Binding, Cut, Copy, Paste andDelete items as described in “The Edit Menu”
on page 140.

ORBacus 143

ORBacus Names Console

10.4

The SimpleList and Detailsitems from the View menu are the next two iconsin the toolbar.
They determine whether the binding table displays only the ID and Kind fields, or, if
ORBAcus Namesis available, also the date and time the binding was last modified.

The last item in the menubar corresponds to the Refresh operation from the View menu.

The Popup Menu

When selecting an item in the binding table or a tree node with the right mouse button, a
popup menu with a choice of operationsis displayed as shown in Figure 10.4. Thisis

cig

Change i
C g Hisd

Srirast KHLLO e

Figure 10.4: A popup menu offersimportant operations

another convenient alternative for executing frequently used operations.

144

ORBacus

CHAPTER 11

ORBacus Properties

1n.1

1n11

The CORBA Property Service! permits you to annotate an object with extra attributes
(called properties) that were not defined by the object’s IDL interface. Properties can rep-
resent any value because they make use of the CORBAata type.

ORBAcus Properties is compliant with [10]. This chapter does not provide a complete
description of the service. It only provides an overview, suitable to get you started. For
more information, please refer to the specification.

Synopsis

Usage

ORBAcus includes functionally equivalent implementations of the Property Service in
C++ and Java.

C++

propserv
[-h,--help] [-v,--version] [-i,--ior]

1. Notethat the Property Service has nothing to do with the properties used for configuration pur-
poses. Configuration properties are described in “Properties” on page 51.

ORBacus 145

ORBacus Properties

1ni2

1113

1.2

Java
com ooc. CosPropertyService. Server
[-h,--help] [-v,--version] [-i,--ior]
Options
: f]h elp Display the command-line options supported by the server.
-V . .
--versi on Display the version of the server.

-
--ior

Prints the stringified IOR of the server to standard output.
Configuration Properties

In addition to the standard configuration properties described in Chapter 4, ORBACUS
Properties al so supports the following properties:

ooc. property. port =PORT Specifies the port number on which the service
should listen for new connections. Note that this
property isonly considered if the ooc. oa. port
property is not set.

CLASSPATH Requirements

ORBAcuUs Properties for Java requires the classesin OB. j ar and OBPr operty.j ar.

Connecting to the Service

The object key of the Property ServiceisPr oper t ySer vi ce, which identifies an object
of type CosPr oper t ySer vi ce: : Propert ySet Def Fact ory.

The object key can be used when composing URL-style object references. For example,
the following URL identifies the Property Service running on host pr ophost at port
10000:

cor bal oc: : prophost : 10000/ Pr opertyServi ce

Refer to Chapter 6 for more information on URLs and configuring initial services.

146

ORBacus

Using the Property Servicewith the IMR

11.3 Using the Property Service with the IMR

The Property Service may be used with the Implementation Repository (IMR). However,

if used with the IMR, it isimportant to note that the corbaloc URL-style object reference

described in the previous section cannot be used. If the IMR is used, then the object refer-
ence for the Property Service must be created using one of the following methods (where
Propert ySer ver refersto the server name configured with the IMR):

- start the Property Service with the options:
--ior -ORBserver_name PropertyServer
causing the Property Service to print its reference to standard output.

e use tharkref utility:
nkref PropertyServer PropertyService PropertyServi cePOA

When using the Property Service with the IMR, the service must be started with the option
- ORBserver _nanme PropertyServer, wherePropertyServer refers to the server

name configured with the IMR. When the IMR is configured to start the Property Service,
this option is automatically added to the service’s arguments. However, when the Property
Service is started manually, the option must be present. For further information on config-
uring a service with the IMR, refer to “Getting Started with the Implementation Reposi-
tory” on page 113.

11.4 Property Service Concepts

11.4.1 Creating Properties

A property handled by the CORBA Property Service consists of two components: the
property’s name and its value. The name is a CORBA ng and the associated value is
represented by a CORB#ay:

/1 1D
typedef string PropertyNane;

struct Property

{
PropertyNanme property_nane;
any property_val ue;

b

New properties are created using a factory object implementirRy tiper t ySet inter-
face. A new property is created using tleéi ne_pr operty operation:

/1 1DL

ORBacus 147

ORBacus Properties

11.4.2

voi d define_property(in PropertyNane, in any property_val ue)
rai ses(Inval i dPropertyName, ConflictingProperty,
Unsupport edTypeCode, UnsupportedProperty,
ReadOnl yProperty);

Asaproperty consists of aname—value pair, both the name and the value are the parame-
ters to this operation.

Querying for Properties

As soon as a property is defined, En@per t ySet can be queried for the property’s value
with theget _pr operty_val ue operation:

/1 1DL
any get _property_value(in PropertyName property_nane)
rai ses(PropertyNot Found, Invali dPropertyNane);

For a particular property name, this call either returngstlyeassociated with that name
or throws an exception if a property with the name does not exist.

You can not only query for a particular property value, but also for a list of all the proper-
ties defined within @r opert ySet . Theget _al | _properti es operation serves this
purpose:

/1 1DL
voi d get_all _properties(in unsigned | ong how _nany,
out Properties nproperties, out Propertieslterator rest);

This operation works similar to theé st call offered by the Naming Service. In both
cases the maximum number of items to be returned at once is specified. An iterator imple-
menting thePr operti esl t er at or interface gives access to the remaining items, if any.

/1 1DL
interface Propertieslterator

{
voi d reset();
bool ean next _one(out Property aproperty);

bool ean next _n(in unsigned | ong how_nany,
out Properties nproperties);

voi d destroy();

148

ORBacus

Property Service Concepts

1143

If you are only interested in alist of property names you can get thislist by calling
get _all _property_nanes:

/1 1DL

voi d get_all _property_names(in unsigned | ong how_nany,
out PropertyNanmes property_nanes,
out PropertyNaneslterator rest);

Aswithget _al | _properti es alist of namesaswell asan iterator isreturned. Thisiter-
ator implements the Pr oper t yNames| t er at or interface:

/1 1DL
i nterface PropertyNaneslterator

{

void reset();
bool ean next _one(out PropertyNanme property_nane);

bool ean next _n(in unsigned | ong how_nany,
out PropertyNanes property_nanes);

voi d destroy();
H

The iterators should always be destroyed when they are no longer needed.

Sometimesit is useful to know of how many propertiesa Pr oper t ySet consists of. This
information is provided by get _nunber _of _properti es:

/1 1DL

unsi gned | ong get_nunber_of _properties();

Note that you have to be careful if you intend to use the return value of

get _nunber _of _properti es astheinput value for the how_nmany parameter of

get _al | _properti es inorder to get acomplete property list. You always have to check
the Propertieslterator for properties that were not returned as part of the

Properti es sequencereturned by get _al | _properti es, otherwise you might missa
property that was defined by another process between your callsto

get _nunber _of propertiesandget _all _properties.

Deleting Properties

If a property has become obsolete it can be deleted from the Pr oper t ySet with
del ete_property:

ORBacus 149

ORBacus Properties

11.5

N ORNWNR

/1 1DL
voi d del ete_property(in PropertyNane property_nane)
rai ses(PropertyNot Found, InvalidProperty, FixedProperty);

As you might have guessed by this operation’s signature, there are properties that cannot
be deleted at all. This kind of property is calle’l aedPr oper t y. The Property Service
defines several other special property types, such as read-only properties. Please refer to
the OMG Property Service [9] specification for details.

Programming Example

The Property Service test suite, which is part of the &RB distribution, provides a

good example of how to create properties and query for their values. The code below is
based on excerpts of this test suite, which is located in the dirgetopgrt y/ t est . We

will concentrate on an example in Java here. As with the previous examples, the Java code
is very similar to what is necessary in C++. The example demonstrates how to create prop-
erties and how to get a list of all the properties defined witlPinoaer t ySet .

/1l Java

org. ong. CORBA. Obj ect obj = null;

try
{
obj = orb.resolve_initial _references("PropertyService");
}
cat ch(org. ong. CORBA. ORBPackage. | nval i dNanme ex)
{
/1 An error occurred, Property Service is not avail able
}
if(obj == null)
/1l The object reference is invalid
}

PropertySet Def Factory factory =
Pr opert ySet Def Fact or yHel per. narrow(obj);
if(factory == null)

/1 This object does not inplement the Property Service
}

PropertySet Def set = factory.create_propertysetdef();

150

ORBacus

Programming Example

27
28
29

Any anylLong = orb.create_any();
Any AnyString = orb.create_any();

30 Any anyShort = orb.create_any();
31 anylLong.insert_|ong(12345L);

32 anysString.insert_string(“Foo”);

33 anyShort.insert_short((short)0);

34

35 try

36 {

37 set.define_property(“LongProperty”, anyLong);
38 set.define_property(“StringProperty”, anyString);
39 set.define_property(“ShortProperty”, anyShort);
40 }

41 catch(ReadOnlyProperty ex)

42 {

43 /I An error occurred

44 '}

45 catch(ConflictingProperty ex)

46 {

47 /I An error occurred

48 }

49 catch(UnsupportedProperty ex)

50 {

51 I/l An error occurred

52 }

53 catch(UnsupportedTypeCode ex)

54 {

55 /I An error occurred

56 }

57 catch(InvalidPropertyName ex)

58 {

59 /I An error occurred

60 }

61

62
63
64
65
66

PropertiesHolder ph = new PropertiesHolder();

PropertiesiteratorHolder ih = new PropertiesliteratorHolder();

set.get_all_properties(0, ph, ih);

PropertyHolder h = new PropertyHolder();

67 while(ih.value.next_one(h))

68 {

69 I/l The next property is now stored in h.value
70 }

ORBacus

ORBacus Properties

71
72

26

28-33

35-60

62-70

72

i h.val ue. destroy();

Get a Property Service reference and check for errors.

The Pr opert ySet Def Fact ory object is used to create a Pr oper t ySet Def instance.
Note that Pr oper t ySet Def isasubclass of PropertySet .

Each property consists of a name and avalue in the form of a CORBA Any.

Three properties are defined. The first has the name “LongProperty” and dtores a
value. The second one is called “StringProperty” and stosesiang. The remaining
property representsshor t value. If for some reason a property cannot be created, an
exception is thrown.

Now we try to get a list of all the properties that were previously defined. With

get _al | _properties thePropertySet Def returns its properties. As we have set the
how_many parameter to 0, we have to useRheperti esl t erat or for each item. An
application would normally provide a positive integertfow_many.

The iterator has fulfilled its duty and can now be destroyed.

152

ORBacus

CHAPTER 12

ORBacus Events

12.1

1211

Some applications need to exchange information without explicitly knowing about each

other. Often a server isn't even aware of the nature and number of clients that are inter-
ested in the data the server has to offer. A special mechanism is required that provides
decoupled data transfer between servers and clients. This issue is addressed by the
CORBA Event Service.

ORBAcus Events is compliant with [9]. This chapter does not provide a complete descrip-
tion of the service. It only provides an overview, suitable to get you started. For more
information, please refer to the specification.

Synopsis
Usage

ORBAcus includes functionally equivalent implementations of the Event Service in C++
and Java.

C++

eventserv
[-h,--help] [-v,--version] [-i,--ior] [-t,--typed-service]
[-u, --untyped-service]

ORBacus 153

ORBacus Events

Java

com ooc. CosEvent . Server
[-h,--help] [-v,--version] [-i,--ior] [-t,--typed-service]
[-u,--untyped-service]

Options

: t]hel D Display the command-line options supported by the server.
-V . .

-_versi on Display the version of the server.

: ' i or Print the stringified IOR of the server to standard output.

-t

--typed-service Run atyped event service.

-u

. Run an untyped event service. Thisisthe default behavior.
--untyped-service

12.1.2 Windows NT Native Service

The C++ version of ORBAcUS Eventsis also available as a native Windows NT service.

nt event service
[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d, --debug]

-h

—_help Display the command-line options supported by the server.

—install Ingtall the service. The service must be started manually.

-S

. Install and start the service.
--start-install

-u
--uninstall

-d
- -debug

Uninstall the service.

Run the service in debug mode.

154

ORBacus

Synopsis

In order to use the Event Service as a native Windows NT service, it isfirst necessary to
add the Event Ser vi ce initial reference to the HKEY_LOCAL_MACHI NE NT registry key
(see “Using the Windows NT Registry” on page 59 for more details).

Next the service should be installed with:

nt event service -i

This adds th@RBacus Event Servi ce entry to theSer vi ces dialog in the Control

Panel. To start the event service, selecOREacus Event Servi ce entry, and press

St art . If the service is to be started automatically when the machine is booted, select the
ORBacus Event Servi ce entry, then clickSt art up. Next selectt art up Type -

Aut onat i ¢, and pressX. Alternatively, the service could have been installed using the

- s option, which configures the service for automatic start-up:

ntevent service -s

If you want to remove the service, run:

nt event service -u

Note: If the executable for the Event Service is moved, it must be uninstalled and re-
installed.

Any trace information provided by the service is be placed in the Windows NT Event
Viewer with the titleEvent Ser vi ce. To enable tracing information (such as connection
tracing, etc.) set the following property t®&G SZ value of at least 1:

HKEY_LOCAL_MACHI NE\ Sof t war e\ OOC\ Properti es\ooc\orb\trace_| evel

12.1.3 Configuration Properties

In addition to the standard configuration properties described in Chapter ACORB
Events also supports the following properties:

ooc. event. max_events The maximum number of eventsin each event
queue. If thislimit is reached and another event is
received, the oldest event is discarded.The default
valueis 10.

ooc. event. max_retries The maximum number of times to retry before
giving up and disconnecting the proxy. The default
valueis 10.

ORBacus 155

ORBacus Events

1214

1215

ooc. event . port =port

ooc. event. pul | _i nterval =nsec
0ocC. event.retry_ti meout=nsec
ooc.event.retry_multiplier=n
ooc. event.trace. event s=LEVEL
ooc. event.trace. |l ifecycl esLEVEL
ooc. event . typed_service
Diagnostics

Specifies the port number on which the service
should listen for new connections. Note that this
property is only considered if theooc. oa. port
property is not set.

This specifies the number of milliseconds between
successive callsto pull on Pul | Suppl i er.
Default valueisO.

Specifiestheinitial amount of timein milliseconds
that the service waits between successive
retries. The default valueis 1000.

A doubl e that defines the factor by which the
retry_ti meout property should be multiplied
for each successive retry.

Defines the output level for event diagnostic mes-
sages printed by ORBACUS Events. The default
level is 0, which produces no output. A level of 1
or higher produces event processing information
and alevel of 2 or higher produces event creation
and destruction information.

Definesthe output level for lifecycle diagnostic
messages printed by ORBACUS Events. The
default level is 0, which produces no output. A
level of 1 or higher produces lifecycle information
(e.g. creation and destruction of Suppliers and
Consumers).

Equivaent to the-t command-line option.

ORBAcuUs Events generates diagnostic messagesif theooc. or b. t race_| evel property
issetto 2.

CLASSPATH Requirements

ORBAcus Events for Javarequiresthe classesin OB. j ar and OBEvent . j ar.

156

ORBacus

Connecting to the Service

12.2 Connecting to the Service

The object key of the Event Service depends on whether it is running as a “typed” or
“untyped” service. The object keys and corresponding interface types are shown in Table

12.1.

Object Key I nterface Type
g’e\:}t:e Def aul t Event Channel gzaa;%:rnel Admi n: :
gp\ﬁdceEvent Def aul t TypedEvent Channel %;gg\?gi’g}ngﬂzrnel Adri n: ;

Table 12.1: Primary Object Keysand | nterface Types

The object key can be used when composing URL-style object references. For example,
the following URL identifies the untyped event service running ondwdsist at port
10000:

cor bal oc: : evhost : 10000/ Def aul t Event Channel
Refer to Chapter 6 for more information on URLs and configuring initial services.

ORBAcus Events also provides proprietary “factory” interfaces which allow construction
and administration of multiple event channels in a single service. The object keys and cor-
responding interface types of the factories are shown in Table 12.2.

Object Key Interface Type
Event
Channe Def aul t Event Channel Fact ory OBEvent Channel Factory::

Event Channel Factory

Factory
Typed Event -
Channel Def aul t TypedEvent Channel Fact ory OBTypedEvent Channel Factory: :
Factory TypedEvent Channel Factory

Table 12.2: Factory Object Keysand I nterface Types

For a description of the factory interfaces, please refer to the documented IDL files
event /i dl / OBEvent Channel Factory.idl and
event /i dl / OBTypedEvent Channel Factory.idl .

ORBacus 157

ORBacus Events

12.3 Using the Event Service with the IMR

The Event Service may be used with the Implementation Repository (IMR). However, if
used with the IMR, it is important to note that the cor bal oc URL-style object reference
described in the previous section cannot be used. If the IMR is used, then the object refer-
ence for the “untyped” Event Service must be created using one of the following methods
(whereEvent Ser ver refers to the server name configured with the IMR):
» start the Event Service with the options:

- ORBserver _nane Event Server --ior

causing the Event Service to print its reference to standard output.

e use tharkref utility:
nkref Event Server Def aul t Event Channel Event Servi cePOA

For the “typed” Event Service, the object reference must be created using one of the fol-
lowing methods:

« start the Event Service with the options:
- ORBserver _nane Event Server --typed-service --ior
causing the Event Service to print its reference to standard output.

e use tharkref utility:
nkref Event Server Def aul t TypedEvent Channel Event Servi cePOA

Object references for the ORBUS proprietary “factory” objects can be created using the
following commands:

nmkref Event Server Def aul t Event Channel Factory Event Servi cePQA
nkref Event Server Def aul t TypedEvent Channel Factory Event Servi cePOA

When using the Event Service with the IMR, the service must be started with the option

- ORBserver _nane Event Server, whereEvent Ser ver refers to the server name con-
figured with the IMR. When the IMR is configured to start the Event Service, this option is
automatically added to the service’s arguments. However, when the Event Service is
started manually, the option must be present. For further information on configuring a ser-
vice with the IMR, refer to “Getting Started with the Implementation Repository” on

page 113.

158 ORBacus

Event Service Concepts

12.4

1241

1242

Event Service Concepts

The Event Chann€

The Event Service distributes datain the form of events. The term event in this context
refersto a piece of information that is contributed by an event source. An event channel
instance accepts this information and distributes it to alist of objects that previously have
connected to the channel and are listening for events.

The Event Service specification defines two distinct kinds of event channels: untyped and
typed. Whereas an untyped event channel forwards every event to each of the registered
clientsin theform of aCORBA Any, atyped event channel works more selectively by sup-
porting strongly-typed events which allow for datafiltering. We will only discuss the
untyped event channel here. For information on typed event channels, and more details on
the Event Service in general, please refer to the official Event Service specification [9].

Event Suppliersand Consumers

Applications participating in generating and accepting events are called suppliers and con-
sumers, respectively. Suppliers and consumers each comein two different versions,
namely, push suppliers and pull suppliers, and push consumers and pull consumers.

What'’s the difference between pushing events and pulling events? Let’s have a look at the
consumer side first. Some consumers must be immediately informed when new events
become available on an event channel. Such consumers usually act as push consumers.
They implement th€ushConsuner interface which ensures that the event channel

actively forwards events to them using thesh() operation:.

/1 1DL
i nterface PushConsuner

{
voi d push(in any data)
rai ses(Di sconnect ed) ;

voi d di sconnect _push_consurmer () ;

b

Push consumers are passive, that is, are servers. Conversely, pull consumers are active,
that is, are clients. Pull consumers poll an event channel for new events. As events may
arrive at a greater rate than they are polled for by a pull consumer or accepted and pro-
cessed by a push consumer, some events might get lost. A buffering policy implemented
by the event channel determines whether events are buffered and what happens in case c
an event queue overflow.

ORBacus 159

ORBacus Events

1243

1244

Like consumers, suppliers can also use push or pull behavior. Push suppliers are the more
common type, in which the supplier directly forwards data to the event channel and thus
plays the client role in the link to the channel. Pull suppliers, on the other hand, are polled
by the event channel and supply an event in response, if anew eventisavailable. Pollingis
doneby thetry_pul | () operation if it isto be non-blocking or by the blocking pul 1 ()
cal:

/1 1DL
interface Pull Supplier

any pull ()
rai ses(Di sconnect ed) ;

any try_pull (out bool ean has_event)
rai ses(Di sconnect ed) ;

voi d di sconnect _pul | _supplier();

b

Event Channel Policies

The untyped event channel implementation included in the ORBAcus distribution features
asimple event queue policy. Events are buffered in the form of aqueue, i.e., acertain num-
ber of events are stored and, in case of a buffer overflow, the oldest events are discarded.

Event Channel Factories

The standard CORBA Event Service provides no support for managing the lifecycle of
event channels; as aresult, applications requiring multiple channels are often forced to run
a separate instance of the Event Service for each channel. To remedy this situation,
ORBAcus Events provides optional, proprietary interfaces for event channel administra-
tion.

The OBEvent Channel Fact ory: : Event Channel Fact or y interface describes the fac-
tory for untyped event channels:

/1 1DL
nodul e OBEvent Channel Factory
{

typedef string Channelld;
typedef sequence<Channel | d> Channel | dSeq;

exception Channel Al readyExi sts {};
exception Channel Not Avai | abl e {};

160

ORBacus

Event Service Concepts

i nterface Event Channel Factory

{

CosEvent Channel Adni n: : Event Channel
create_channel (in Channelld id)
rai ses(Channel Al r eadyExi st s);

CosEvent Channel Admi n: : Event Channel
get _channel _by_id(in Channel Id id)
rai ses(Channel Not Avai | abl e) ;

Channel | dSeq get _channel s();

voi d shutdown();
b
b

The OBTypedEvent Channel Fact ory: : TypedEvent Channel Fact ory interface
describes the factory for typed event channels:

/1 1DL

nodul e OBTypedEvent Channel Factory
{

i nterface TypedEvent Channel Factory
{

CosTypedEvent Channel Admi n: : TypedEvent Channel
create_channel (i n OBEvent Channel Factory:: Channelld id)
r ai ses(OBEvent Channel Fact ory: : Channel Al r eadyExi st s);

CosTypedEvent Channel Admi n: : TypedEvent Channel
get _channel _by_id(i n OBEvent Channel Factory:: Channel I d id)
r ai ses(OBEvent Channel Fact ory: : Channel Not Avai | abl e) ;

OBEvent Channel Fact ory: : Channel | dSeq get _channel s();

voi d shutdown();
i
b

At start-up, the untyped Event Service creates a single channel having the identifier

Def aul t Event Channel , and the typed Event Service creates a single channel having the
identifier Def aul t TypedEvent Channel . A channel’s identifier also serves as its object
key; therefore, a channel can be located usiongr &al oc: URL (see “corbaloc: URLS”
on page 99). For example, a channel with the identiB&enet r yDat a can be located

on the hoshyhost at port2098 using the following URL:

ORBacus 161

ORBacus Events

12.5

AN WN R

cor bal oc: : nyhost : 2098/ Tel enmet r yDat a

To obtain the object reference of achannel factory, useacor bal oc: URL with the object
key as shown in Table 12.1 on page 157. For example, assuming the untyped Event Ser-
viceisrunning on host nyhost at port 2098, hereis how a C++ application can obtain the
object reference of the channel factory and create a channel with the identifier

Tel enet ryDat a:

Il C++
CORBA: : Ohj ect _var obj = orb -> string_to_object(
"corbal oc: : myhost : 2098/ Def aul t Event Channel Factory");
OBEvent Channel Fact ory: : Event Channel Factory_var factory =
OBEvent Channel Fact ory: : Event Channel Factory:: _narrow(obj);
CosEvent Channel Adni n: : Event Channel _var channel =
factory -> create_channel ("Tel enetrybData");

Here isthe same examplein Java:

/1 Java

org. ong. CORBA. Ohj ect obj = orb.string_to_object(
"corbal oc: : myhost : 2098/ Def aul t Event Channel Factory");

com ooc. OBEvent Channel Fact ory. Event Channel Factory factory =
com ooc. OBEvent Channel Fact ory. Event Channel Fact or yHel per.
narr owm obj) ;

or g. ong. CosEvent Channel Adm n. Event Channel channel =
factory. create_channel ("Tel emetryData");

Programming Example

In the Event Service example that comes with ORBAcus, two supplier and two consumer
clients demonstrate how to use an untyped event channel to propagate information. The
pieces of information transferred by this example are strings containing the current date
and time. After starting the Event Service server, you can start these clients in any order.
The demo applications obtain the initial Event Service reference as already demonstrated,
i.e, by calingresol ve_initial _references. When started, each supplier provides
information about the current date and time and each client displays the event datain its
console window.

This is the push supplier’s main loop:

/1 Java
whi | e(consuner_ !'= null)
{

java.util.Date date = new java.util.Date();
String s = "PushSupplier says: " + date.toString();

162

ORBacus

Programming Example

10-17

19-25

© N AN WNR

Any any = orb_.create_any();
any.insert_string(s);
try
{
consuner _. push(any);
}
cat ch(Di sconnected ex)
{
/'l Supplier was di sconnected fromevent channe
}
try
{
Thr ead. sl eep(1000);
}
catch(InterruptedExcepti on ex)
{
}
}

The current date and timeis inserted into the Any.

The event data, in this example date and time, are pushed to the event channel. From the
push supplier’s view the event channel is just a consumer implementing the
PushConsuner interface.

After sleeping for one second, the steps above are repeated.

The example’s pull supplier works similarly to the push supplier, except that the event
channel explicitly polls the supplier for new events. This is done by eitihér) or

try_pul | (). The pull supplier doesn’t see anything from the event channel but an object
implementing theul | Consuner interface. The following example shows the basic lay-
out of a pull supplier:

/1 Java
public Any pull ()
{

java.util.Date date = new java.util.Date();
String s = "Pull Supplier says: " + date.toString();

Any any = orb.create_any();
any.insert_string(s);

ORBacus 163

ORBacus Events

10
11
12
13
14
15
16
17
18
19

13-19

O N RN WNR

return any;
}
public Any
try_pul | (Bool eanHol der has_event)
{
has_event.val ue = true;
return pull();
}
Date and time are inserted into the Any.

In this example new event data can be provided at any time, sotry_pul | () aways sets
has_event totrue inorder to signal that an event is available. It then returns the actual
event data.

After examining the most important aspects of the event suppliers’ code, we are nhow
going to analyze the consumers’ code. The push consumer witlsli¢) operation is
shown first:

/1 Java
public void push(Any any)
{
try
{
String s = any.extract_string();
Systemout. println(s);

}
cat ch(MARSHAL ex)
{
/1 l1gnore unknown event data
}

}

The push consumerfsush() operation is called with the event wrapped in a CORBA
Any. In this code fragment it is assumed thatahg contains a string with date and time
information. In case thany contains another data typ@®®RSHAL exception is

thrown.This exception can be ignored here because other events aren't of interest. After
extracting the string it is displayed in the console window.

In contrast to the push consumer, the pull consumer has to actively query the event channel
for new events. This is how the pull consumer loop looks:

164

ORBacus

Programming Example

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

4

6-13

15-23

/'l Java
whi | e(supplier_ !'= null)
{
Any any = null;
try
{
any = supplier_.pull();
}
cat ch(Di sconnected ex)
{
/'l Supplier was diconnected fromevent channel
}
try
{
String s = any.extract_string();
Systemout. println(s);
}
cat ch(MARSHAL ex)
{
/1 l1gnore unknown event data
}

}
A CORBA Any is prepared for later use.

Using pul | (), the consumer poalls the event channel for new events. The event channel
actsasapull supplier inthiscase. Thepul | () operation blocks until anew event isavail-
able.

The consumer expects a string wrapped in a CORBA Any. The string value is extracted
and displayed. If an exception is raised the Any contained some other datatype which is
simply ignored.

In all of these examples the event channel acts either as a consumer (if the clients are sup-
pliers) or asupplier (if the clients are consumers) of events. Actually each client is not
directly connected to the event channel but to a proxy that receives or sends events on
behalf of the channel. For more information on the Event Service and for the complete
definitions of the IDL interfaces, please refer to the official Event Service specification.

ORBacus 165

ORBacus Events

166 ORBacus

CHAPTER 13

ORBacus Trader

The Trading Service and the Naming Service are similar, in that they both provide facili-
ties for object location and discovery. As discussed in Chapter 9, an object in the Naming
Serviceislocated by name. In the Trading Service, on the other hand, an object does not
have aname. Rather, a server advertises an object in the Trading Service based on the kind
of service provided by the object. A client locates objects of interest by asking the Trading
Serviceto find all objects that provide a particular service. The client can further restrict
the search to select only those objects with particular characteristics.

ORBAcus Trader is compliant with [9] and conforms to the specification’s definition of a
full-service trader, meaning that the service supports all of the functionality described in
the specification.

This chapter does not provide a complete description of the service. It only provides an
overview, suitable to get you started. For more information, please refer to the specifica-
tion.

ORBacus 167

ORBacus Trader

13.1

1311

13.1.2

Synopsis

Usage

com ooc. CosTradi ng. Server
[-h,--help] [-v,--version] [-i,--ior] [-d,--dbdir D R]
[-t,--timeout M NS]

: f]hel b Display the command-line options supported by the server.

-V . .

-_version Display the version of the server.

: I i or Prints the stringified IOR of the server to standard output.

-d DR Enables persistence for the server. All of the data created by the server will
--dbdir DR be saved to files in the specified directory DI R.

-t MNS Specifies the timeout in minutes after which a persistent server

--timeout M NS automatically compactsits database. The default timeout is five minutes.

Configuration Properties

In addition to the standard configuration properties described in Chapter 4, ORBACUS
Trader also supports the following properties:

ooc. tradi ng. dbdi r=DI R Equivalent to the - d command-line option.
ooc. tradi ng. ti meout =M NS Equivalent to the-t command-line option.

ooc. tradi ng. all ow_nil _objects Determineswhether the server should allow an offer
to be exported with anil object reference.

ooc. tradi ng. port =PORT Specifies the port number on which the service
should listen for new connections. Note that this
property is only considered if theooc. oa. port
property is not set.

ooc. trading. use_ir Determines whether the server should validate offers
and service types using the Interface Repository.

168

ORBacus

Connecting to the Service

13.1.3 CLASSPATH Requirements

ORBAcuUs Trader requires the classesin OB. j ar, OBTradi ng. j ar and OBUti | . jar.

13.2 Connecting to the Service

The object key of the Trading Serviceis Tr adi ngSer vi ce, which identifies an object of
type CosTr adi ng: : Lookup.

The object key can be used when composing URL-style object references. For example,
the following URL identifies the trading service running on host t r ader host at port
10000:

corbal oc: : trader host: 10000/ Tr adi ngSer vi ce

Refer to Chapter 6 for more information on URLs and configuring initial services.

13.3 Using the Trading Service with the IMR

The Trading Service may be used with the Implementation Repository (IMR). However, if
used with the IMR, it isimportant to note that the corbaloc URL-style object reference
described in the previous section cannot be used. If the IMR is used, the object reference
for the Trading Service must be created using one of the following methods (where

Tr adi ngSer ver refersto the server name configured with the IMR):

« start the Trading Service with the options:
--ior -ORBserver_nane Tradi ngServer
causing the Trading Service to print its reference to standard output.

e use tharkref utility:
nkref Tradi ngServer Tradi ngServi ce Tradi ngServi cePOA

When using the Trading Service with the IMR, the service must be started with the option
- ORBser ver _nane Tradi ngSer ver, whereTr adi ngSer ver refers to the server name
configured with the IMR. When the IMR is configured to start the Trading Service, this
option is automatically added to the service’s arguments. However, when the Trading Ser-
vice is started manually, the option must be present. For further information on configur-
ing a service with the IMR, refer to “Getting Started with the Implementation Repository”
on page 113.

ORBacus 169

ORBacus Trader

13.4

134.1

Trading Service Concepts
Basic Concepts

Roles

The client of atrading service (also known as atrader) plays one of two roles at any partic-
ular point in time. If the client is advertising aservice, it is playing the role of an exporter.
If the client is searching for a service, it is playing the role of an importer.

Service Types

A servicetypeis used to define a particular type of service, and is similar to a database
schemaor aclassin NDS. All of the service type definitions are stored in a service type
repository managed by the Trading Service. An exporter that advertises a service must
associate the service with a service type.

A servicetype consists of the following information:

« A servicetype name uniquely identifies the service type.

* Aninterfacetype defines the IDL interface to which an advertised object of this type
must conform.

« A collection ofproperty types defines additional attributes of the service offer.

Service Type Names

Each service type in the repository has a uniqgue name. Although the specification is not
completely clear about the format of these names, &aRB Trader supports two formats:

e Scoped names - These names have formats such:ane: : Two. Other supported
variations includ&hr ee: : Four and simplyFi ve.

* Interfacerepository identifiers - These names adhere to the format of interface
repository identifiers. The most common format is

I DL: [prefix/][Mdule/]lnterface: X. Y

Note: Although both naming formats follow interface repository conventions, service type
names are never used to lookup information in the interface repository.

170

ORBacus

Trading Service Concepts

Interface Types

An interface type describes the computational signature of the advertised service. The
interface typeis a string whose format should be a scoped name or an interface repository
identifier as described above for service type names. When a new service is exported,
ORBAcus Trader may use the interface repository to confirm that the object being adver-
tised conforms? to the interface defined by the interface type.

Property Types

A service type can have zero or more property types, representing additional information
that can be associated with an advertised service.

A property type definition consists of aname, avaluetype and amode. Thevaluetypeisa
CORBA: : TypeCode, and the mode indicates whether a property is mandatory and whether
it is read-only. The property modes have the following semantics:

* Mandatory - The exporter must provide a value for a mandatory property at the time
the service is exported. Mandatory properties cannot be removed.

« Read-only - Once an exporter has supplied a value for a read-only property, that
property cannot be modified. A read-only property can be removed.

« Mandatory and Read-only - A property that is both mandatory and read-only must
have a value when the service is exported, and cannot subsequently be changed or
removed.

A property that is neither mandatory nor read-only is considered optional, and can be
changed and removed.

ORBAcus Trader accepts Java-style identifiers as property names, meaning a property
name must start with a letter, and may consist of letters, numbers and underscores.

Super Types

Service types camherit from other service types, which enables the definitiosupér

types that encapsulate behavior and characteristics common to many service types. When
a new service type is created that has super types, the trader performs several validation
steps:

1. All super types must already exist in the service type repository.

1. Anobject conformsto aninterfaceif it implements that interface, or if it implements a subclass
of that interface.

ORBacus 171

ORBacus Trader

2. Any property type definitions in the new service type that have the same name asa
definition in a super type must be compatible with the super type definition. For two
property definitions to be compatible, their value types must match, and the mode of
the new definition must be the same as, or stronger than, the mode of the property in
the super type.

3. Theinterface type of the new service type must conform to the interface type of all
super types. ORBAcuUs Trader may use the interface repository to verify that thisis
true.

For example, consider two IDL interfaces, I nt er f aceAand I nt er f aceB, defined
below:

interface InterfaceA {
voi d do_sonet hi ng();

}s

interface InterfaceB : InterfaceA {
voi d do_sonet hing_el se();

}s

Here, | nt er f aceBisdefined asasubclassof | nt er f aceA. Now, let’'s define two service
types:
servi ce ServiceTypeA

{

interface I nterfaceA
property string nane;

H

service ServiceTypeB : ServiceTypeA

{

interface I nterfaceB;
mandat ory property string nane;
readonly property float cost;

b

In the example above&er vi ceTypeB inherits fromSer vi ceTypeA. As such, it inherits
all of the property types frorger vi ceTypeA, and declares an interface type of

I nt er f aceB, which conforms to the interface type of its super type because

I nterfaceBis asubclass ofnt er f aceA.

Notice thatSer vi ceTypeB redefines the mode of the “name” property. Whereas the defi-
nition in Ser vi ceTypeA does not specify a mode (making the property optional), the def-
inition in Ser vi ceTypeB makes this property mandatory, therefore a value for the

172

ORBacus

Trading Service Concepts

property must be supplied when the offer is exported. Note that the reverseis not allowed;
a subtype cannot redefine a mandatory property to be optional.

Servi ceTypeB aso adds a new property, “cost”, which is defined to be read-only.
Because the property is not mandatory, an exporter does not need to supply a value for it a
the time a service offer is exported. However, once a value has been defined for this prop:
erty, it cannot subsequently be changed.

Service Offers

A service offer is an instance of a service type and represents the advertisement of a ser-
vice by a service provider.

A service offer has the following characteristics:

* A servicetype name associates the offer with a particular service type.

* An object reference provides the “pointer” (the object reference) to the advertised
object that is necessary for clients to invoke the service being offered.

« A set ofproperties describe this service offer and must conform to the property types
defined by the service type.

The trader uses the definition of the specified service type to perform several validation
steps on a new offer:

1. The exporter must provide values for all mandatory properties (including all
mandatory properties that the service type inherits from its super types, if any).

2. The object must conform to the interface type defined by the service type.

3. The value types of all properties must match the value types as defined by the service
type. For example, a value of typeubl e is not allowed for a property whose type is
defined ast ri ng in the service type.

Note: ORBacus Trader allows an exporter to supply values for named propertiesthat are
not defined in the service type.

The value of a property in a service offer can be modified if the mode of the property is not
read-only. A property can be removed from a service offer if the property is not manda-
tory. New properties can also be added to an existing service offer.

Design Issues

The Trading Service can be a tool for constructing efficient distributed applications. The
advantage of annotating a service offer with properties, and allowing offers to be filtered

ORBacus 173

ORBacus Trader

13.4.2

on the basis of those properties using a constraint, is that importers can select offers with-
out having to incur the overhead of invoking operations on each object.

For example, suppose Ser vi ceTypeB did not have the “cost” property. Instead, let’s pre-
tend that nt er f aceB has an additional operation, “cost”, which returned a value of type
float:

interface InterfaceB : InterfaceA {
voi d do_sonet hi ng_el se();
float cost();

b

In this situation, if the importer needed to select only those objects whose cost is within a
certain range, the importer would need to iterate over each object returned by the Trading
Service to invoke the “cost” operation. In a distributed environment, the overhead of this
activity could be prohibitively expensive. It is the developer’s responsibility to anticipate
the types of queries that importers will need to perform and design their service types
accordingly.

I mporting Service Offers

The primary responsibility of a Trading Service is satisfying an importer’s request for
matching service offers. Tl@sTr adi ng: : Lookup interface defines a single operation,
“query”, for use by importers. This operation takes a number of parameters, the most
important of which are explained below.

Service Type

The service type informs the Trading Service about the kind of service in which the
importer is interested. The service type effectively narrows the total number of service
offers the Trading Service must search to completely satisfy the importer’s request. Unless
the importer requests otherwise, the Trading Service will also consider the offers of ser-
vice types that are subtypes of the given service type.

Constraint

Theconstraint is a boolean expression in a constraint language. The Trading Service eval-
uates each potential service offer against the constraint; if the expression evaluates to
TRUE, then the offer is considered a match. One constraint language is defined by the
Trading Service specification, but proprietary query languages can also be accommodated.

174

ORBacus

Trading Service Concepts

ORBAcus Trader supports the standard OMG constraint language, which includes many
of the features commonly found in query languages and is described in detail in the Trad-
ing Service specification.

The standard constraint |anguage has constructs similar to common programming and
database query languages, including comparative functions, substring matching, set mem-
bership, and mathematical and logical operators. The most important aspect of the con-
straint language, however, isits ability to refer to the properties of a service offer, enabling
importersto include or exclude a potential service offer on the basis of its properties. If the
offer does not contain a property that is necessary in order to completely evaluate the con-
straint, that offer is skipped.

Constraint expressions are restricted to operating only on properties of the following
types:

e boolean, short, unsigned short, long, unsigned long, float, double, char, string
* sequences of the above types

This restriction does not imply that more complex property types are forbidden. However,
properties of complex types cannot be referred to in a constraint expression, except in the
context of theexi st operator, which simply tests for the existence of a property.

The simplest constraint is “TRUE”, which evaluates to TRUE for every potential service
offer, effectively matching every offer that is considered. Using this constraint, importers
have a simple means of obtaining all of the offers for a particular service type.

Using the example service typer vi ceTypeB, we can form a more complex constraint
example: “Bill' ~ name and cost < 7.5". In this example, we are searching for all offers of
typeSer vi ceTypeB where the “name” property contains the string “Bill” and the “cost”
property has a value less than 7.5.

Preference

The preference is an expression that indicates how the Trading Service should order the
matching offers before it returns them to the importer. The specification defines the fol-
lowing five forms of a preference expression:

e max expression - The offers are sorted in descending order based on the value of the
numeric expression.

e i nexpression - The offers are sorted in ascending order based on the value of the
numeric expression.

ORBacus 175

ORBacus Trader

e with expression - The offers are ordered based on the boolean expression such that
all offers for which the expression is TRUE are returned before those for which the
expression evaluates to FALSE.

* random- The offers are returned in a random order.

e first - The offers are returned in the order they are discovered by the Trading
Service.

The expression associated witix, ni n andwi t h is defined using the constraint lan-
guage. If the expression cannot be evaluated for a service offer, that offer is still returned
(because it is a matching offer). However, the offer is returned after all offers for which the
expression could be successfully evaluated.

For example, the preference expression “min cost” would order the matching offers in
ascending order based on the value of the “cost” property.

Policies

Policies provide a means for importers to exert additional influence over the query opera-
tion. The specification defines a number of standard policies, but implementations may
support additional ones. A policy is represented as a name—value pair. The Trading Ser-
vice administrator can establish default values for each policy to be used when an importer
does not supply a value for a policy. Maximum values for policies can also be established
to constrain the importer’s policy values.

Some of the standard policies are described below:

e search_card — The upper bound (“cardinality”) on the total number of service
offers to be searched

e« match_card — The upper bound on the total number of matching service offers

e return_card - The upper bound on the total number of matching offers to be
returned

« exact _type_mat ch — If the value for this policy is TRUE, the Trading Service will
only consider service offers exported for the given service type. If the value is FALSE
or is not supplied, the Trading Service will also consider service offers exported for
subtypes of the given service type.

ORBAcus Trader supports all of the policies defined by the specification.

176

ORBacus

Trading Service Concepts

13.4.3 Offer Management

The CosTr adi ng: : Regi st er interface provides operations for managing the service
offers of the Trading Service, including the ability to export, modify and withdraw
(remove) service offers.

Exporting a Service Offer

Exporting a service offer isarelatively simple task. The exporter must know the service
type, have avalid object reference, and have values for al of the mandatory properties
defined by the service type (and any of its super types). After the Trading Service has val-
idated the new offer, a unique identifier is assigned to the offer and returned to the
exporter.

Modifying a Service Offer

The Trading Service allows service offersto be modified, with afew restrictions. First, the
object reference associated with an offer cannot be changed. Second, a client may add,
modify and delete the properties of an offer only within the limitations of the property
modes established by the service type.

Each of the property mode combinations is described below, along with the limitations (if
any) in place when modifying a service offer.

* Normal — Properties that are neither mandatory nor read-only can be added, modified,
and deleted without restriction.

« Read-only — Once a value has been defined for a read-only property, it cannot be
modified. A read-only property that was not defined when the offer was exported can
be added during a modification operation. Read-only properties cannot be deleted.

« Mandatory — A mandatory property can be modified but cannot be deleted.

* Mandatory and read-only — A property that is both mandatory and read-only cannot
be modified or deleted.

Withdrawing Service Offers

There are two distinct ways to withdraw service offers. First, a client application or the
Trading Service administrator can remove individual offers one at a time using the unique
identifier associated with each offer. Exporters that will eventually need to clean up obso-
lete service offers are responsible for remembering the identifiers assigned to their service
offers.

ORBacus 177

ORBacus Trader

13.4.4

Multiple service offers can be removed using an operation that accepts a service type and
aconstraint expression. Every offer of the service type that matches the constraint expres-
sion iswithdrawn. Offers that match the constraint and have a service type that is a sub-
type of the specified servicetype areremoved aswell. A ssmpleway of removing all of the
offers for a service type is to use “TRUE” for the constraint expression.

Dynamic Properties

In many situations, an exporter will need to periodically update the properties of a service
offer to reflect changing conditions. The interest rate on a loan is an example of a property
that might fluctuate frequently throughout the day. The requirement for an exporter to
keep all of its offers up to date may become overly burdensome, so the Trading Service
supports a feature callelgnamic properties that can simplify these activities.

Rather than supplying a static value for a property, an exporter can substitute a special data
structure containing an object reference implementing the

CosTradi ngDynani c: : DPEval interface. When a trader requires the value of a dynamic
property, a request is made on the given object reference to obtain the property’s value. In
essence, the value of the property is delegated to another object, which might look up the
value in a database, compute the value on the fly, etc.

Dynamic properties introduce additional overhead during query processing, therefore the
importer can use a policy to exclude offers with dynamic properties. Furthermore- ORB
cus Trader is careful to ensure that it does not needlessly evaluate a dynamic property.

Figure 13.1 illustrates the interactions of the objects involved.

178

ORBacus

Trading Service Concepts

Figure 13.1: Dynamic Property Evaluation

Importer Exporter

3.evalDP | p- @ ‘0

2. querk\ /)%xport

@ DynamicPropEval

l Offer

1. Anexporter advertises a service offer containing a dynamic property.

2. Sometime later, an importer invokes the trader's quer y() operation to search for
service offers.

3. If, during the processing of the query, the trader requires! the value of the dynamic
property, the trader will invoke the eval DP() operation on the Dynani cPr opEval
object whose reference was provided by the exporter. This operation will determine
the value of the property and return it to the trader.

13.4.5 Trader Federation with Links

A powerful feature of the Trading Service allows administrators to establish links between
traders for the propagation of query requests. When an importer executes a query opera-
tion, the trader will always search its own set of service offers, but may also forward the
reguest on to any linked traders. The matching local offers, plus any offers found by the
linked traders, are returned to the importer. The importer is not aware of the query propa-
gation, but can use policies to control the trader’s use of links.

1. Thetrader will require the value of aproperty if the property isused in aconstraint or preference
expression, or if the property is one of the desired properties requested by the importer.

ORBacus 179

ORBacus Trader

A link is a unidirectional, point-to-point connection from one trader to another. The “tar-
get” trader is not notified when a new link to it is created in another trader. Of course, bi-
directional links can be established by creating a link in each trader referring to the other
trader.

Each link has a name that is uniqgue among all links in a trader. In a trader “network”, a
particular trader can be identified by a path composed of the names of the links that must
be traversed to navigate from a starting trader to the desired one. In addition to the link
name, the other attributes of a link consist of the object reference of the target trader’s
CosTradi ng: : Lookup object and rules that govern query propagation for that particular
link.

As you can imagine, there are significant performance issues associated with the use of
links, therefore the Trading Service provides importers and administrators with a great
deal of control over the trader’s linked behavior during a query operation. In particular,
each link has a rule that dictates under what circumstances the trader should propagate a
query to the target trader. Three possibilities exist, as defined FothewOpt i on enu-
merated type:

1. I ocal _only - Never propagate a query request (effectively disabling the link).

2. if_no_l ocal - Only propagate a query request if no matching offers were found
among the trader’s local offers.

3. al ways - Always propagate a query request.

In addition, an importer may supply a value forithek_f ol | ow_r ul e policy contain-
ing one of the above settings. When the trader executes a query operation, it uses the fol-
lowing algorithm to decide how it should behave for each of its links:

e If the importer has not supplied a value for ithek_f ol | ow_r ul e policy, the
trader’s default value will be used instead. Otherwise, the importer’s value is checked
to ensure that it does not exceed the trader’s maximum value for this policy.

« If the policy is more restrictive than the rule established for the link, the importer’s
policy (or the default value) will be used.

e Ifthe link’s rule is more restrictive, then the link’s rule takes precedence.
Importers may use theop_count policy to limit the total number of “hops” that occur

for each link of a query. For example, using a value of five means that the query can be
propagated to a depth of at most four from the originating trader.

To prevent infinite loops, traders can be configured to generate unique identifiers to be
passed along when a query request is propagated to other traders. If the request happens to

180 ORBacus

Trading Service Concepts

13.4.6

be propagated back to the originating trader, it will recognize the unique identifier it gen-
erated and will take no further action on that request.

Links provide agreat deal of flexibility to system designers. They can be used in a manner
similar to partitionsin NDS, where responsibility for resources is distributed among mul-
tiple independent but interconnected entities. Links can aso be applied in a more con-
trolled fashion, where administrators sel ectively make the service offers of one trader
available to one or more other traders.

Supporting Legacy Applicationswith Proxy Offers

A proxy offer isaspecial kind of service offer, in that it has properties like a service offer
and can be matched during a query like a service offer. But rather than returning the offer
to the importer, the trader formulates a modified query request and forwards it to an object
specified by the proxy offer that implementsthe CosTr adi ng: : Lookup interface. In this
way, the match of asingle proxy offer can result in a number of service offers being
returned to the importer.

In addition to the information contained in a service offer, aproxy offer contains:

« the object reference of an object implementingdTr adi ng: : Lookup interface.

e aboolean value,f _mat ch_al |, which indicates to the trader performing a query
that it should consider this proxy offer a match if the service type matches. In other
words, if this value iFRUE, the trader does not need to evaluate the importer’s
constraint against the properties of this offer; if the service type matches, then the
proxy offer is considered a match.

e a constraintecipe, which specifes how the trader should rewrite the query constraint
before passing it to the proxy offer’s target object.

e zero or more policies that the trader should pass on to the proxy offer’s target object.

An importer can specify a policy during a query that causes the trader to exclude all proxy
offers. One of the common uses for proxy offers is wrapping a legacy application with a
CORBA object that implements tidesTr adi ng: : Lookup interface. A single proxy

offer is exported, containing a reference to this wrapper object. The object can implement
the “query” operation to invoke the legacy application, passing it the constraint expres-
sion. The trader’s ability to rewrite the query constraint helps to minimize the amount of
work that needs to be done by the wrapper object. The results returned by the legacy appli
cation can be translated into service offers and returned to the importer.

ORBacus 181

ORBacus Trader

13.5

Programming Example

A number of sample programs are included with ORBAcus Trader. You can find the
source code for these programs in the deno subdirectory. In this section, we will discuss
the example applicationindeno/ pri nter.

13.5.1 ThePrint Server

The source code for the print server can be found indeno/ pri nter/ Server. j ava. The
server performs the following steps:

« Resolve the initial reference of the trading service
« Withdraw any existing offers

« Install the service type, if necessary

e Export new offers

Resolving the Trading Service

The server uses the standard operatiespl ve_i ni ti al _r ef er ences to obtain the
object reference of the trading service:

org. ong. CORBA. Obj ect obj =
orb.resolve_initial_references("Tradi ngService");

The reference must then be narrowed. The interface type supported by the reference is
CosTradi ng: : Lookup.

org. ong. CosTradi ng. Lookup result = null;

result = org.ong. CosTradi ng. LookupHel per. narrow(obj);

Withdrawing Offers
Before exporting new offers, the server withdraws any existing offers.
static final String SERVICE TYPE = "Printer";

org. ong. CosTradi ng. Regi ster reg = trader.register_if();
reg.w t hdraw_usi ng_constrai nt (SERVI CE_TYPE, "TRUE");

This code demonstrates the easiest way to withdraw all offers of a given service type.
Invoking thewi t hdr aw_usi ng_const r ai nt operation with a constraint of “TRUE”
matches every offer for that service type.

182

ORBacus

Programming Example

O NSO OGN WNRKR

Installing a Service Type

Toinstall the Pri nt er servicetype, the server obtains the object reference of the
Servi ceTypeReposi t ory object and invokesthe add_t ype operation.

org. ong. CORBA. Ohj ect obj = trader.type_repos();
org. ong. CosTr adi ngRepos. Servi ceTypeRepository repos =
or g. ong. CosTr adi ngRepos. Servi ceTypeReposi t or yHel per. narrow(obj) ;

PropStruct[] props = new PropStruct[5];

for(int i

=0 ; i <props.length ; i++)
props[i] =

new PropStruct();
int n=0;

org. ong. CORBA. TypeCode stringTC =
orb.get _primtive_tc(org.ong. CORBA. TCKi nd.tk_string);

props[n].nanme = "bldg";
props[n].value_type = stringTC,
props[n].node = PropertyMde. PROP_NORMAL;
n++;
props[n].nane = "col or";
props[n].val ue_type =
orb.get _primtive_tc(org.ong. CORBA. TCKi nd. t k_bool ean) ;
props[n].nmode = PropertyMde. PROP_NORMAL;
n++;
props[n].name = "cost_per_page";
props[n].val ue_type =
orb.get _primtive_tc(org.ong. CORBA. TCKi nd. tk_fl oat);
props[n].nmode = PropertyMde. PROP_NORMAL;
n++;
props[n].nane = "ppnt';
props[n].val ue_type =
orb.get_primtive_tc(org.ong. CORBA. TCKi nd. tk_ushort);
props[n].nmode = PropertyMde. PROP_NORMAL;
n++;
props[n].nane = "queue";
props[n].value_type = stringTC,
props[n].node = PropertyMde. PROP_NORMAL;
n++;

String[] superTypes = new String[0];

ORBacus 183

ORBacus Trader

41 repos. add_type(SERVI CE_TYPE, printer.PrintServerHel per.id(),
42 props, superTypes);

1-3 Obtain and narrow the Ser vi ceTypeReposi t ory reference.
5-37 Create the array of structures that describes the properties of the service type.
39 Useazero-length array to indicate that the service type has no super types.
41-42 Addthe servicetype. Therepository ID of the PrintServer interfaceis used asthe interface
type.
Exporting Offers

The server uses a configuration file to describe the attributes of each printer.

1 org.ong. CosTradi ng. Regi ster reg = trader.register_if();
2

3 fr = new Fil eReader (file);

4 BufferedReader in = new BufferedReader(fr);

5

6 String line;

7 while((line = in.readLine()) !'= null)

8 {

9 line = line.trim);

10 if(line.startsWth("#"))

11 conti nue;

12

13 org. ong. CosTradi ng. Property[] props =

14 parseProperties(orb, line);

15

16 reg. export (printServer, SERVICE TYPE, props);
17 '}

1 Obtainthe CosTr adi ng: : Regi st er interface.
3-4 Open the configuration file.
6-11 Read each line of the file, skipping any lines that begin with °

13- 14 Parse the line and produce an arragafTr adi ng. Pr oper t y structures containing the
property values.

16 Export the service offer, supplying the object reference of the PrintServer, the service type,
and the properties.

ORBacus

Programming Example

1352

N RN WNR

8-13

15-16

18-19

The Client

Most of the code in the example client located in deno/ printer/ i ent.java

involves creating and managing the graphical user interface. The code that executes the

trader query is shown below.

org. ong. CosTradi ng. Policy[] policies =
new or g. ong. CosTradi ng. Pol i cy[0] ;

org. ong. CosTradi ng. LookupPackage. Speci fi edProps desi r edPr ops

new or g. ong. CosTr adi ng. LookupPackage. Speci fi edProps();
desi redProps. _def aul t(
org. ong. CosTradi ng. LookupPackage. HowianyPr ops. al |) ;

org. ong. CosTradi ng. Of f er SeqHol der offers =
new or g. ong. CosTradi ng. O f er SeqHol der () ;
org.ong. CosTradi ng. Of ferlteratorHol der iter =
new or g. ong. CosTradi ng. O ferlteratorHol der();
org. ong. CosTradi ng. Pol i cyNameSeqHol der limts =
new or g. ong. CosTradi ng. Pol i cyNaneSeqHol der () ;

trader _.query("Printer", constraint, preference, policies,
desiredProps, 100, offers, iter, limts);

if(iter.value !'= null)
iter.val ue.destroy();

Allocate an empty array of policies. Seethe exampleclient indeno/ | oan/ cl i ent fora

demonstration of how to use policiesin aquery.

The client wants the server to return all of the properties for each matching offer.

Allocate holders for the out parameters.

Execute the query for the Pri nt er servicetype. The client indicates that it wants a maxi-

mum of 100 offers to be returned. Additional offerswill be obtained viathe iterator.

After examining the results, the client must destroy the iterator, if one was returned.

ORBacus

185

ORBacus Trader

186 ORBacus

e ORBacus Trader Console

The ORBAcus Trader Console alows you to manage all aspects of ORBAcus Trader. The
functionality provided by this application includes:

e Managing service types, offers, proxy offers and links
e Performing queries
« Configuring the trader attributes

ORBacus 187

ORBacus Trader Console

14.1

1411

14.1.2

14.2

Synopsis

Usage

com ooc. CosTr adi ngConsol e. Mai n
[--windows] [--motif] [--mac] [--1o0ok CLASS] [-h,--help]

--wW ndows Use the Windows Look & Feel (if available).
--notif Usethe Motif Look & Feel (if available).
--mac Use the Macintosh Look & Feel (if available).

--1 ook CLASS Use the specified JTC Look & Feedl class.

-h

-~help Display the command-line options supported by the program.

CLASSPATH Requirements

The ORBAcus Trader Console requiresthe classesin OB. j ar, OBTr adi ng. j ar,
OBUt i | . j ar and the Java Foundation Classes (JFC). Note, JFC is part of version 1.2 (or
greater) of JDK.

Main Window

The ORBAcus Trader Console main window appears as shown in Figure 14.1.

188

ORBacus

Terminology

Figure 14.1: The Trader Console main window

Ega Trader Console =] E3

Console Edit View Insert Tools

D] [#m/@| = x] [#] |O]

Description of "Mortgage”:

Senvice Types - | :

Martoage Sirterface:
4| IDL:LenderDemo/Lender1.0

AProperties:

§§ mandatary float pet_down
A mandatory string product_id
Al rmandatory float rate

| mandatory shortyears

Incarnatiorn:
1o

ID: IDL:omg.org/CosTradingLookup: 1.0, Host: 1.1.1.1, Port: 1063

The main window includes the following elements:

Menu bar Provides access to all of the application’s features

Toolbar Shortcuts for the most common menu commands

Item type selector Selects which type of item is shown in the item list

Item list Displays the names or identifiers of all items contained in the trader
Item description Provides a textual summary of the selected item

Status bar Displays information about the trader to which the console is currently
connected, including the host, port and IDL interface

14.3 Terminology

The ORBAcus Trader Console application uses the term item to generically refer to the
four types of data managed by atrading service:

e Service types

ORBacus 189

ORBacus Trader Console

14.4

1441

14.4.2

e Offers
« Proxy offers
e Links

The console window is used to browse these items. The window only shows one type of
item at a time, which you can change with itieen type selector drop-down list or by
selecting a type from the View menu. When a iitev type is selected, the current list of
items is retrieved from the trading service and displayed iitehelist.

The Trader Console Menus

This section describes the ORBJs Trader Console menu commands.

The Console menu
You use the commands in the Console menu to manage the console windows.

New Window Creates a new console window, connected to the current trader.

Connect Opens the Connect dialog box, allowing you to connect to a different
trading service.

Close Closes the current console window. If thiswindow is the last console
window present, the application exits.

Exit Quits the application.

The Edit menu

The console supports the typical notion of a clipboard, which can be manipulated with cut,
copy and paste commands. However, the console does not use the system clipboard, and
therefore the application clipboard can only be accessed by windows from the same exe-
cution of the application. In other words, if you start two instances of the application, you
cannot cut and paste between them. You can cut and paste if you start a single instance of
the application, and create multiple windows with @uasole/New Window command.

Cut Copies the selected items to the clipboard and then permanently
removes the selected items

Copy Copies the selected items to the clipboard

Paste Pastes the items from the clipboard into the current trader

1. Also known as a combo-box.

190

ORBacus

The Trader Console Menus

14.4.3

Select All Selects all of theitemsin theitem list

Clone Creates a clone of the selected item. The appropriate dialog box isdis-
played to allow you to create a new item, but the fields of the dialog
box areinitialized with the values from the selected item.

M odify Edits the currently selected item
Delete Permanently removes the selected items

There are some issues to be aware of when using the cut, copy and paste operations. First,
service types and links must have unique names; therefore, you will not be able to paste
one of these itemsiif an item aready exists in the trader with the same name.

Secondly, a certain amount of forethought is advised when you wish to cut and paste ser-
vicetypes. Since service types can inherit from other service types, you cannot cut a ser-
vice type that has subtypes. If you wish to cut or delete a number of service types, and if
inheritance rel ationships exist between any of them, you must cut the types without any
subtypes first. The same principle appliesto pasting service types, in that you cannot paste
atypeif its supertypes do not exist or have not yet been pasted. It is recommended that
you only operate on one service type at atime when using the cut, copy, paste or delete
commands.

Some types of items, namely service types and proxy offers, cannot be modified. The
Modify command (and its toolbar equivalent) are disabled while these types are dis-

played.

The Clone and M odify commands operate on asingle item at atime. If more than one
itemis currently selected, the application uses the first of the selected items.

TheView menu

You use the View menu to select the type of items you wish to be displayed in theitem list.
Selecting a new type of item from this menu is equivalent to changing the setting of the
item type selector.

The Refresh command causes the application to retrieve an updated list of items from the
trader and display them in theitem list. This command can be useful if you know (or sus-
pect) that the list of items has been changed by some other client of the trading service.

ORBacus 191

ORBacus Trader Console

14.4.4 Thelnsert menu

You use the Insert menu when you want to create anew item. It displaysadialog box in
which you can supply the information about the new item. If you need to create anew item
that is similar to an existing item, you can also use the Edit/Clone command.

14.45 TheToolsmenu

The commands available in the Tools menu provide access to additional features of the
trading service.

Query Perform query operations on the trader and review the matching offers
Attributes Configure the trader attributes

Withdraw Offers ~ Removes offers using a constraint expression

Mask Type Masks the selected service type

Unmask Type Unmasks the selected service type

14.5 The Toolbar

The toolbar contains buttons for the most common menu commands.

New
Item Copy Edit Query

|
D] ¥|m[@| o|x| # O
|

Cut Paste Delete Refresh

14.6 Managing Service Types

With the console, you can manage all aspects of the trader’s service type repository.

Note: Although ORBAcus Trader supports propertieswith user-defined types, the console
only supports simple types and sequences of simple types.

Refer to “Service Types” on page 170 for more information on service types.

192 ORBacus

Managing Service Types

14.6.1 Adding a New Service Type

To add a new service type, do the following:

1. Select Insert/Service Type. The New Service Type dialog box appears as shown
below.

E’%New Service Type E

Senice type name:

Interface:
| | Browse... ‘

r Super types
‘ Add...
Delete
- Properties

‘ Add...

Edit...

| OK H Cancel‘

2. Enter aname for the service type in the Service type name text box. The name must
be unique among al of the service types managed by the trader.

3. Enter an interface repository identifier in the I nterface text box. If the interface
repository serviceis available, clicking the Browse... button displays an interface

ORBacus 193

ORBacus Trader Console

repository browser as shown below.

Eg’,j'lntmface Repository Browser E2

Select an interface:
7 Interface Repository
O [CosTrading
0 [CosTradingRepos
0 [CosTradingDynarnic
@ [LenderDermo

D Lender

ID: |IDL:LenderDemoiLender:1.0 |

‘ OK H Cancel|

The browser displays only modules and interfaces. When you select an interface, its
identifier isdisplayed in the I D text box below. Click OK to accept the identifier you
have selected.

4. Usethe Add... and Delete buttons to add and remove super types. Clicking the Add...
button displays the Super Types dialog box as shown below. Select any service types
you wish to use as super types for the new type and click OK. The order in which you
add super typesis not important.

[23 Super Types E3

Select super types:
Martgage

| 0K H Cancel‘

5. Usethe Add..., Edit... and Delete buttons to manipul ate the properties for this service
type. Clicking the Add... or Edit... buttons displays the Property dialog box as shown

194

ORBacus

Managing Service Types

below. Enter aname for the property, select a property type, and use the checkboxes to
indicate the mode of this property. Click OK to add the new property.

E;*:; Property

Hame:

Type:

| boolean

v |

Mode

[_] Mandatory [_] Read-onhy

‘ OK H Cancel

6. Click OK onthe New Service Type dialog box to add the new service type.

14.6.2 Removing a Service Type

To remove a service type, do the following:

1. Select View/Service Typesto display the servicetypesin theitem list.

2. Select the service type you wish to remove.
3. Select Edit/Delete. A confirmation dialog appears.
4. Click Yesto permanently remove the service type.

Note: If a service type has subtypes, you will not be able to remove the type until all of its

subtypes have been removed.

14.6.3 Masking a Service Type

To mask a service type, do the following:

1. Select View/Service Typesto display the servicetypesin theitem list.

2. Select the service type you wish to mask.

3. Select ToolgMask Type.

ORBacus

195

ORBacus Trader Console

14.6.4 Unmasking a Service Type

To unmask a service type, do the following:

1
2.
3.

Select View/Service Typesto display the service typesin theitem list.
Select the service type you wish to unmask.
Select ToolsUnmask Type.

14.7 Managing Offers

14.7.1 Adding a New Offer

To add a new offer, do the following:

1. Select Insert/Offer. The New Offer dialog box appears as shown below.
[2§ New Offer E3
Service type:
@ I0R) Fromfile
| |
Properties
| Froperty | Yalue ‘ Add...
ymamic...
Reset
| 0K ‘ | Cancel ‘

2. Select a service type from the drop-down list. Each time you select a service type, the
Propertiestableis updated to reflect the properties defined for that service type.

3. Select amethod for specifying the object reference for this offer. Select the |OR toggle
if you want to paste the stringified interoperable object reference into the text box. If
you want the application to read the reference from afile, select From file and enter
the filename in the text box, or click the Browse... button to display afile selection

196 ORBacus

Managing Offers

dialog box. If the trading serviceis configured to allow ni | objects, and you do not
wish to specify an object reference for this offer, you may leave the object reference
blank.

4. Enter valuesfor the propertiesin the Propertiestable. All properties have a checkbox
to the left of the property name. For a mandatory property, the checkbox is disabled,
meaning that avalue must be provided for this property. For an optional property, you
can use the checkbox to indicate whether this property should be included with the
offer. To enter avalue for a property, double-click on the property value field. For
properties with sequence types, you can enter multiple values by separating them with
commas. Press Return when you are finished entering the value for a property.

5. Click the Add... button if you wish to add a property that is not defined by the service
type. The Add Property dialog box appears as shown below. Enter a name for the
property, select the property’s type from the drop-down list, and enter a value in the
text box. The name you use for the property must not be the same as any existing
properties. ClickOK to add the property to throperties table.

[} Add Property

Hame:

Type:
| boolean - |

Value:

‘ OK H Cancel|

Note: Once the property has been added tdPttoperties table, you can edit it
directly, just as you can with any other property. If you later decide that you do not
want to include the property with the offer, simply uncheck the property’s checkbox.

6. If you wish to make a property dynamic, select the property and cliékytiamic...
button. TheDynamic Property dialog box appears as shown below. Select a method
for specifying an object reference as outlined in step 3 above. If you wish to include
additional data, select a type from the drop-down list and enter a value in the text box.

ORBacus 197

ORBacus Trader Console

Click OK to save the dynamic property. The property table displays<dynani c> asthe
value of adynamic property.

E%iDynamic Property - rate E2

@ DR Fromfile

Extra information:

| None - |

Value:

‘ OK H Cancel|

7. To clear the value of a property, select the property and click Reset. You can use this
command to convert a property from a dynamic property to aregular property.

8. Click OK to add the new offer. The application validates the information and reports
any errorsin adialog box.

Note: For properties of type st ri ng, an empty value is accepted as a valid value, even
for mandatory properties.

14.7.2 Modifying an Offer

To modify an offer, do the following:

1. Select View/Offersto display the offersin theitem list.
2. Select the offer you wish to modify.

198 ORBacus

Managing Offers

3. Select Edit/Modify. The Edit Offer dialog box appears as shown below.

Eg’%Edit Offer - Mortgage™1 E2

Properties

| Property | Yalue | Add...
pet_down 200
product_id |LOARM_BZ [hmamic...

rate 6.5
wears 15 Reset

‘ OK H Cancel|

You can modify a property by double-clicking on the property value. Press Return
when you have finished editing a property value.

You can remove an existing property from the offer (if it isan optional property) by
unchecking its checkbox. Similarly, you can add a property to the offer by checking its
checkbox and entering a value for the property.

See the discussion of adding a new offer above for details on adding new properties
and configuring dynamic properties.

Click OK to update the offer.

14.7.3 Withdrawing Offers

There are two distinct ways to withdraw offers. The first way is by selecting individual
offers, as outlined below:

1
2.
3.
4,

Select View/Offersto display the offersin the item list.
Select the offer(s) you wish to withdraw.

Select Edit/Delete. A confirmation dialog appears.
Click Yesto withdraw the offers.

The above method is suitable for withdrawing a limited number of specific offers. A more
efficient method for removing alarge quantity of offers for asingle type, or for removing

ORBacus 199

ORBacus Trader Console

offers without having to manually search for the right ones, is by withdrawing offers with
aconstraint expression:

1. Select ToolgWithdraw Offers. The Withdraw Offer s dialog box appears as shown

below.
[Ef withdraw Offers
Service type:
| Mortgage i |
Constraint:

| 0K ‘ ‘ Cancel |

2. Select the service type from the drop-down list. Offers with this service type or a
subtype of this service type are considered for withdrawal.

3. Enter a constraint expression in the text box. See “Constraint” on page 174 for more
information on constraint expressions.

4. Click OK to withdraw the offers. Only offers that match the constraint expression are
withdrawn. An error message appears if no matching offers were found.

Note: A simple way to remove all of the offers for a service type is to use “TRUE” for the
constraint expression.

200 ORBacus

Managing Proxy Offers

14.8 Managing Proxy Offers

14.8.1 Adding a New Proxy Offer

To add a new proxy offer, do the following:
1. Select Insert/Proxy Offer. The New Proxy Offer dialog box appears as shown bel ow.
[EiNew Proxy Offer E3

Service type:

‘ v |

i Target Lookup IOR O From file

Constraint recipe:

[_] ¥ match all

r Properties

| Froperty | Yalue | Add...

Reset

Paolicies to pass on

| Add...

Edit...

‘ OK H Cancel|

2. Select aservice type from the drop-down list. Each time you select a service type, the
property table is updated to reflect the properties defined for that service type.

3. Select amethod for specifying the object reference of the target
CosTradi ng: : Lookup object for this proxy offer. Select the |OR toggle if you want

ORBacus 201

ORBacus Trader Console

to paste the stringified interoperabl e object reference into the text box. If you want the
application to read the reference from afile, select From file and enter the filenamein
the text box, or click the Browse... button to display afile selection dialog box.

. Enter the constraint recipe in the text box.
. Select If match all if amatching servicetypeisall that isrequired for this proxy offer

to be considered a match during a query.

. Enter values for the propertiesin the Propertiestable. All properties have a checkbox

to the left of the property name. For a mandatory property, the checkbox is disabled,
meaning that avalue must be provided for this property. For an optional property, you
can use the checkbox to indicate whether this property should be included with the
offer. To enter avalue for a property, double-click on the property value field. For
properties with sequence types, you can enter multiple values by separating them with
commas. Press Return when you are finished entering the value for a property.

. If you wish to add a property that is not defined by the service type, click the Add...

button. The Add Property dialog box appears as shown in “Adding a New Offer” on
page 196. Enter a name for the property, select the property’s type from the drop-down
list, and enter a value in the text box. The name you use for the property must not be
the same as any existing properties. Clitk to add the property to tHeroperties

table.

Note: Once the property has been added tdPttoperties table, you can edit it

directly, just as you can with any other property. If you later decide that you do not
want to include the property with the proxy offer, simply uncheck the property’s
checkbox.

. If you wish to make a property dynamic, select the property and clickytemic...

button. TheDynamic Property dialog box appears as shown in “Adding a New Offer”
on page 196. Select a method for specifying an object reference as outlined in step 3
above. If you wish to include additional data, select a type from the drop-down list and
enter a value in the text box. Cli€K to save the dynamic property. The property

table displaysdynani c¢> as the value of a dynamic property.

. To clear the value of a property, select the property andRégdt. You can use this

command to convert a property from a dynamic property to a regular property.

202

ORBacus

Managing Proxy Offers

10. Usethe Add..., Edit... and Delete buttons to manipulate the policies to be passed on to
the target object. Clicking the Add... or Edit... buttons displays the Paolicy dialog box
as shown below.

E;*:; Policy E2
Hame:

Type:

| boolean - |

Value:

‘ OK H Cancel|

11. Click OK to add the new proxy offer. The application validates the information and
reports any errorsin adialog box.

Note: For properties of type st ri ng, an empty value is accepted as a valid value, even
for mandatory properties.

14.8.2 Withdrawing Proxy Offers

To withdraw a proxy offer, do the following:

1. Select View/Proxy Offersto display the proxy offersin the item list.

N

Select the proxy offer you wish to withdraw.

w

Select Edit/Delete. A confirmation dialog appears.

»

Click Yesto withdraw the proxy offer.

ORBacus 203

ORBacus Trader Console

14.9 Managing Links

14.9.1 AddingaNew Link

To add a new link, do the following:
1. Select Insert/Link. The New Link dialog box appears as shown below.
[EiNew Link

Hame:

| |
(® Target Lookup IOR ' From file

Default follow rule ‘ Always - |

Limniting follow rule ‘ Always hd |

‘ OK H Cancel|

2. Enter aname for thislink in the text box.

3. Select a method for specifying the target trader’s object reference for this link. Select
thel OR toggle if you want to paste the stringified interoperable object reference into
the text box. If you want the application to read the reference from a file, Gedect
fileand enter the filename in the text box, or clickBhewse... button to display a file
selection dialog box.

4. Select the appropriate link-follow rules from the drop-down lists.
5. Click OK to add the new link.

14.9.2 ModifyingaLink

To modify a link, do the following:

1. SelecWView/Linksto display the links in the item list.
2. Select the link you wish to modify.

204 ORBacus

Configuring the Trader Attributes

3. Select Edit/Modify. The Edit Link dialog box appears as shown below.

4,
5.

3 Edit Link - TestLink

Default follow rule ‘ Local Onhy hd |
Limiting follow rule ‘ Local Onhy - |
‘ OK | ‘ Cancel |

Update the settings for the link-follow rules.
Click OK to update the link.

14.9.3 RemovingaLink

To remove alink, do the following:

1. Select View/Linksto display the linksin the item list.

N

3.
4,

Select the link you wish to remove.
Select Edit/Delete. A confirmation dialog appears.
Click Yesto removethe link.

14.10 Configuring the Trader Attributes

To configure the trader attributes, select Toolg/Attributes. The Attributes dialog box
appears, containing atabbed folder with four tabs. The tabs provide access to the attributes
from the following four IDL interfaces:

CosTrading::SupportAttributes
CosTrading::ImportAttributes
CosTrading::LinkAttributes
CosTrading::Admin

Each of the tabsis described below. Click OK when you have finished modifying the
attributes.

ORBacus 205

ORBacus Trader Console

14.10.1Support Attributes

fSuppurt rlmpurt |’Link |/Admin |

[¥] Supports modifiable properties
[v] Supports tynamic properties
[¥] Supports proxy offers

Service Type Repositony

@ I0R ' From file

|IOR:IJDIJDIJDIJDIJDIJDIJD3549444cSaEfEdE?EEEﬂEE?EMSEﬂSS-{

Supports modifiable properties

If enabled, the trader considers offers with modifiable properties (that is, properties that
are not read-only) during a query, unless the importer requests otherwise with the
use_nodi fi abl e_properties palicy. If disabled, the trader does not consider offers
with modifiable properties, regardless of the importer's wishes. This setting also deter-
minesthe behavior of the nodi f y operation inthe CosTr adi ng: : Regi st er interface. If
enabled, the server allows modification of offers. If disabled, the modify operation raises
the Not | npl enment ed exception.

Supports dynamic properties

If enabled, the trader considers offers with dynamic properties during a query, unless the
importer requests otherwise with the use_dynani c_pr operti es policy. If disabled, the
trader does not consider offers with dynamic properties, regardless of the importer's
wishes. Thetrading service specification does not define the behavior of atrader when this
option is disabled and an offer is exported that contains dynamic properties, however,
ORBAcuUS TRADER always accepts offers containing dynamic properties.

Supports proxy offers

If enabled, the trader considers proxy offers during a query, unless the importer requests
otherwise with the use_pr oxy_of f er s policy. If disabled, the trader does not consider
proxy offers, regardless of theimporter's wishes. This setting also determines the behavior
of theproxy_i f attributeinthe CosTr adi ng: : Support Attri but es interface. If

206

ORBacus

Configuring the Trader Attributes

enabled, proxy_i f returnsthe reference of the server's CosTr adi ng: : Pr oxy object. If
disabled, proxy_i f returnsni | .

Service Type Repository

The IOR of the service type repository currently in use by the trader is displayed in the
text box. In order to change the service type repository, you first need to select a method
for specifying its object reference. Select the |OR toggle if you want to paste the
stringified |OR into the text box. If you want the application to read the reference from a
file, select From fileand enter the filename in the text box, or click the Browse... button to
display afile selection dialog box.

14.10.2lmport Attributes

fSuppurt rlmpurt |’Link |/Admin |

Default Maximum
Search cardinality |2147483647 | [2147483647 |
Match cardinality [2147483647 | [2147483647 |
Return cardinality |2147483647 | [2147483647 |
Link hop count |5 | [2147483647 |
Link follow policy ‘Always - ‘Always -
Maximum list count ’W

Many of the Import attributes have default and maximum values. The default valueisused

if an importer does not supply a value for the corresponding importer policy. The maxi-

mum value is used as the allowable upper limit for the importer policy. If an importer sup-

plies a policy value that is greater than the maximum value, the importer’s policy value is
overridden and the maximum value is used instead.

Search cardinality

The number of offers to be searched during a query. The corresponding importer policy is
search_card.

Match cardinality

The number of matched offers to be ordered during a query. The corresponding importer
policy ismat ch_car d.

ORBacus 207

ORBacus Trader Console

Return cardinality

The number of ordered offersto be returned by a query. The corresponding importer pol-
icyisreturn_card.

Link hop count

The depth of linksto be traversed during a query. The corresponding importer policy is
hop_count .

Link follow policy

The trader’s behavior when considering whether to follow a link during a query. The
default value is used if an importer does not specify a value foi the fol | ow_rul e
policy. The maximum value overrides the policy established for a link as well as the
l'i nk_fol | ow_rul e policy proposed by an importer.

Maximum list count

The maximum number of items to be returned from any operation that returns a list, such
as thd i st _of f er s operation inCosTr adi ng: : Adni n or thenext _n operation in

CosTradi ng: : Of ferlterator. This attribute may override the number of items
requested by a client.

208 ORBacus

Configuring the Trader Attributes

14.10.3Link Attributes

fSuppurt rlmpurt |’Link |/Admin |

Maximum link follow policy | Always b4

Maximum link follow policy

Determines the server’s upper bound on the value of alink’s limiting follow rule at the
time of creation or modification of alink. The server raisesthe

Li m ti ngFol | owTooPer ni ssi ve exception if alink’s limiting follow rule exceeds the
value of this attribute.

14.10.4Admin Attributes

fSuppurt rlmpurt |’Link |/Admin |

Request identifier stem |

Request identifier stem

The request identifier stem is used as a prefix by the server to generate unique reguest
identifiers during a federated query. Although the IDL attributer equest _i d_st em

ORBacus 209

ORBacus Trader Console

returns a sequence of octets, this property is defined in terms of a string, with the charac-
ters of the string comprising the octets of the stem. You need to provide avalue for this
property only if the server will have links to other traders and you want to ensure that cir-
cular links are handled correctly.

14.11 Executing Queries

To execute a query, do the following:
1. Select Tools/Query. The Query dialog box appears as shown below.

EiQueny

Service type:
| Mortgage b4 |

Constraint:

Preference:

[_] Desired properties:

Query ‘ | Policies... ‘ | Close

2. Select aservice type from the drop-down list.
3. Enter aconstraint expression in the Constraint text box.

4. (Optional) Enter a preference expression in the Preference text box. If thisfield is
blank, the trader uses a default preference expression of "first".

5. If you wish to specify which properties are returned in the matching offers, click
Desired propertiesto activate the text box below and enter the names of the properties
in the text box. Use commas to separate the property names.

6. Toincludeimporter policies, click the Palicies... button. The Policies dialog box
appears as shown below. Next to each field label is acheckbox. You must check the
box for apolicy for it to beincluded in your query. Click the Defaults button to load

210 ORBacus

Executing Queries

the trader’s default import attributes into the fields of the dialog box. Qlicko
accept your changes.

& Queny Policies

[] Exact type match ‘ No - ‘ OK
[¥] Use modifiable properties Yes hd M
[v] Use dynamic properties Yes - ’7

Defaults
[_] Use proxy offers Yes -
[] Search cardinality 2147483647
[_] Match cardinality 2147483847
[] Return cardinality 2147483647
[_] Link follow policy Always -
[] Link hop count lﬁ—

7. ClickQuery to execute the query operation. If matching offers were foun@ teey
Results dialog box appears as shown below. You can scroll through the matching

ORBacus 211

ORBacus Trader Console

offers with the < and > buttons. Click Close when you have finished examining the

results.
[Query Results
Offer 1 > of 4
Object reference:
[OR:000000000000001 a49444c3a4c656064657 2446560671
Properties:
Mame Walue
product_id LOAMN_A1
rate 7.0
pet_down 200
WEArS li]

Note: The Query Results dialog box cannot be used to edit offers.

14.12 Connecting to a New Trader

When the consoleis started, the first console window to appear is already connected to the
trader you specified using the command line options. If you are managing multiple traders,

212 ORBacus

Connectingtoa New Trader

you can connect to a different trader with the Console/Connect command. The Connect
dialog appears as shown below.

[2i Connect

(@ Trader IOR

' IOR from file

) Link

TestLink -

‘ OK H Cancel|

There are three methods of connecting to the trader.

1. Toprovidethe stringified object reference, select the Trader 10R option and paste the
IOR into the text box.

2. Toobtainthestringified object reference from afile, select |OR from file and enter the
filename in the text box, or click the Browse... button to display afile selection dialog
box.

3. To connect to alinked trader, select the Link option and choose the link from the drop-
down list.

Click OK to connect to the trader. The contents of the current console window are updated
to reflect the new trader.

Note: If you want to be connected to two or more traders at the same time, use the Con-
sole/New Window command to create a new console window, then select Console/
Connect to connect the new window to another trader.

ORBacus 213

ORBacus Trader Console

214 ORBacus

«oenis 1NE INtErface Repogtory

A CORBA Interface Repository (IFR) is essential for applications using the dynamic fea-
tures of CORBA, such as the Dynamic Invocation Interface and DynAny. The IFR holds
IDL type definitions and can be queried and traversed by applications.

The ORBAcus Interface Repository is compliant with [4]. This chapter does not provide a
complete description of the IFR. For more information, please refer to the specification.

15.1 Synopsis
15.1.1 Usage
The ORBAcus Interface Repository is currently only provided with ORBAcus for C++.
irserv
[-h,--help] [-v,--version] [-e NAME, --cpp NAVE] [-d, --debug]
[-i,--ior] [-DNAVE] [-DNAME=DEF] [-UNAME] [-IDIR] [-E] [FILE...]
: E]hel D Display the command-line options supported by the server.
-V . .
- _version Display the version of the server.

ORBacus 215

The Interface Repository

-e NAME

--cpp NAME Use NAME as the preprocessor program.

-d Print diagnostic messages. This option isfor ORBAcus interna debugging

- -debug purposes only.

: I i or Print the stringified IOR of the server to standard output.

- DNAME Defines NAME as DEF, or 1 if DEF is not provided. This option is passed

- DNAME=DEF directly to the preprocessor.

- UNAMVE Removes any definition for NAME. This option is passed directly to the
preprocessor.

_IDR Adds DI Rto the include file search path. This option is passed directly to
the preprocessor.

-E Run only the preprocessor.

FILE ... IDL filesto be loaded into the repository.

15.1.2 Windows NT Native Service

ntirservice

[-h,--help] [-i,--install] [-s,--start-install]
[-u,--uninstall] [-d, --debug]
: t]hel D Display the command-line options supported by the server.
: ' install Install the service. The service must be started manually.

-S

--start-install

-u

--uninstall

-d
- -debug

Install the service and start it.

Uninstall the service.

Run the service in debug mode.

In order to use the IFR as a native Windows NT service, it isfirst necessary to add the
I nt er f aceReposi t ory initial reference to the HKEY_LOCAL_MACHI NE NT registry key
(see“Using the Windows NT Registry” on page 59 for more details).

216

ORBacus

Synopsis

15.1.3

Next the service should be installed with:

ntirservice -i

Thisaddsthe ORBacus I nterface Repository Service entry tothe Servi ces dia
log in the Control Panel. To start the naming service, select the ORBacus I nterf ace
Reposi tory Servi ce entry, and press St ar t . If the service isto be started automati-
cally when the machine is booted, select the ORBacus I nterface Repository

Servi ce entry, then click St artup. Next select Startup Type - Aut omat i c, and
press OK. Alternatively, the service could have been installed using the - s option, which
configures the service for automatic start-up:

ntirservice -s

If you want to remove the service, run:

ntirservice -u

Note: If the executable for the Interface Repository is moved, it must be uninstalled and
re-installed.

Any trace information provided by the service is placed in the Windows NT Event Viewer
with thetitle| RSer vi ce. To enable tracing information (such as connection tracing, etc.)
set the following property to aREG Sz value of at least 1:

HKEY_LOCAL_MACHI NE\ Sof t war e\ OOC\ Properti es\ ooc\orb\trace_| evel

Configuration Properties

In addition to the standard configuration properties described in Chapter 4, the ORBAcUS
Interface Repository also supports the following properties:

ooc.ifr.options=0PTS Allows command-line options to be passed to the Win-
dows NT Native service at start-up. Note that absolute
pathnames should be used when specifying include direc-
tives, IDL files, etc.

ooc. i fr.port=PORT Specifies the port number on which the service should lis-
ten for new connections. Note that this property isonly
considered if the ooc. oa. port property isnot set.

ORBacus 217

The Interface Repository

15.2

15.3

15.4

154.1

Connecting to the Interface Repository

The object key of the IFR is Def aul t Reposi t or y, which identifies an object of type
CORBA: : Reposi tory.

The object key can be used when composing URL-style object references. For example,
the following URL identifies the IFR running on host i f r host at port 20000:
corbal oc: :i frhost: 10000/ Def aul t Reposi tory

Refer to Chapter 6 for more information on URLs and configuring initial services.

Configuration Issues

Although applications can interact with the IFR as with any other CORBA server, it does
have special status within the ORB. Specifically, use of the standard operation
Obj ect:: get _interface() requiresthe presence of an IFR:

/1 PIDL
i nterface Object

{

InterfaceDef get_interface();

b

The exact semantics of get _i nt er f ace can be a source of confusion. In ORBACUS, as
with most other ORBS, the get _i nt er f ace operation isaremote operation. That is,
when aclient invokesget _i nt er f ace on an abject reference, the request is sent to the
server. The server knows the interface type of the object reference and interacts with the
IFR to locate the appropriate CORBA: : | nt er f aceDef object to return to the client.
Therefore, the server must be configured for the IFR. It is not necessary to configure the
client for the IFR if the client’s only interaction with the IFR isy&_i nt er f ace.

Interface Repository Utilities

irfeed
IDL files can be loaded into the IFR at runtime using i r f eed. See the description of the
i rser v command for more information on the command-line options.

irfeed [-h,--help] [-v,--version] [-e NAVE, --cpp NAVE] [-d, --debug]
[- DNAME] [-DNAME=DEF] [-UNAME] [-IDIR] [-E] FILE ...

218

ORBacus

Programming Example

15.4.2 irdel

Type definitions can be removed from the IFR using i r del . See the description of the
i rserv command for more information on the command-line options.

irdel [-h,--help] [-v,--version] nane ...

The name argument represents the scoped name of the type to be removed. A scoped name
has the form “X::Y::Z". For example, an interfacaefined in a modul®ican be identi-
fied by the scoped name “M::I".

15.5 Programming Example

Below is a simple example in Java that demonstrates how to obtain enf aceDef
object and display its contents:

1 /] Java

2 inmport org.ong. CORBA. *;

3 ...

4

5 org.ong. CORBA.ORB = ... // initialize the ORB

6 org.ong. CORBA. Cbject obj = ... // get object reference somehow
7

8 org.ong. CORBA. (bj ect defhj = obj._get_interface_def();

9 if(defObj == null)
10 {
11 Systemerr.println("No Interface Repository avail able");
12 Systemexit(1);
13 }
14
15 InterfaceDef def = InterfaceDefHel per.narrow def Chj);
16 org.ong. CORBA. | nt er f aceDef Package. Ful | I nt erfaceDescri pti on desc =

17 def . descri be_interface();

18

19 int i;

20

21 Systemout.println("nane = " + desc. nane);

22 Systemout.println("id =" + desc.id);

23 Systemout.println("defined_in =" + desc.defined_in);
24 Systemout.println("version =" + desc.version);

25 Systemout.println("operations:");

26 for(i =0 ; i < desc.operations.length ; i++)

27 {

28 Systemout.printin(i + ": " + desc.operations[i].nane);

ORBacus 219

The Interface Repository

29
30
31
32
33
34
35
36
37
38
39

5-8

9-13

15

16-17

19- 39

}
Systemout.println("attributes:");
for(i = 0 ; i < desc.attributes.length ; i++)
{
Systemout.printin(i + ": " + desc.attributes[i].name);
}
System out. println("base_interfaces:");
for(i =0 ; i < desc.base_interfaces.length ; i++)
{
Systemout.printin(i + ": " + desc.base_interfaces[i]);
}

After initializing the ORB and obtaining an object reference, we invoke
_get _interface_def lonthe object.

If no interface definition could be found, _get _i nt erf ace_def returnsnil.

Narrow the object referenceto | nt er f aceDef . We now have a reference to an object in
the IFR that describes the most-derived type of our object reference.

Request a complete description of the interface.
Print information about the interface, including the names of its operations and attributes.

A complete example of how to use the IFR can be found in the ob/ deno/ r eposi t ory
subdirectory.

1. Recent versions of the IDL-to-Java mapping introduced the _get _i nt er f ace_def operation,
which returnsor g. ong. CORBA. Obj ect instead of or g. ong. CORBA. | nt er f aceDef . Portable
Java applications should use _get _i nt er f ace_def . In C++, the operation is
_get_interface.

220

ORBacus

CHAPTER 16 US. ng POI i Ci %

16.1 Overview

The ORB and its services may allow the application developer to configure the semantics
of its operations. This configuration is accomplished in a structured manner through inter-
faces derived from the interface CORBA: : Pol i cy.

There are two basic types of policies: those used to configure the ORB and those used to
create anew POA.. Furthermore, the configuration of ORB policy objectsis accomplished
at two levels:

 ORB Leve: These policies override the system defaults. The ORB has an initial
referenceORBPol i cyManager. A Pol i cyManager has a set of operations through
which the current set of overriding policies can be obtained, and new policies can be
applied.

« Object Level: The object interface contains operations to retrieve and set policies for
itself. Policies applied at the object level override those applied at the thread level, or
the ORB level.

For more information on Policies, tRel i cyManager interface and the
CORBA: : Obj ect policy operations see [8] and [4].

ORBacus 221

Using Policies

16.2

16.3

16.3.1

Supported Palicies

Thefollowing is a brief description of the ORBAcus-specific policies that are currently
supported. For a detailed description, please refer to Appendix B. For standard policies,
please refer to [4].

OB::ConnectionReusePolicy

This policy determines whether the ORB is permitted to reuse a communications channel
between peers. If thispolicy isf al se then each object will have a new communications
channel to its peer. The default for this policy ist r ue.

OB::ProtocolPolicy

This policy is used to force the selection of a particular protocol. If this policy is set, then
the protocol with the identified tag will be used, if possible. If it is not possible to use this
protocol, a CORBA: : NO_RESOURCES exception will be raised.

OB::RetryPolicy

This poalicy is used to specify whether requests should be retried after communication fail-
ures.

OB::TimeoutPalicy

If an object has this policy and no response is available for arequest after val ue millisec-
onds, a CORBA: : NO_RESPONSE exception is raised.

Programming Examples

Connection Reuse Palicy

The following examples demonstrate how to set OB: : Connect i onReusePol i cy at both
the ORB level and the object level in C++ and Java. Setting apolicy at the ORB level
means that the ORB will honor this policy for al newly created objects. Existing objects
maintain their current set of policies. Setting a policy at the object level overrides any
ORSB level palicies applied to that object.

Setting the connection reuse policy to f al se at the ORB level means that the ORB will
create a new connection from the client to the server for each new proxy object instead of
reusing existing ones. Setting the connection reuse policy to f al se at the object level

222

ORBacus

Programming Examples

R Q © ® NN WNR

=

8-10

11

AN WN R

means that the client does not reuse connections to the server only for a particular proxy
object.

If the connection reuse policy isset tot r ue at somelater point, communications channels
that were previously created with a connection reuse policy set to f al se will not be
reused. That is, the connection reuse policy is sticky, in the sense that the reuse policy that
wasin effect at the time that acommunications channel is created stayswith it. Setting the
reuse policy at the object level means that for a client the ORB will not reuse the commu-
nications channel that is associated with the proxy object.

Connection Reuse Policy at ORB Level

Our first exampl e shows how the connection reuse policy can be set at the ORB level. First
in C++:

Il C++
CORBA: : Any bool Any;
bool Any <<= CORBA: : Any: : from bool ean(0);
CORBA: : Pol i cyLi st policies;
policies.length(1);
policies[0] = orb -> create_policy(OB:: CONNECTI ON_REUSE_PCLI CY
bool Any) ;
CORBA: : Ooj ect _var pmhj =
orb -> resolve_initial _references("ORBPoli cyManager");
CORBA: : Pol i cyManager _var pm = CORBA: : Pol i cyManager:: _narrow pnchj);
pm -> add_policy_overrides(policies)

Create an any and insert the value O (false).
Create a sequence containing one policy object.

Ask the ORB to create a connection reuse policy. Pass the any that contains the value for
this policy.

Obtain the ORB level policy manager object.
Add the policies to the ORB level policy manager.

And here is the same example in Java:

/1 Java

org. ong. CORBA. Any bool Any = orb.create_any();

bool Any. i nsert _bool ean(fal se);

org. ong. CORBA. Pol i cy[] policies = new org. ong. CORBA. Policy[1];
policies[0] =

ORBacus 223

Using Policies

=

R Q © N O

© N O WNRK

N
[

~
'
©

~

Q © ® N O AN WNRK

orb. create_policy(com ooc. OB. CONNECTI ON_REUSE_POLI CY. val ue,
bool Any) ;
org. ong. CORBA. Pol i cyManager pm =
or g. ong. CORBA. Pol i cyManager Hel per. narr ow(
orb.resolve_initial_references("ORBPolicyManager"));
pm add_pol i cy_overri des(policies);

Thisis equivalent to the C++ version.

Connection Reuse Policy at Object Level

And now the same example, but at the object level. C++ first:

Il C++

CORBA: : Any bool Any;

bool Any <<= CORBA: : Any: : from bool ean(0);

CORBA: : Pol i cyLi st policies(1);

policies.length(1);

policies[0] = orb -> create_policy(OB:: CONNECTI ON_REUSE_PCLI CY
bool Any) ;

CORBA: : Ooj ect _var newOhj =
obj -> _set_policy_overrides(policies, CORBA : ADD_OVERRI DES);

Thisisthe same asin the example for the ORB level.

Set the policy on the object by using theset _pol i cy_over ri des method. This method
returns a new object that has the set of policies applied.

And here is the same example in Java:

/1 Java
org. ong. CORBA. Any bool Any = orb.create_any();
bool Any. i nsert _bool ean(fal se);
org. ong. CORBA. Pol i cy[] policies = new org. ong. CORBA. Policy[1];
policies[0] =
orb. create_policy(com ooc. OB. CONNECTI ON_REUSE_POLI CY. val ue,
bool Any) ;
org. ong. CORBA. Obj ect newChj =
obj . _set_policy_override(policies,
org. ong. CORBA. Set Overri deType. ADD_OVERRI DE) ;

Thisis equivalent to the C++ version.

224

ORBacus

Programming Examples

16.3.2

O N AN WNR

© 0N U AN WDNR

~
'
©

Timeout Policy

This example shows how to configure timeouts at the object level. Asusual, the C++ ver-
sionis presented first, followed by the Java version:

/] C++
CORBA: : Any ULongAny;
ULongAny <<= (CORBA:: ULong) 1000;
CORBA: : Pol i cyLi st policies(1)
policies.length(1);
policies[0] = orb -> create_policy(O0B:: TI MEOQUT_PQOLI CY, ULongAny);
CORBA: : Ohj ect _var newChj =
obj -> _set_policy_overrides(policies, CORBA:: ADD_OVERRI DES);

We want to set the timeout to avalue of 1000 milliseconds.

Set the policy on the object by using theset _pol i cy_over ri des method. This method
returns a new object that has the set of policies applied.

And now the same example in Java

/1 Java
org. ong. CORBA. Any ULongAny = orb.create_any();
ULongAny. i nsert _ul ong(1000);
org. ong. CORBA. Pol i cy[] policies = new org. ong. CORBA. Policy[1];
policies[0] =

orb.create_policy(comooc. OB. TI MEQUT_PCLI CY. val ue, ULongAny);
org. ong. CORBA. Obj ect newChj =

obj . _set_policy_override(policies,

org. ong. CORBA. Set Overri deType. ADD_OVERRI DE) ;

Thisis equivalent to the C++ version.

Note that you can also set the timeout policy at the ORB level.

ORBacus 225

Using Policies

226 ORBacus

CHAPTER 17

Concurrency Models

17.1

1711

17.1.2

Introduction

What isa Concurrency Model?

A concurrency model describes how an Object Request Broker (ORB) handles communi-
cation and request execution. There are two main categories of concurrency models, sin-
gle-threaded concurrency models and multi-threaded concurrency models.

Single-threaded concurrency models describe how an ORB behaveswhile arequest is sent
or received in asingle-threaded environment. For example, one model isto simply let the
ORB block on sending and receiving messages. Another model isto let the ORB do some
work while sending and receiving messages, for example to receive user input through a
keyboard or a GUI, or to simply transfer buffered messages.

Multi-threaded concurrency models describe how the ORB makes use of multiple threads,

for example to send and receive messages “in the background.” Multi-threaded concur-
rency models also describe how several threads can be active in the user code and the str
egy the ORB employs to create these threads.

Why different Concurrency M odels?

There is no “one size fits all” approach with respect to concurrency models. Each concur-
rency model provides a unique set of properties, each having advantages and disadvan-

ORBacus 227

Concurrency Models

1713

17.2

1721

tages. For example, applications using callbacks must have a concurrency model that
allows nested method invocations to avoid deadlocks. Other applications must be opti-
mized for speed, in which case a concurrency model with the least overhead will be cho-
sen.

Some ORBs are highly specialized, providing only the most frequently used concurrency
models for a specific domain. ORBAcus takes a different approach by supporting several
concurrency models.

ORBacus Concurrency Models Overview

ORBAcus alows different concurrency models to be established for the client and server
activities of an application. The client-side concurrency models are Blocking, Reactive and
Threaded. The server-side concurrency models are Reactive, Threaded, Thread-per-Cli-
ent, Thread-per-Request and Thread Pool.

Sngle-Threaded Concurrency Models

Blocking Clients

The blocking concurrency model isthe simplest one. It only appliesto the client side and
means that the ORB blocks while sending requests.

A special case are oneway requests,! which do not block the ORB. If the ORB determines
that sending the oneway request would cause blocking, it puts the oneway request into a
request buffer. Whenever the client tries to send another request to the same server, this
buffer’s contents are sent first.

Because of its simplicity, the blocking concurrency model is the fastest model available.

There is no overhead, neither for calls to operationsskfect (because the ORB is

allowed to block on a single connection), nor for any thread creation or context switches.

1. A oneway request isarequest for which no reply is received. Therefore aoneway regquest cannot
return any results and there is no guarantee that a oneway request was properly executed by a
Server.

2. sel ect isusedfor synchronous 1/0O multiplexing. For more information, seethesel ect Unix
manual page.

228

ORBacus

Single-Threaded Concurrency Models

17.2.2 Reactive Clientsand Servers

Reactive servers use calls to operations like sel ect in order to simultaneously accept
incoming connection requests, to receive requests from multiple clients and to send back
replies. Thisisshownin Figure 17.1.

1 1 1
connect

_____ > E accept
f0)

¢ dispatch

]

connect

accept R I R
T
f()

dispatchlp. B

M

Y

disconnect

e EE close
disconnect

close - T T

Client A Server Client B

Figure 17.1: Reactive Server

Reactive clients also use operations like sel ect to avoid blocking. This means that while
arequest to aserver is sent or areply from that server is received, the client can simulta-
neously send buffered requests to other servers or receive and buffer replies. Thisis very
useful for oneway operations or the Dynamic Invocation Interface (DII) operation
send_def err ed in combination with get _r esponse or pol | _r esponse.

ORBacus 229

Concurrency Models

However, the main advantage of areactive client becomes apparent if it is used together
with areactive server in mixed client/server applications. A mixed client/server applica
tionisaprogram that is both a client and server at the same time. Without the reactive con-
currency model it is not possible to use nested method callsin single-threaded
applications, which are absolutely necessary for most kinds of callbacks.

Consider two programs A and B, both mixed client/server applications. First A triesto call
amethod f on B. Before this method returns, B calls back A by invoking method g. This
scenario is quite common, and for example is used in the popular Model-View-Controller
pattern [1].

For blocking clients this scenario is shown in Figure 17.2. Asyou can see, the callback g

1 0 1
ot " @ dispatch

g0
sy

T

Client/Server A Client/Server B

Figure 17.2: Blocking Client

from B to A does not succeed, because A blocks whilewaiting for areply for f from B. In
contrast, if the reactive concurrency model for the client is used, A can dispatch incoming
requests while waiting for B’s reply fér. This is shown in Figure 17.3.

The reactive concurrency models are also very fast. There is no overhead for thread cre-
ation or context switching. Only an additional call to an operatiorskkect is needed
before operations such send, r ecv oraccept can be used by the ORB.

The maximum nesting level for the reactive concurrency model is usually much higher
than for threaded concurrency models. The reason is that the maximum nesting level for

1. For moreinformationonsend_def err ed, get _response andpol | _response, seethe
chapter “The Dynamic Invocation Interface” in [4].

1. Instead of directly using operations l&el ect , ORBACUS uses dreactor to provide for flex-
ible integration with existing event loops and to allow the installation of user supplied event han-
dlers. See “The Reactor” on page 235 for more information.

230

ORBacus

Multi-Threaded Concurrency Models

f0

| .
dispatch
00| T ¥

dispatch Lpm B

[

-

A

T T
Client/Server Client/Server

Figure 17.3: Reactive Client/Server

threaded modelsis determined by the maximum number of threads allowed per process,
whereas the reactive concurrency model is only limited by the maximum stack size per
process.

17.3 Multi-Threaded Concurrency Models

17.3.1 Threaded Clientsand Servers

A threaded client uses two separate threads for each connection to a server, one for send-

ing requests and another for receiving replies. This model has the advantage that oneway
requests can be sent “in the background”, i.e., without blocking the user thread execution.
The separate receiver thread allows messages to be received and buffered for later retrieve
by the user thread with DIl operations suclyas r esponse orpol | _r esponse.

Like a threaded client, a threaded server uses separate threads for receiving requests froi
clients and sending replies. Additionally, there is a separate thread dedicated to accepting
incoming connection requests, so that a threaded server can serve more than one client at
time.

ORBAcus's threaded server concurrency model allows only one active thread in the user
code. This means that even though many requests can be received simultaneously, the ex
cution of these requests is serialized. This is shown in Figure 17.4. (For simplicity, the
“dispatch” arrows and the corresponding return arrows are omitted in this and all follow-
ing diagrams.) In the example, the threaded server has two clients connected to it and thus
two receiver threads (sender threads not shown). First Afcalighe server. If, befoffe

ORBacus 231

Concurrency Models

17.3.2

>@ QOI_

\i

-
1 TJ T
Client A Threaded Server Client B

Figure 17.4: Threaded Server

returns, B triesto call another operation g, thisrequest isdelayed until f returns. The same
is true for As call tch, which must wait untiy returns.

Allowing only one active thread in user code has the advantage of the user code not having
to take care of any kind of thread synchronization. This means that the user code can be
written as if for a single threaded system, but without losing the advantage of the ORB
optimizing its operation by using multiple threads internally.

The threaded concurrency model is still fast. No calls to operationsdilet are

required. Time consuming thread creation is only necessary when a new client is connect-
ing, but not for each request. However, thread context switching makes this approach
slower than the reactive concurrency model, at least on a single-processor computer.

Thread-per-Client Server

The thread-per-client server concurrency model is very similar to the threaded server con-
currency model, except that the ORB allows one active thread-per-client in the user code.
This is shown in Figure 17.5. A's call toand B’s call tay are carried out simultaneously,

each in its own thread. However, if A tries to call another operat{for example by

sending requests from different threads in a multi-threaded client or by using the DIl oper-
ationsend_def err ed in a single-threaded client) as longfasas not finished yet, the
execution oh is delayed untit returns.

The thread-per-client model is still efficient. Like with the threaded concurrency model,
no threads need to be created, except when new connections are accepted.

232

ORBacus

Multi-Threaded Concurrency Models

f0

£L‘J_

sl (L]

90

N [

A

e

Client A

=

Thread-per-Client
Server

T
Client B

Figure 17.5: Thread-per-Client Server

17.3.3 Thread-per-Request Server

If the thread-per-request server concurrency model is chosen, the ORB creates a new
thread for each request. Thisis shown in Figure 17.6. (For simplicity there are no separate

. ‘ . .

f()

90
-4

h(-

T T T T
Client A Thread-per-Request Client B
Server

Figure 17.6: Thread-per-Request Server

arrows for dispatch and thread creation in the diagram.) With the thread-per-request

ORBacus

233

Concurrency Models

model, requests are never delayed. When they arrive, a new thread is created and the
reguest is executed in the user code using this thread. On return, the thread is destroyed.

Besides using areactive client together with areactive server, the thread-per-request server
in combination with athreaded client isthe only other model that allows nested method
calls with an unlimited nesting level. The thread pool model aso allows nested method
calls, but the nesting level is limited by the number of threads in the pool.

The thread-per-request concurrency model is inefficient. The main problem results from
the overhead involved in creating new threads, namely one for each request.

17.3.4 Thread Pool Server

The thread pool model uses threads from a pool to carry out requests, so that threads have
to be created only once and can then be reused for other requests. Figure 17.7 shows an

L L 1|
f0

90
h()

I

;

A A A A |

T T

Client Thread Pool
Server

Figure 17.7: Thread Pool Server

example with one client and a thread pool server with three threads in the pool. (Sender
and receiver threads are not shown.) The first three operation callsf , g and h can be car-
ried out immediately, since there are three threads in the pool. However, the fourth request
i isdelayed until at least one of the other requests returns.

Since there is no time-consuming thread creation, the thread pool concurrency model per-
forms better than the thread-per-request model. The thread pool is a good trade-off if on
the one hand frequent thread creation and destruction result in unacceptable performance,

234

ORBacus

Selecting Concurrency Models

but on the other hand delaying the execution of concurrent method callsis aso not
desired.
17.4 Sdecting Concurrency Models

Concurrency models can be sel ected either by properties or command-line parameters (see
Chapter 4). The default concurrency models are shown in Table 17.1.

Client Server
Java Blocking | Threaded
C++ Blocking Reactive

Table 17.1: Default Concurrency Models

17.5 The Reactor

17.5.1 What isa Reactor?

In “reactive” mode (see “Reactive Clients and Servers” on page 229nQRBIses a
so-called “Reactor” for event dispatching [11]. Simply speaking, the Reactor is an
instance in ORBcus (a singleton) where special objects — so-called event handlers —
can register if they are interested in specific events. These events can be network events,
such as an event signaling that data are ready to be read from a network connection.

Again, this chapter only applies to OR&Js when used with reactive concurrency mod-
els. If you use ORBcus with any other concurrency model, for example any of the multi-
threaded models, the following examples are not applicable. Also, sincec@REr

Java currently doesn’t support the reactive model at all, the following only applies to
ORBAcus for C++.

17.5.2 Available Reactors

Currently there are three Reactors supported by <oREB

« The standard “select” Reactor which relies on the Berkeley Saokedst function.

« A special Reactor for use with the X11 Window System. This Reactor handles X11
events (which for example can trigger X11 callbacks) and CORBA network events
simultaneously.

ORBacus 235

Concurrency Models

NN WNR

11-13

15

17

* A special Reactor for use with Microsoft Windows 95/98/NT/2000. This Reactor
handles Windows messages and CORBA network events simultaneously.

The “default” Reactor is the “select” Reactor. If one of the other Reactors is to be used, it
must be initialized explicitly.

The X11 Reactor

An application that wants to use the X11 Reactor can obtain a special X11 Reactor using
OB: : Get XL1React or (), which it must pass tOBCORBA: : ORB_i ni t () :

Il C++
#i nclude <X11/Intrinsic. h>
#i ncl ude <OB/ CORBA. h>
#i ncl ude <OB/ Logger. h>
#i ncl ude <OB/ Properties. h>
#i ncl ude <OB/ X11. h>
int main(int argc, char* argv[])
{
Xt AppCont ext appCont ext ;
W dget topLevel = XtApplnitialize(&ppContext, "M/Application",
0, 0, &argc, argv, 0, 0, 0);
OB: : Reactor _var reactor = OB:: Cet X11React or (appCont ext);
CORBA: : ORB_var = OBCORBA: : ORB_init(argc, argv,
OB::Properties::_nil(), OB::Logger::_nil(), reactor);
[/ POA initialization not shown
orb -> run();
/1 C eanup not shown
}

Include header files.
Initialize the X11 application.
Use the X11 application context to obtain a X11 Reactor.

Initialize the ORB using the ORBUS-specificOBCORBA: : ORB_i nit ().

236

ORBacus

The Reactor

22

NN WNR

N NNNRRRRRRRRRR
WNROOONOODOG ANWNRKO©OO

13

15-16

20

Enter the CORBA event loop. Thisloop will also dispatch X11 events. Alternatively, the
standard X11 event loop may be called, which will also dispatch CORBA events.

The Windows Reactor

Using a Windows Reactor is very similar to using a X11 Reactor:

/] C++
#i ncl ude

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<W ndows. h>

<OB/ CORBA. h>

<OB/ Logger . h>
<OB/ Properties. h>
<OB/ W ndows. h>

int main(int argc, char* argv[])

{

HI NSTANCE hl nst ance = Get Mbdul eHandl e(0) ;

OB: : Reactor _var reactor = OB:: CGet WndowsReact or (hl nst ance);

CORBA: : ORB_var = OBCORBA: : ORB_init(argc, argv,
OB: :Properties::_nil(), OB::Logger::_nil(), reactor);

/1 POA initialization not shown

orb -> run();

/1 d eanup not shown

}

Include header files.

Use the Windows application instance to get a Windows Reactor.

Initialize the ORB using the ORBAcus-specific OBCORBA: : ORB_i nit ().

Enter the CORBA event loop, which now also dispatches Windows events. The standard
Windows event loop may also be called, which will then also dispatch CORBA events.

ORBacus

237

Concurrency Models

238 ORBacus

CHAPTER 18

The Open
Communications I nterface

18.1

18.2

18.2.1

What is the Open Communications Interface?

The Open Communications Interface (OCI) defines common interfaces for pluggable pro-

tocols. It supports connection-oriented, reliable “byte-stream” protocols. That is, protocols
which allow the transmission of a continuous stream of bytes (octets) from the sender to
the receiver.

TCP/IP is one possible candidate for an OCI plug-in. SinceAaR8uses GIOP, such a
plug-in then implements the IIOP protocol. Other candidates are SCCP (Signaling Con-
nection Control Part, part of SS.7) or SAAL (Signaling ATM Adaptation Layer).

Non-reliable or non-connection-oriented protocols can also be used if the protocol plug-in
itself takes care of reliability and connection management. For example, UDP/IP can be
used if the protocol plug-in provides for packet ordering and packet repetition in case of a
packet loss.

Interface Summary

Buffer

An interface for a buffer. A buffer can be viewed as an object holding an array of octets
and a position counter, which determines how many octets have already been sent or
received.

ORBacus 239

The Open Communications I nterface

18.2.2

18.2.3

18.2.4

18.25

18.2.6

Transport

The Transport interface allows the sending and receiving of octet streams in the form of
Buffer objects. There are blocking and non-blocking send/receive operations available, as
well as operations that handle time-outs and detection of connection loss.

Acceptor and Connector

Acceptors and Connectors are Factories [2] for Transport objects. A Connector is used to
connect clients to servers. An Acceptor is used by a server to accept client connection
requests.

Acceptors and Connectors also provide operations to manage protocol-specific IOR pro-
files. Thisincludes operations for comparing profiles, adding profiles to IORs or extract-
ing object keys from profiles.

Connector Factory

A Connector Factory is used by clients to create Connectors. No special Acceptor Factory
is hecessary, since an Acceptor is created just once on server start-up and then accepts
incoming connection requests until it is destroyed on server shutdown. Connectors, how-
ever, need to be created by clients whenever anew connection to a server has to be estab-
lished.

The Registries

The ORB provides a Connector Factory Registry and the Object Adapter provides an

Acceptor Registry. These registries allow the plugging-in of new protocols. Transport,

Connector, Connector Factory and Acceptor must be written by the plug-in implementors.

The Connector Factory must then be registered with the ORB’s Connector Factory Regis-
try and the Acceptor must be registered with the Object Adapter’'s Acceptor Registry.

The Info Objects

Info objects provide information on Transports, Acceptors and Connectors. A Transport
Info provides information on a Transport, an Acceptor Info on an Acceptor and a Connec-
tor Info on a Connector. To get information for a concrete protocol, these info objects must
benar r owd to an info object for this protocol, for example, in the case of an IIOP plug-
in, a0Cl : : Transport | nf o must benarrowd to OCl : : | | OP: : Transport | nf o.

240

ORBacus

OCI Reference

18.2.7 ClassDiagram

Figure 18.1 shows the classes and interfaces of the OCI (except for the Buffer and Info

1 ORB on [1
Connector
Acceptor
Factory ;
Registry Registry
Ln Connector Connect T ¢ Accent nj
Factory onnector ranspor cceptor
creates» creates» < creates
Pr oto_(;c_) I- Protocol- Protocol- Protocol-
Ciﬂflcéc't%r Specific Specific Specific
Factory Connector Transport Acceptor

Figure 18.1: OCI Class Diagram

interfaces). ORBAcCUS provides abstract base classes for the interfaces Connector Factory,
Connector, Transport and Acceptor. The protocol plug-in must inherit from these classes

in order to provide concrete implementations for a specific protocol. ORBAcCuUS also pro-
vides concrete classes for the interfaces Buffer, Connector Factory Registry and Acceptor
Registry. Instances of Connector Factory Registry and Acceptor Registry are provided by
the ORB and Object Adapter, respectively. Concrete implementations of the Connector
Factory must be registered with the ORB’s Connector Factory Registry, and concrete
implementations of the Acceptor must be registered with the Acceptor Registry.

18.3 OCI Reference

This chapter does not contain a complete reference of the OCI. It only explains OCI basics
and, in the remainder of this chapter, how it is used from the application programmer’s

ORBacus 241

The Open Communications I nterface

18.4

184.1

1
2
3

point of view for the most common tasks. For more information on how to use the OCI to
write your own protocol plug-ins, and for a complete reference, please refer to
Appendix E.

OCI for the Application Programmer

The following information only appliesto the standard ORBAcus I1OP plug-in. For other
plug-ins, please refer to the plug-in’s documentation.

A “Converter” Class for Java

Asyou will see in the following examples, the OCI info objects return port numbers as
IDL unsi gned short vauesand IP addresses as an array of 4 IDL unsi gned oct et
values. Thisworks fine for C++, but in Java this causes a problem, because there are no
unsigned types in Java. The Java mapping simply maps unsigned typesto signed types.
Consider for example the IP address 126.127.128.129. In Java, the OCI will return this as
126.127.-128.-127, because 128 and 129, if bit-wise mapped to the Java byt e type, are
-128 and -127.

To avoid this problem, we will use a helper class which converts port numbersand IP
addressesto Javai nt types. This helper classlooks as follows:

/'l Java
final class Converter

{

static int port(short s)

if(s <0)

return Oxffff + (int)s + 1;
el se

return (int)s;

}

static int[] addr(byte[] bArray)
{
int[] iArray = new int[4];
for(int i =0 ; i <4 ; i++)
if(bArray[i] 0)
i Array[i] Oxff + (int)bArray[i] + 1;
el se
iArray[i] = (int)bArray[i];

N

return i Array;

242

ORBacus

OCI for the Application Programmer

22
23

4-10

12-22

}
}s

Convertsshort port numberstoi nt .

Convertsbyt e[] IPaddressestoint[].

The converter classis used throughout the examples in the sections bel ow.

18.4.2 Getting Hostnames and Port Numbers

N ORNWNR

7-9

11

13-17

The following code fragments show how it is possible to find out on what hostnames and
port numbers a server islistening. First the C++ version:

Il C++
OCl :: AccRegi stry_var registry = poaManager -> get_acc_registry();
OCl :: Acceptor Seq_var acceptors = registry -> get_acceptors();

for(CORBA :ULong i = 0 ; i < acceptors -> length() ; i++)
{
OCl :: Acceptorinfo_var info = acceptors[i] -> get_info();
OCl::110P:: Acceptorinfo_var iioplnfo =
OCl::110P:: Acceptorinfo::_narrow(info);
i f(!'CORBA::is_nil(iioplnfo))
{
CORBA: : String_var host = iioplnfo -> host();
CORBA: : UShort port = iioplnfo -> port();
cout << "host: " << host << endl;
cout << "port: " << port << endl;
}

}
The Acceptor Registry is requested from the manager of the object adapter.

From the Acceptor Registry, the list of registered acceptorsis requested.

Thef or loop iterates over all acceptors.

Theinfo object for the acceptor is requested and narrowed to an 11 OP acceptor info object.
Thei f block isonly entered in case the info object really belongsto an [1OP plug-in.

The hostname and port number are requested from the 11OP acceptor info object and
printed on standard output.

ORBacus 243

The Open Communications I nterface

N ORNWNR

2-13
14

16-17

18.4.3

O N AN WNR

©

The Java version is basically equivalent to the C++ code and looks as follows:

/1 Java
com ooc. OCl . AccRegi stry registry
com ooc. OCl . Acceptor[] acceptors

= poaManager. get_acc_registry();
= registry.get_acceptors();
for(int i =0 ; i < acceptors.length ; i++)
{
com ooc. OCl . Acceptorinfo info = acceptors[i].get_info();
comooc. OCl . |1 OP. Acceptorinfo iioplnfo =
com ooc. OCl . | | OP. Accept or | nf oHel per. narrow i nf o) ;

if(iioplnfo !'= null)

{
String host = iioplnfo.host();
short port = Converter.port(iioplnfo.port());

Systemout.println("host: " + host);
Systemout.println("port: " + port);

}

Thisis equivalent to the C++ version.
The converter classis used to get a port number ini nt format.

Like in the C++ version, the hostname and port number are printed on standard output.

Finding out a Client’s IP Address

To find out the IP address of a client within a server method, the following code can be
used in a servant class method implementation:

/] C++
CORBA: : hj ect _var baseCurrent =

orb -> resolve_initial _references("OCl Current");
CCl::Current_var current = OCl::Current::_narrow baseCurrent);

OCl::Transportlnfo_var info = current -> get_oci _transport _info();
OCl::110P:: Transportinfo_var iioplnfo =
CCl::110P::Transportinfo:: _narrow(info);

i f(!'CORBA::is_nil(iioplnfo))

{
OCl::110P:: 1 netAddr renoteAddr = iioplnfo -> renpte_addr();

244

ORBacus

OCI for the Application Programmer

13
14
15
16
17
18
19

10

12-18

O N RN WNR

2-11

13-14

CORBA: : UShort renotePort = iioplnfo -> renote_port();
cout << "Call from
<< renpteAddr[0] << '.’' << renpteAddr[1] <<’
<< renpteAddr[2] << '.’' << renoteAddr[3]
<< ":" << remotePort << endl;
}
The OCI current object is requested and nar r owd to the correctCl : : Current type.

The info object for the transport is requested mand owd to an IIOP transport info
object.

The remainder of the example code is only executed if this was really an IIOP transport
info object.

The address and the port of the client calling this operation are obtained and printed on
standard output.

The Java version looks as follows:

/1 Java
org. ong. CORBA. Obj ect baseCurrent =
orb.resolve_initial _references("OCl Current");
comooc. OCl. Current current =
com ooc. OCl . Cur r ent Hel per. narr ow(baseCurrent);

com ooc. OCl . Transportinfo info = current.get_oci_transport_info();
comooc. OCl. |1 OP. Transportinfo iioplnfo =
com ooc. OCl . | | OP. Transport | nf oHel per. narr ow(basel nfo);

if(iioplnfo !'= null)

{
int[] renpoteAddr = Converter.addr(iioplnfo.renote_addr());
int renmotePort = Converter.port(iioplnfo.rennte_port());
Systemout.printin("Call from " +
renoteAddr[0] + "." +
renot eAddr [1] + +
renot eAddr[2] + +
renot eAddr[3] + " + renptePort);
}

This code is equivalent to the C++ version.

Again, the port number must be converted frdmrt toi nt.

ORBacus 245

The Open Communications I nterface

16-20 Thisisalso equivalent to the C++ version.

18.4.4 Finding out a Server’'s IP Address

To find out the server’s IP address and port that an object will attempt to connect to, the
following code can be used:

1 /] C++

2 CORBA:: nject_var obj = ... // Get an object reference sonmehow
3

4 OCl::Connectorlnfo_var info = obj -> get_oci_connector_info();
5 OCl::110P::Connectorlnfo_var iioplnfo =

6 OCl::110P:: Connectorlnfo::_narrow(info);

7

8 if(!CORBA: :is_nil(iioplnfo))

9 {

10 CCl::110P:: 1 netAddr_var renoteAddr = iioplnfo -> renoteAddr();
11 CORBA: : UShort renotePort = iioplnfo -> renote_port();

12

13 cout << "W I connect to:

14 << renoteAddr[0] << '.’ << rempteAddr[2] << .’

15 << renmpteAddr[2] << '.’' << renoteAddr[3]

16 << ":" << remotePort << endl;

17 '}

4-6 Get the OCI connector info and narrow to an IIOP connector info
8 Theif block is only executed if this really was an IIOP connector info.
10-16 The address and port are obtained and displayed on standard output.

The Java version looks as follows:

/1 Java
org. ong. CORBA. Ohject obj = ... // Get an object reference sonehow

1
2
3
4 org.ong. CORBA. portabl e. Cbj ectlnmpl objlml =
5 (org. ong. CORBA. port abl e. Cbj ect | npl) obj ;
6 com ooc. CORBA. Del egat e obj Del egate =

7 (com ooc. CORBA. Del egat e) obj | npl . _get _del egate();
8

9 com ooc. OCl . Connectorlinfo info =

10 obj Del egat e. get _oci _connector _i nfo();
11 com ooc. OCl . |1 OP. Connectorlnfo iioplnfo =
12 com ooc. OCl . | | OP. Connect or | nf oHel per. narrow(i nfo);

246 ORBacus

OCI for the Application Programmer

13

14 if(iioplnfo !'= null)

15 {

16 int[] renpoteAddr = Converter.addr(iioplnfo.renote_addr());
17 int renmotePort = Converter.port(iioplnfo.renote_port());
18

19 Systemout.println("WIIl connect to: " +

20 renoteAddr[0] + "." +

21 renoteAddr[1] + "." +

22 renoteAddr[2] + "." +

23 renoteAddr[3] + ":" + renotePort);

24 }

4-7 We need to retrieve the ORBAcus-specific Del egat e object so that we can get the con-
nector info.

9-12 Get the OCI connector info and narrow to an [1OP connector info.
14 Theif block isonly entered if thisreally was an I1OP connector info.

16- 23 The address and port are obtained and displayed on standard output.

ORBacus 247

The Open Communications I nterface

248 ORBacus

worenss EXOCEPIIONS AN EFror
Messages

19.1 CORBA System Exceptions
The CORBA specification defines the standard system exceptions shown in Table 19.1. In

UNKNOWN Unknown exception type

BAD PARAM Aninvalid parameter was passed
NO_MEMORY Failure to allocate dynamic memory
IMP_LIMT Implementation limit was violated
COWM_FAI LURE Communication failure

I NV_OBJREF Invalid object reference

NO_PERM SSI ON

The attempted operation was not permitted

| NTERNAL

Internal error in ORB

MARSHAL

Error marshalling a parameter or result

I NI TI ALI ZE

Failure when initializing ORB

NO_| MPLEMENT

Operation implementation unavail able

Table 19.1: Standard CORBA System Exceptions

ORBacus

249

Exceptions and Error M essages

BAD_TYPECCDE

Bad typecode

BAD_OPERATI ON

Invalid operation

NO_RESOURCES

Insufficient resources for a request

NO_RESPONSE

Response to a request is not yet available

PERSI ST_STORE

Persistent storage failure

BAD_| N\V_ORDER

Routine invocation out of order

TRANSI ENT Transient failure, request can be reissued
FREE_MEM Cannot free memory

I NV_I DENT Invalid identifier syntax

I N\V_FLAG Invalid flag was specified

| NTF_REPCS Error accessing interface repository

BAD CONTEXT Error processing context object
0BJ_ADAPTER Failure detected by object adapter

DATA_CONVERSI ON

Error in data conversion

OBJECT_NOT_EXI ST

Non-existent object, references should be disca

rded

TRANSACTI ON_REQUI RED

Active transaction context required

TRANSACTI ON_ROLLEDBACK

Transaction has rolled back or is marked to be r
back

olled

I NVALI D_TRANSACTI ON

Invalid transaction context

| NV_POLI CY

Invalid Policy

CODESET_| NCOVPATI BLE

Incompatible client and server native code sets

Table 19.1: Standard CORBA System Exceptions

the following subsections the minor exception codes are presented. Minor codes that are
ORBAcus-specific are presented as Minor CodeName’, that is, are tagged with the super-

script *'.

250

ORBacus

CORBA System Exceptions

19.1.1 INITIALIZE Minor Exception Code

M nor ORBDest r oyed

ORB aready destroyed

19.1.2 UNKNOWN Minor Exception Code

M nor UnknownUser Except i on

Unknown user exception

19.1.3 BAD_PARAM Minor Exception Code

M nor Val ueFact or yErr or

Failure to register, unregister or
lookup value factory

M nor Reposi t oryl dExi st's

Repository ID aready existsin
Interface Repository

M nor NameExi st s

Name aready used in Interface
Repository

M nor | nval i dCont ai ner

Target isnot avalid container

M nor Named ashl nl nheri t edCont ext

Name clash in inherited context

M nor BadAbstract | nterfaceType

Incorrect type for abstract
interface

M nor BadScheneNane

Bad scheme name

M nor BadAddr ess

Bad address

M nor BadScheneSpeci fi cPart

Bad scheme specific part

M nor O her

Other

M nor I nval i dAbstract | nterfacel nheritance

Invalid abstract interface
inheritance

M nor I nval i dval uel nheri tance

Invalid valuetype inheritance

M nor I nval i dServi ceContext|d

Invalid service context ID

M nor Cbj ect | sNul |

Object parameter to
obj ect _to_ior() isnull

M nor | nval i dConponent | d

Invalid component ID

ORBacus

251

Exceptions and Error M essages

M norlnvalidProfileld Invalid profile ID

M nor Dupl i cat eDecl ar at or * Duplicate declarator

M nor I nval i dVal ueNodi fier Invalid valuetype modifier

M nor Dupl i cat eVal uel nit " Duplicate valuetype initializer

Abstract valuetype cannot have

L x
M nor Abst r act Val uel ni t initializer

Base type appears more than

. *
M nor Dupl i cat eBaseType once

. ORB does not support multiple
M nor Si ngl eThr eadedOnl y threads

Invalid name redefinition in an

. . . . *
M nor NaneRedef i ni ti onl nl medi at eScope immediate scope

M nor | nval i dVval ueBoxType* Invalid type for valuebox

252 ORBacus

CORBA System Exceptions

19.1.4 NO_MEMORY Minor Exception Code

M nor Al | ocat i onFai l ure” Memory allocation failure

19.1.5 IMP_LIMIT Minor Exception Code

M nor MessageSi zeLimit M aximum message size exceeded

M nor ThreadLi nit * Can't create new thread

19.1.6 COMM_FAILURE Minor Exception Code

*
M nor Recv

recv() failed

M nor Send”

send() failed

*
M nor RecvZer o

recv() returned zero

M nor SendZero”

send() returned zero

M nor Socket *

socket () failed

M nor Set sockopt ¥

set sockopt () failed

M nor Get sockopt ¥

get sockopt () failed

M nor Bi nd"

bi nd() failed

M nor Li sten”

listen() failed

M nor Connect *

connect () failed

M norAccept*

accept () failed

M nor Sel ect *

sel ect () failed

M nor Get host nane”

get host nane() failed

M nor Get host byname*

get host byname() failed

M nor WBASt ar t up*

WBASt ar t up() failed

M nor WSACI eanup*

WBAC eanup() failed

M nor NoGl P

Not a GIOP message

ORBacus

253

Exceptions and Error M essages

M nor Unknomnl\/tessage*

Unknown GIOP message

M norWonngssage*

Wrong GIOP message

*
M nor MessageErr or

Got amessage error message

M nor Fr agnment ¥

Invalid fragment message

M nor UnknownReq| d"

Unknown request ID

254

ORBacus

CORBA System Exceptions

19.1.7 MARSHAL Minor Exception Code

M nor NoVal ueFact ory

Unable to locate value factory

M nor ReadOver f | ow'

Input stream buffer overflow

M nor ReadBool eanOver f | ow’

Overflow while reading boolean

M nor ReadChar Over f | ow

Overflow while reading char

M nor ReadWChar Over f | ow'

Overflow while reading wchar

M nor ReadOct et Over f | ow'

Overflow while reading octet

M nor ReadShor t Over f | ow'

Overflow while reading short

M nor ReadUShor t Over f | ow’

Overflow while reading ushort

M nor ReadLongOver f | ow'

Overflow while reading long

M nor ReadULongOver f | ow'

Overflow while reading ulong

M nor ReadLongLongOver f ow'

Overflow while reading longlong

M nor ReadULongLongOver f ow'

Overflow while reading ulonglong

M nor ReadFl oat Over f | ow'

Overflow while reading float

M nor ReadDoubl eOver f | ow’

Overflow while reading double

M nor ReadLongDoubl eQver f | ow'

Overflow while reading longdouble

M nor ReadSt ri ngOver f | ow'

Overflow while reading string

M nor ReadSt ri ngZer oLengt h*

Encountered zero-length string

M nor ReadSt ri ngNul | Char”

Encountered null char in string

M nor ReadSt ri ngNoTer mi nat or”

Terminating null char missing in string

M nor ReadWst r i ngOver f ow'

Overflow while reading wstring

M nor ReadWst r i ngZer oLengt h*

Encountered zero-length wstring

M nor ReadWst r i ngNul | WChar ¥

Encountered null char in wstring

M nor ReadWst ri ngNoTer mi nat or”

Terminating null char missing in wstring

M nor ReadFi xedOver f | ow'

Overflow while reading fixed

ORBacus

255

Exceptions and Error M essages

M nor ReadFi xedI nval i d*

Invalid encoding for fixed value

M nor ReadBool eanArrayOver f | ow'

Overflow while reading boolean array

M nor ReadChar ArrayOQverf 1 ow

Overflow while reading char array

M nor ReadWChar Ar rayQOver f ow

Overflow while reading wchar array

M nor ReadCct et ArrayQverfl ow'

Overflow while reading octet array

M nor ReadShort ArrayOQverfl ow'

Overflow while reading short array

M nor ReadUShor t ArrayOver f | ow'

Overflow while reading ushort array

M nor ReadLongAr rayOQverf ow

Overflow while reading long array

M nor ReadULongAr rayQver f | ow'

Overflow while reading ulong array

M nor ReadLongLongArrayOver f ow'

Overflow while reading longlong array

M nor ReadULongLongAr r ayOver f | ow'

Overflow while reading ulonglong array

M nor ReadFl oat ArrayOverf |l ow'

Overflow while reading float array

M nor ReadDoubl eArrayOver f | ow'

Overflow while reading double array

M nor ReadLongDoubl eAr rayQverf | ow'

Overflow while reading longdouble
array

M nor Readl nvTypeCodel ndi recti on”

Invalid type code indirection

M nor Wit eQhj ect Local ¥

Attempt to marshal alocality-
constrained object

M nor LongDoubl eNot Supported*

Long doubleis not supported

256

ORBacus

CORBA System Exceptions

19.1.8 NO_IMPLEMENT Minor Exception Code

M nor M ssi ngLocal Val uel npl ement ati on

Missing local value
implementation

M nor | nconpat i bl eVal uel npl enent ati onVer si on

Incompatible value
implementation version

19.1.9 NO_RESOURCESMinor Exception Code

M nor I nval i dBi ndi ng

Portable I nterceptor operation not supported in
binding

19.1.10BAD_INV_ORDER Minor Exception Code

M nor DependencyPr event sDestructi on

Dependency existsin Interface Repository
prevents destruction of object

M nor | ndestructi bl eCbj ect

Attempt to destroy indestructible object in
Interface Repository

M nor Dest r oyWoul dBl ock

Operation would deadlock

M nor Shut downCal | ed

ORB has shutdown

M nor I nval i dPI Cal |

Invalid Portable Interceptor call

M nor Ser vi ceCont ext Exi sts

A service context already exists with the
given D

M nor Pol i cyFact or yExi st's

A factory already exists for the given
PolicyType

M nor BadConcMbdel *

Invalid concurrency model

M nor ORBRunni ng*

ORB: : run() already caled

M nor Request Al r eadySent ¥

Request has already been sent

M nor Request Not Sent ¥

Request has not yet been sent

M nor ResponseAl r eadyRecei ved”

Response has already been received

ORBacus

257

Exceptions and Error M essages

19.1.11TRANSIENT Minor Exception Code

M nor Request Cancel | ed Request has been cancelled
M nor Connect Fai | ed” Request has been cancelled
M nor O oseConnecti on” Got a ‘close connection’ message

Active connection management closed

. . *
M nor Act i veConnect i onManagenent connection

Forced connection shutdown because o

M nor For cedShut down timeout

19.1.12INTF_REPOS Minor Exception Code

M nor Nol nt f Repos” Interface Repository is not available

M nor LookupAmbi guous” Search name fdrookup() is ambiguous

M nor I | | egal Recur si on” lllegal Recursion

M nor NoEnt ry” IFR is not populated with a required definition.

19.1.130BJECT_NOT_EXIST Minor Exception Code

Attempt to pass unactivated (unregistered

M nor Unr egi st er edVal ue .
value as an object reference

19.1.14INV_POLICY Minor Exception Code

No PolicyFactory for the PolicyType has been

M nor NoPol i cyFact ory registered

19.2 Non-Compliant Application Asserts

If the ORBAcus library was compiled without the preprocessor definition - DNDEBUG

defined, ORBAcuUS tries to detect common programming mistakes that lead to non—com-
pliant CORBA applications. If such a mistake is found an error messages like this will
appear:

Non- conpl i ant application error detected:

258 ORBacus

Non-Compliant Application Asserts

Application used wong nenory allocation function

After detecting such an error, the ORBAcus library dumps a core (Unix only) and prints
the file and line number where the error was detected. You can use the core dump in order
to track down the problem with a debugger.

The following error messages can appear:

Application requested a feature that has not yet been implemented

Thisis not an application error. This error message appears if an application attemptsto
use afeature that has not yet been implemented in ORBAcuUS. In this case the only thing
that can be done is to wait for the next ORBAcCuUS version that has this particular feature
implemented.

Application used wrong memory allocation function

If this message appears, an incorrect memory allocation function has been used. A com-
mon mistake that leads to thiserror isto usenal | oc, st rdup and f r ee (or the new and
del et e operator) instead of CORBA: : st ri ng_al | oc and CORBA: : st ri ng_dup and
CORBA: : st ring_f r ee for string memory management.

Memory that was already deallocated was deallocated again

This message indicates multiple memory deallocations. For example, if
CORBA: : string_free iscalled twice on the same string, this message will be displayed.

Object was deleted without an object reference count of zero

This message appearsif an object was deleted by calling del et e on its object reference.
Never use the del et e operator for that; use CORBA: : r el ease instead.

Object was already deleted (object reference count was already zer o)

This message appearsif the number of r el ease operations on an object referenceis
greater than the number of _dupl i cat e operations.

Sequence length was greater than maximum sequence length

This message indicates that the application tried to set the length of abounded sequence to
avalue greater than its maximum length.

ORBacus 259

Exceptions and Error M essages

Index for sequence operator[]() or remove() function was out of range

This message appears if the argument to the sequence member functions oper at or[] or
r enove exceeds the sequence length.

Null pointer was used toinitialize T_var type

This message indicates an attempt to initialize a_var type with anull pointer.

operator->() was used on null pointer or nil object reference

This message indicates an attempt to use oper at or - > on an uninitialized _var type.

Application tried to dereference a null pointer

Some CORBA _var typeshave built-in conversion operatorsto a C++ referencetype, i.e.,
some _var typesfor type T have a conversion operator to T& This message appearsif an
application uses this conversion operator on an uninitialized _var type.

Null pointer was passed as string parameter or return value

According to the IDL-to—C++ mapping specification, no null pointers may be passed as
string parameters or return values. This message appears if an application tries to do so.

Self assignment caused a dangling pointer

This message appears if the content ofar type is assigned to itself. For example, the
following code will lead to this error message:

/1 Sonehow get a pointer to a variable struct
AVari abl eStruct _var var = ...

Avari abl eStruct* ptr = var;

var = ptr;

AN WN R

3,4 This will result in a dangling pointer, becawse will free its own content on assignment.

Replacement of Any content by its own value caused a dangling pointer

This message appears if there is an attempt to replace the conteahgftanits own
value. For example:

1 char* s = CORBA::string_dup("Hello, world!");
2 CORBA:: Any any;

260 ORBacus

Non-Compliant Application Asserts

any <<= s;
any <<= s;

Inserting s into any twice will result in a dangling pointer, because any will freeits own
value (which iss) on assignment.

Invalid union discriminator type used

This message appears if the discriminator type argument to

CORBA: : ORB: : cr eat e_uni on_t ¢ denotesatypeinvalid for union discriminators. Valid
types have a CORBA: : TCKi nd that isone of CORBA: : t k_short, CORBA: : t k_ushort,
CORBA: : t k_I ong, CORBA: : t k_ul ong, CORBA: : t k_char, CORBA: : t k_bool ean or
CORBA: :tk_enum

Union discriminator mismatch

This message either indicates an attempt to set a union discriminator to an invalid value
with the _d modifier function or the use of awrong accessor function, i.e., an accessor
function that does not correspond to the type of the union’s actual value.

Uninitialized union used

If this message appears, an uninitialized union (i.e., a union that was created with the
default constructor and that was not set to any legal value) was used.

Dynamic implementation object cannot be used as static implementation obj ect

This message appears if an attempt is made to use a DSI object implementation as a regt
lar (i.e., static) implementation object.

ORBacus 261

Exceptions and Error M essages

262 ORBacus

weons BOOL Manager Reference

A.1 Interface OB::BootManager

interface BootM anager

Interface to manage bootstrapping of objects.
Exceptions

NotFound
exception Not Found

{
}s

This exception indicates that a binding has not been found.

AlreadyExists
exception AlreadyExists

{
}s

This exception indicates that a binding already exists.

ORBacus 263

Boot Manager Reference

Operations

add_binding
voi d add_bi ndi ng(i n Portabl eServer:: Chjectld oid,
in Object obj)
rai ses(Al readyExi sts);

Add anew hinding to the internal table.
Parameters:
oi d - The object id to bind.

obj - The object reference.

Raises:
Al r eadyExi st s - Thrown if binding already exists.

remove_binding
voi d renove_bi ndi ng(i n Portabl eServer:: Qbjectld oid)
rai ses(Not Found) ;

Remove a binding from the internal table.

Parameters:
oi d - The object id to remove.

Raises:
Not Found - Thrown if no binding found.

set_locator
voi d set_locator(in BootLocator |ocator);

Set the BootL ocator. The BootL ocator is called when a binding for an object id does not exist in
theinternal table.

Parameters:
| ocat or - The BootLocator reference.

See Also:
BootL ocator

264

ORBacus

Interface OB::BootL ocator

A.2 Interface OB::BootLocator

interface BootL ocator
Interface used by BootManager to assist in locating objects.

See Also:
BootManager

Operations

locate
void | ocate(in PortableServer::Objectld oid,
out Cbject obj,
out bool ean add)
rai ses(Boot Manager : : Not Found) ;

Locate the object coresponding to the given object id.

Parameters:
oi d - Theobject id.
obj - The object reference to associate with the id.
add - Whether the binding should be added to the internal table.

Raises:
Not Found - Raised if no binding found.

ORBacus 265

Boot Manager Reference

266 ORBacus

weoxe ORBacus Policy Reference

B.1 Module OB

Constants

CONNECTION_REUSE_POLICY_ID
const CORBA: : Pol i cyType CONNECTI ON_REUSE_POLI CY_I D = 1330577411;

This policy type identifies the connection reuse policy.

INTERCEPTOR_POLICY_ID
const CORBA: : PolicyType | NTERCEPTOR PCLI CY_I D = 1330577415;

This policy type identifies the interceptor policy.

LOCATION_TRANSPARENCY_POLICY_ID
const CORBA: : Pol i cyType LOCATI ON_TRANSPARENCY_POLI CY_I D = 1330577414,

This policy type identifies the location transparency policy.

LOCATION_TRANSPARENCY_RELAXED
const short LOCATI ON_TRANSPARENCY_ RELAXED = 1;

ORBacus 267

ORBacus Palicy Reference

The LOCATI ON_TRANSPARENCY_REL AXED L ocationTransparencyPolicy value.

LOCATION_TRANSPARENCY_STRICT
const short LOCATI ON_TRANSPARENCY_STRI CT = O0;

The LOCATI ON_TRANSPARENCY_STRI CT LocationTransparencyPolicy value.

PROTOCOL_POLICY_ID
const CORBA: : Pol i cyType PROTOCOL_POLI CY_I D = 1330577410;

This policy type identifies the protocol policy.

RETRY_ALWAYS
const short RETRY_ALWAYS = 2;

The RETRY_ALWAYS RetryPolicy value.

RETRY_NEVER
const short RETRY_NEVER = 0;

The RETRY_NEVER RetryPolicy value.

RETRY_POLICY_ID
const CORBA:: PolicyType RETRY_POLICY_ID = 1330577412;

This policy type identifies the retry policy.

RETRY_STRICT
const short RETRY_STRICT = 1;

The RETRY_STRI CT RetryPolicy value.

TIMEOUT_POLICY_ID
const CORBA: : PolicyType TIMEOUT_POLICY_I D = 1330577413;

This policy type identifies the timeout policy.

ORBacus

Inter face OB::ConnectionReusePoalicy

B.2 Interface OB::ConnectionReusePolicy

interface ConnectionReusePalicy
inherits from CORBA::Policy

The connection reuse policy. This policy determines whether connections may be reused or are pri-
vate to specific objects.

Attributes

value
readonly attribute bool ean val ue;

If an object hasa Connect i onReusePol i cy set with val ue set to FALSE, then other objects
references will not be permitted to use connections made on behalf of this object. If set to TRUE,
then connections are shared. The default value is TRUE.

ORBacus 269

ORBacus Palicy Reference

B.3 Interface OB::InterceptorPolicy

interface Inter ceptor Policy
inherits from CORBA::Policy

Theinterceptor policy. Thispolicy can be used to control whether interceptors are called on method
invocations on both the client and the server side.

Attributes

value
readonly attribute bool ean val ue;

If an object hasan | nt er cept or Pol i cy set and val ue is FALSE then any installed intercep-
tors are not called. Otherwise, interceptors are called for each method invocation. The default
valueis TRUE.

270 ORBacus

Interface OB::LocationTransparencyPolicy

B.4 Interface OB::LocationTransparencyPolicy

interface L ocationTransparencyPolicy
inherits from CORBA::Policy

The location transparency policy. This policy is used to control how strict the ORB isin enforcing
location transparency. Thisis useful for performance reasons.

Attributes

value
readonly attribute short val ue;

LOCATI ON_TRANSPARENCY_STRI CT ensures strict location transparency is foll owed.

LOCATI ON_TRANSPARENCY_RELAXED relaxes the location transparency guarantees for perfor-
mance reasons. Specifically for collocated method invocations, the dispatch concurrency model
will beignored, and policy overrides are not removed. The default value is

LOCATI ON_TRANSPARENCY_STRI CT.

ORBacus 271

ORBacus Palicy Reference

B.5 Interface OB::ProtocolPolicy

interface Protocol Policy
inherits from CORBA::Policy

The protocol policy. This policy is used to force the selection of a specific protocol.

Attributes

value
readonly attribute 10P::Profileld val ue;

If aPr ot ocol Pol i cy is set, then the protocol with the identified tag will be used, if possible.
If itisnot possibleto use this protocol, a CORBA: : NO_RESOURCES exception will be raised. By
default, the ORB chooses the protocol to be used.

272 ORBacus

Interface OB::RetryPolicy

B.6 Interface OB::RetryPolicy

interface RetryPolicy
inherits from CORBA::Policy

Theretry policy. This policy is used to specify whether requests are retried after communication
failures (i.e., CORBA: : TRANSI ENT and CORBA: : COMM_FAI LURE exceptions).

Attributes

value
readonly attribute short val ue;

RETRY_NEVER indicates that requests should never be retried, and the exception is re-thrown to
the application. RETRY_STRI CT will retry once if the exception completion statusis
COVPLETED_NQ, in order to guarantee at-most-once semantics. RETRY_ALWAYS will retry once,
regardless of the exception compl etion status. The default valueis RETRY_STRI CT. Note:
Many TCP/IP stacks do not provide areliable indication of communication failure when send-
ing smaller requests, therefore the failure may not be detected until the ORB attempts to read
thereply. In this case, the ORB must assume that the remote end has received the request, in
order to guarantee at-most-once semantics for the request. The implication is that when using
the default setting of RETRY_STRI CT, most communication failures will not cause aretry. This
behavior can be relaxed using RETRY_ALWAYS.

ORBacus 273

ORBacus Palicy Reference

B.7 Interface OB::TimeoutPolicy

interface TimeoutPolicy
inherits from CORBA::Policy

The timeout policy. This policy can be used to specify communication timeouts.

Attributes

value
readonly attribute unsigned | ong val ue;

If an object hasaTi neout Pol i cy set and no responseto arequest is available after val ue
milliseconds, a CORBA: : NO_RESOURCE exception is raised. The default valueis- 1, which
means no timeout.

274 ORBacus

—eoxe REACIOr Reference

C.1 Interface OB::Reactor

interface Reactor

A generic Reactor interface.
Operations

register_handler
voi d regi ster_handl er (i n Event Handl er handl er,
i n Mask handl er _nask,
in TypeMask type_nask,
in Handl e h);

Register an event handler with the Reactor, or change the registration of an already registered
event handler.

Parameters:
handl er - The event handler to register.
mask - Thetype of eventsthe event handler isinterested in.
t ype_mask - The category the event handler belongs to.
h - The event handler’s handle.

ORBacus 275

Reactor Reference

unregister_handler
voi d unregi ster_handl er (i n Event Handl er handl er);

Remove an event handler from the Reactor.

Parameters:
handl er - The event handler to remove.

dispatch
bool ean di spatch(in TypeMask type_mask);

Dispatch events.

Parameters:
t ype_mask - If not zero, this operation will return once all registered event handlers that
match the type mask have unregistered.

Returns:
TRUE if all event handlers that match the type mask have unregistered, or FALSE if event
dispatching has been interrupted.

interrupt_dispatch
voi d interrupt_dispatch();

Interrupt event dispatching. After calling this operation, i nt er r upt () will return with FALSE.

dispatch_one_event
bool ean di spatch_one_event (in |l ong timeout);

Dispatch at |east one event.

Parameters:
ti meout - Thetimeout in milliseconds. A negative value means no timeout, i.e., the opera-
tion will not return before at least one event has been dispatched. A zero timeout means that
the operation will return immediately if there is no event to dispatch.

Returns:
TRUE if at least one event has been dispatched, or FALSE otherwise.

event_ready
bool ean event _ready();

276

ORBacus

Interface OB::Reactor

Check whether an event is available.

Returns:
TRUE if an event is ready, or FALSE otherwise.

ORBacus 277

Reactor Reference

278 ORBacus

weoxe LOQQEr Reference

D.1 Interface OB::Logger

interface L ogger
The ORBacus message logger interface.
Operations

info
void info(in string nsg);

Log an informational message.

Parameters:
msg - The message.

error
void error(in string nsg);

Log an error message.

Parameters:

ORBacus 279

Logger Reference

msg - The error message.

warning
voi d warning(in string nsg);

Log awarning message.

Parameters:
msg - The warning message.

trace
void trace(in string category,
in string nsg);

Log atrace message.

Parameters:
cat egor y - The trace category.
msg - The trace message.

280

ORBacus

weoxe OPEN COMMUNICations
|nterface Reference

E.1 Module OCI

The Open Communications Interface (OCI). The definitions in this modul e provide a uniform inter-
face to network protocols. This alows for easy plug-in of new protocols or other communication
mechanisms into ORBs that implement the OCI. Furthermore, protocol implementations need only
to be written once and can then be reused with all OCI compliant ORBs. For more information,
please see the OCI documentation.

Aliases

Buffer Seq
t ypedef sequence<Buf fer> Buf fer Seq;

Aliasfor a sequence of buffers.

IOR
typedef I1OP::1OR IOR
Aliasfor an IOR.
Profileld

typedef 10OP::Profileld Profileld;

ORBacus 281

Open Communications I nterface Reference

Aliasfor aprofileid.

ProfileldSeq
typedef sequence<Profileld> ProfileldSeq;

Aliasfor a sequence of profileids.

ObjectKey
typedef CORBA:: Cctet Seq Obj ect Key;

Aliasfor an object key, which is a sequence of octets.

TaggedComponentSeq
typedef | OP:: TaggedConponent Seq TaggedConponent Seq;

Alias for a sequence of tagged components.

Handle
typedef |ong Handl e;

Alias for a system-specific handle type.

Profilel nfoSeq
typedef sequence<Profil elnfo> Profil el nfoSeq;

Aliasfor a sequence of basic information about profiles.

CloseCBSeq
t ypedef sequence<Cl oseCB> C oseCBSeq;

Aliasfor a sequence of close callback objects.

Connector Seq
typedef sequence<Connector> Connect or Seq;

Alias for a sequence of Connectors.

ConnectCBSeq
typedef sequence<Connect CB> Connect CBSeq;

282 ORBacus

M odule OCI

Aliasfor a sequence of connect callback objects.

Acceptor Seq
t ypedef sequence<Accept or > Accept or Seq;

Alias for a sequence of Acceptors.

AcceptCBSeq
typedef sequence<Accept CB> Accept CBSeq;

Alias for a sequence of accept callback objects.

ConFactorySeq
typedef sequence<ConFactory> ConFact orySeq;

Alias for a sequence of Connector factories.
Structs

Profilel nfo

struct Profilelnfo

{
hj ect Key key;
octet nmjor;
octet m nor;
Profileld id;
unsi gned | ong i ndex;
TaggedConponent Seq comnponents;

b

Basic information about an |OR profile. Profiles for specific protocols contain additional data.

(For example, an 11OP profile also contains a hostname and a port number.)

Members:
key - The object key.

maj or - The major version number of the ORB’s protocol. (For example, the major GIOP

version, if the underlying ORB uses GIOPR)

mi nor - The minor version number of the ORB’s protocol. (For example, the minor GIOP

version, if the underlying ORB uses GIOPR)

i d - Theid of the profile that contains this information.

i ndex - The position index of this profilein an IOR.
conponent s - A sequence of tagged components.

ORBacus

283

Open Communications I nterface Reference

E.2 Interface OCI::Buffer

interface Buffer

An interface for a buffer. A buffer can be viewed as an object holding an array of octets and a posi-
tion counter, which determines how many octets have already been sent or received. The IDL inter-
face definition for Buffer isincomplete and must be extended by the specific language mappings.
For example, the C++ mapping defines the following additional functions:
* Cctet* data(): ReturnsaC++ pointer to the first element of the array of octets, which repre-
sents the buffer’s contents.
* Cctet* rest(): Similartodat a(), this operation returns a C++ pointer, but to the n-th ele-
ment of the array of octets with n being the value of the position counter.

Attributes

length
readonly attribute unsigned |ong | ength;

The buffer length.

pos
attribute unsigned | ong pos;

The position counter. Note that the buffer'sength and the position counter don't depend on each
other. There are no restrictions on the values permitted for the counter. Thisimplies that it's
even legal to set the counter to values beyond the buffer’s length.

Operations

advance
voi d advance(in unsigned |ong delta);

Increment the position counter.

Parameters:
del t a - The value to add to the position counter.

rest_length
unsi gned | ong rest_Il ength();

284

ORBacus

Interface OCI::Buffer

Returns the rest length of the buffer. The rest length is the length minus the position counter’s
value. If the value of the position counter exceeds the buffer’s length, the return value is unde-

fined.

Returns:
Therest length.

is full
bool ean is_full();

Checks if the buffer isfull. The buffer is considered full if its length is equal to the position

counter’s value.

Returns:
TRUE if the buffer isfull, FALSE otherwise.

ORBacus 285

Open Communications I nterface Reference

E.3 Interface OCI:: Transport

interface Transport

Theinterface for a Transport object, which provides operations for sending and receiving octet
streams. In addition, it is possible to register callbacks with the Transport object, which areinvoked
whenever data can be sent or received without blocking.

See Also:
Connector
Acceptor

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.

handle
readonly attribute Handl e handl e;

The "handle" for this Transport. The handle may only be used to determine whether the Trans-
port object is ready to send or to receive data, e.g., with sel ect () on Unix-based operating
systems. All other uses (e.g., calstoread(),wite(),cl ose()) are strictly non-compliant.
A handle value of -1 indicates that the protocol plug-in does not support "selectable” Trans-
ports.

Operations

close
voi d cl ose();

Closes the Transport. After calling cl ose, no operations on this Transport object and its associ-
ated TransportInfo object may be called. To ensure that no messages get lost when cl ose is
called, shut down should be called first. Then dummy data should be read from the Transport,
using one of ther ecei ve operations, until either an exception israised, or until connection clo-
sureis detected. After that its save to call cl ose, i.e., N0 messages can get lost.

Raises:

286

ORBacus

Interface OCI:: Transport

A - COW _FAI LURE exception israised in case of an error.

shutdown
voi d shutdown();

Shutdown the Transport. Upon a successful shutdown, threads blocking inther ecei ve opera
tions will return or throw an exception. After calling shut down, no operations on associated
TransportInfo object may be called. To fully close the Transport, cl ose must be called.

Raises:
A - COW _FAI LURE exception israised in case of an error.

receive
voi d receive(in Buffer buf,
i n bool ean bl ock);

Receives a buffer’s contents.

Parameters:
buf - The buffer to fill.
bl ock - If set to TRUE, the operation blocks until the buffer isfull. If set to FALSE, the oper-
ation fills as much of the buffer as possible without blocking.

Raises:
A - COW _FAI LURE exception israised in case of an error.

receive _detect
bool ean receive_detect(in Buffer buf,
i n bool ean bl ock);

Similar tor ecei ve, but it signals a connection loss by returning FALSE instead of raising
COW FAI LURE.

Parameters:
buf - The buffer to fill.
bl ock - If set to TRUE, the operation blocks until the buffer isfull. If set to FALSE, the oper-
ation fills as much of the buffer as possible without blocking.

Returns:
FALSE if a connection loss is detected, TRUE otherwise.

Raises:

ORBacus 287

Open Communications I nterface Reference

A - COW _FAI LURE exception israised in case of an error.

receive_timeout
voi d receive_tinmeout(in Buffer buf,
in unsigned |long tineout);

Similar tor ecei ve, but it is possible to specify atimeout. On return the caller can test whether
there was atimeout by checking if the buffer has been filled completely.

Parameters:
buf - The buffer to fill.
ti meout - Thetimeout valuein milliseconds. A zero timeout is equivalent to calling
recei ve(buf, FALSE).

Raises:
A - COW _FAI LURE exception israised in case of an error.

send
voi d send(in Buffer buf,
i n bool ean bl ock);

Sends a buffer’s contents.

Parameters:
buf - The buffer to send.
bl ock - If set to TRUE, the operation blocks until the buffer has completely been sent. If set
to FAL SE, the operation sends as much of the buffer’s data as possible without blocking.

Raises:
A - COW _FAI LURE exception israised in case of an error.

send_detect
bool ean send_det ect (i n Buf fer buf,
i n bool ean bl ock);

Similar to send, but it signals a connection loss by returning FALSE instead of raising
COWM FAI LURE.

Parameters:
buf - The buffer to fill.
bl ock - If set to TRUE, the operation blocks until the entire buffer has been sent. If set to
FAL SE, the operation sends as much of the buffer’s data as possible without blocking.

288

ORBacus

Interface OCI:: Transport

Returns:
FALSE if aconnection loss is detected, TRUE otherwise.

Raises:
A - COW _FAI LURE exception israised in case of an error.

send_timeout
voi d send_tineout (in Buffer buf,
in unsigned long tineout);

Similar to send, but it is possible to specify atimeout. On return the caller can test whether
there was atimeout by checking if the buffer has been sent compl etely.

Parameters:
buf - The buffer to send.

ti meout - Thetimeout valuein milliseconds. A zero timeout is equivalent to calling
send(buf, FALSE).

Raises:
A - COW _FAI LURE exception israised in case of an error.

get_info
Transportinfo get_info();

Returns the information object associated with the Transport.

Returns:
The Transport information object.

ORBacus 289

Open Communications I nterface Reference

E.4 Interface OCI::Transportlnfo

interface Transportlnfo

Information on an OCI Transport object. Objects of this type must be narrowed to a Transport
information object for a concrete protocol implementation, for exampleto OCl : : 11 OP: : Tr ans-
port | nf o in case the plug-in implements 11 OP.

See Also:
Transport

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.

connector_info
readonly attribute Connectorlnfo connector_info;

The Connectorlnfo object for the Connector that created the Transport object that this Trans-
portinfo object belongsto. If the Transport for this Transportinfo was not created by a Connec-
tor, this attribute is set to the nil object reference.

acceptor_info
readonly attribute Acceptorlnfo acceptor_info;

The Acceptorinfo object for the Acceptor that created the Transport object that this Transport-
Info object belongs to. If the Transport for this TransportInfo was not created by an Acceptor,
this attributeis set to the nil object reference.

Operations

describe
string describe();

Returns a human readable description of the transport.

Returns:

ORBacus

Interface OCI:: Transportlnfo

The description.

add_close cb
voi d add_cl ose_cbh(in O oseCB ch);

Add acallback that is called before a connection is closed. If the callback has already been reg-
istered, this method has no effect.

Parameters:
cb - The callback to add.

remove close cb
voi d renmove_cl ose_cb(in C oseCB cbh);

Remove a close callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.

ORBacus 291

Open Communications I nterface Reference

E.5 Interface OCI::CloseCB

interface CloseCB
An interface for a close callback object.

See Also:
Transportinfo

Operations

close cb
voi d close_cb(in Transportinfo transport_info);

Called before aconnection is closed.

Parameters:
transport _i nf o - The Transportinfo for the new closeion.

292 ORBacus

Interface OCI::Connector

E.6 Interface OCI::Connector

interface Connector

An interface for Connector objects. A Connector is used by CORBA clientsto initiate a connection
to aserver. It also provides operations for the management of IOR profiles.

See Also:
ConFactory
Transport

Attributes

tag
readonly attribute Profileld tag

The profileid tag.
Operations

connect
Transport connect ();

Used by CORBA clients to establish a connection to a CORBA server. It returns a Transport
object, which can be used for sending and receiving octet streams to and from the server.

Returns:
The new Transport object.

Raises:
A - TRANSI ENT exception is raised if the server cannot be contacted, and a COMM_FAI LURE
exception in case of other errors.

connect_timeout
Transport connect _timeout (i n unsigned |ong tineout);

Similar to connect , but it is possible to specify atimeout. On return the caller can test whether
there was a timeout by checking whether a nil object reference was returned.

Parameters:

ORBacus 293

Open Communications I nterface Reference

ti meout - Thetimeout value in milliseconds.

Returns:
The new Transport object.

Raises:
A - TRANSI ENT exception is raised if the server cannot be contacted, and a COMM_FAI LURE
exception in case of other errors.

get_usable profiles
Profil el nfoSeq get_usable_profiles(in IOR ref,
in CORBA: : PolicyList policies);

From the given IOR and list of policies, get basic information about all profiles for which this
Connector can be used.

Parameters:
ref - ThelOR from which the profiles are taken.
pol i ci es - The policies that must be satisfied.
Returns:

The sequence of basic information about profiles. If this sequence is empty, there is no pro-
filein the IOR that matches this Connector and the list of policies.

equal
bool ean equal (i n Connector con);

Find out whether this Connector is equal to another Connector. Two Connectors are considered
equal if they areinterchangeable.

Parameters:
con - The connector to compare with.

Returns:
TRUE if the Connectors are equal, FALSE otherwise.

get_info
Connectorlnfo get_info();

Returns the information object associated with the Connector.

Returns:

294

ORBacus

Interface OCI::Connector

The Connector information object.

ORBacus 295

Open Communications I nterface Reference

E.7 Interface OCI::Connectorinfo

interface Connector Info

Information on a OCI Connector object. Objects of this type must be narrowed to a Connector
information object for a concrete protocol implementation, for exampleto OCl : : 1| OP: : Connec-
t or I nf o in case the plug-in implements I[1OP.

See Also:
Connector

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.
Operations

describe
string describe();

Returns a human readable description of the transport.

Returns:
The description.

add_connect_cb
voi d add_connect _cb(i n Connect CB cbh);

Add a callback that is called whenever anew connection is established. If the callback has
already been registered, this method has no effect.

Parameters:
cb - The callback to add.

remove _connect_cb
voi d renove_connect _ch(in ConnectCB cb);

296

ORBacus

Interface OCI::Connector | nfo

Remove a connect callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.

ORBacus 297

Open Communications I nterface Reference

E.8 Interface OCI::ConnectCB

interface ConnectCB
An interface for a connect callback object.

See Also:
Connectorlnfo

Operations

connect_ch
voi d connect _cb(in Transportlnfo transport_info);

Called after a new connection has been established. If the application wishes to reject the con-
nection CORBA: : NO_PERM SSI ON may be raised.

Parameters:
transport _i nf o - The Transportinfo for the new connection.

298

ORBacus

Interface OCI::Acceptor

E.9 Interface OCI::Acceptor

interface Acceptor

An interface for an Acceptor object, which isused by CORBA servers to accept client connection
reguests. It also provides operations for the management of IOR profiles.

See Also:

AccRegistry
Transport

Attributes

tag
readonly attribute Profileld tag

The profileid tag.

handle
readonly attribute Handl e handl e;

The "handle" for this Acceptor. Like with the handle for Transports, the handle may only be

used with operations like sel ect () . A handle value of -1 indicates that the protocol plug-in
does not support "selectable” Transports.

Operations

close
voi d cl ose();

Closes the Acceptor. accept orl i st en may not be called after cl ose has been called.

Raises:
A - COW _FAI LURE exception israised in case of an error.

listen
void listen();

Setsthe acceptor up to listen for incoming connections. Until this method is called on the accep-
tor, new connection requests should result in a connection request failure.

ORBacus 299

Open Communications I nterface Reference

Raises:
A - COW _FAI LURE exception israised in case of an error.

accept
Transport accept (i n bool ean bl ock);

Used by CORBA serversto accept client connection requests. It returns a Transport object,
which can be used for sending and receiving octet streams to and from the client.

Parameters:
bl ock - If set to TRUE, the operation blocks until a new connection has been accepted. If set
to FALSE, the operation returns a nil object reference if there is no new connection ready to
be accepted.

Returns:
The new Transport object.

Raises:
A - COW _FAI LURE exception israised in case of an error.

connect_self
Transport connect_sel f();

Connect to this acceptor. This operation can be used to unblock threads that are blocking in
accept .

Returns:
The new Transport object.

Raises:
A - TRANSI ENT exception is raised if the server cannot be contacted, and a COMM_FAI LURE
exception in case of other errors.

add_profile
voi d add_profile(in Profilelnfo profile_info,
inout IOR ref);

Adds anew profile that matches this Acceptor to an IOR.

Parameters:
profil e_i nfo - Thebasic profile information to use for the new profile.

300

ORBacus

Interface OCI::Acceptor

ref - ThelOR.

add_components
voi d add_conponent s(i n TaggedConponent Seq t he_conponents,
inout IOR ref);

Adds componentsto al profilesin the IOR that match this Acceptor.
Parameters:
t he_conponent s - The components

ref - ThelOR.

get_local_profiles
ProfilelnfoSeq get_|ocal _profiles(in IOR ref);

From the given IOR, get basic information about all profiles for which are local to this Accep-
tor.

Parameters:
ref - ThelOR from which the profiles are taken.

Returns:
The sequence of basic information about profiles. If this sequence is empty, there is no pro-
fileinthe IOR that islocal to the Acceptor.

get_info
Acceptorinfo get_info();

Returns the information object associated with the Acceptor.

Returns:
The Acceptor information object.

ORBacus 301

Open Communications I nterface Reference

E.10 Interface OCI::Acceptorinfo

interface Acceptor I nfo

Information on an OCI Acceptor object. Objects of this type must be narrowed to an Acceptor
information object for a concrete protocol implementation, for exampleto OCl : : 1| OP: : Accep-
t or I nf o in case the plug-in implements I[1OP.

See Also:
Acceptor

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.
Operations

describe
string describe();

Returns a human readable description of the transport.

Returns:
The description.

add_accept_cb
voi d add_accept _ch(in AcceptCB ch);

Add acallback that is called whenever a new connection is accepted. If the callback has already
been registered, this method has no effect.

Parameters:
cb - The callback to add.

remove_accept_cb
voi d renove_accept_cb(in AcceptCB ch);

302

ORBacus

Interface OCI::Acceptorinfo

Remove an accept callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.

ORBacus 303

Open Communications I nterface Reference

E.11 Interface OCI::AcceptCB

interface AcceptCB
An interface for an accept callback object.

See Also:
Acceptorinfo

Operations

accept_cb
voi d accept_cb(in Transportlnfo transport_info);

Called after anew connection has been accepted. If the application wishes to reject the connec-
tion CORBA: : NO_PERM SSI ON may be raised.

Parameters:
transport _i nf o - The Transportinfo for the new connection.

304

ORBacus

Interface OCI::ConFactory

E.12 Interface OCI::ConFactory

interface ConFactory
A factory for Connector objects.

See Also:
Connector
ConFactoryRegistry

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.
Operations

create_connectors
Connect or Seq create_connectors(in |OR ref,
in CORBA: : PolicyList policies);

Returns a sequence of Connectors for a given IOR and alist of policies. The sequence includes
one or more Connectors for each IOR profile that matches this Connector factory and satisfies
thelist of policies.

Parameters:
ref - ThelOR for which Connectors are returned.
pol i ci es - The policies that must be satisfied.

Returns:
The sequence of Connectors.

equivalent
bool ean equivalent(in IOR iorl,
in IOR ior2);

Checks whether two IORs are equivalent, taking only profiles into account matching this Con-
nector factory.

ORBacus 305

Open Communications I nterface Reference

Parameters:
i or1 - Thefirst IOR to check for equivalence.
i or 2 - The second IOR to check for equivalence.

Returns:
TRUE if the IORs are equivalent, FALSE otherwise.

hash
unsi gned | ong hash(in IOR ref
i n unsigned | ong maxi num ;

Cadlculates ahash value for an IOR.

Parameters:
ref - ThelOR to calculate ahash value for.
maxi mum- The maximum value of the hash value.

Returns:
The hash value.

get_info
ConFactorylnfo get _info();

Returns the information object associated with the Connector factory.

Returns:
The Connnector factory information object.

306

ORBacus

Interface OCI::ConFactorylnfo

E.13 Interface OCI::ConFactorylnfo

interface ConFactorylnfo
Information on an OCI ConFactory object.

See Also:
ConFactory

Attributes

tag
readonly attribute Profileld tag

The profileid tag.
Operations

describe
string describe();

Returns a human readable description of the transport.

Returns:
The description.

add_connect_cb
voi d add_connect _cb(i n ConnectCB cbh);

Add acallback that is called whenever anew connection is established. If the callback has
already been registered, this method has no effect.

Parameters:
cb - The callback to add.

remove _connect_cb
voi d renove_connect _cbh(in Connect CB cb);

Remove a connect callback. If the callback was not registered, this method has no effect.

ORBacus 307

Open Communications I nterface Reference

Parameters:
cb - The callback to remove.

308 ORBacus

Interface OCI::ConFactoryRegistry

E.14 Interface OCI::ConFactoryRegistry

interface ConFactoryRegistry
A registry for Connector factories.

See Also:
Connector
ConFactory

Operations

add_factory
voi d add_factory(in ConFactory factory);

Adds a Connector factory to the registry.

Parameters:
f act ory - The Connector factory to add.

get_factories
ConFact orySeq get _factories();

Returns a sequence of all registered Connector factories.

Returns:
A sequence with all registered Connector factories.

create_connectors
Connect or Seq create_connectors(in IOR ref,
in CORBA: : PolicyList policies);

Returns a sequence of Connectors for agiven IOR and alist of policies. This operation is equiv-
alent to calling cr eat e_connect or s on al registered Connector factories, and to return a
sequence of all Connectors returned.

Parameters:
ref - ThelOR for which Connectors are returned.
pol i ci es - The policies that must be satisfied.

Returns:

ORBacus 309

Open Communications I nterface Reference

The sequence of Connectors.

equivalent
bool ean equivalent(in IOR iorl,
in IOR ior2);

Checks whether two IORs are equivalent. It callsthe equi val ent operation of all registered
Connector factories. Two IORs are considered equivalent, if all these calls return TRUE.

Parameters:
i or 1 - Thefirst IOR to check for equivalence.
i or 2 - The second IOR to check for equivalence.

Returns:
TRUE if the IORs are equivalent, FALSE otherwise.

hash
unsi gned | ong hash(in IOR ref,
i n unsigned | ong maxi num ;

Calculates an hash value for an IOR. This hash value is based on the return values of the hash
operations of all registered Connector factories.

Parameters:
ref - ThelOR to calculate an hash value for.
maxi mum- The maximum hash value that is allowed.

Returns:
The hash value.

310

ORBacus

Interface OCI::AccRegistry

E.15 Interface OCI::AccRegistry

interface AccRegistry
A registry for Acceptors.

See Also:
Acceptor

Operations

add_acceptor
voi d add_acceptor(in Acceptor acc);

Adds an Acceptor to the registry.

Parameters:
acc - The Acceptor to add.

get_acceptors
Accept or Seq get _acceptors();

Returns a sequence of all registered Acceptors.

Returns:
A sequence of all registered Acceptors.

add_profiles
voi d add_profiles(in Profilelnfo profile_info,
inout IOR ref);

Adds new profilesto an IOR. For each registered Acceptor anew profileis added by calling the
Acceptor'sadd_pr of i | e operation.

Parameters:
profile_i nfo - Thebasic profile information to use for the new profile.
ref - ThelOR.

add_components
voi d add_conponents(in Profileld id,
i n TaggedConponent Seq t he_conponents,

ORBacus 311

Open Communications I nterface Reference

inout IOR ref);

Adds components to |OR profiles. For each registered Acceptor with atag that equalsi d, com-
ponents are added by calling the Acceptor'sadd_conponent s operation.

Parameters:
i d - Theprofileid.
t he_conponent s - The components to add.
ref - The IOR to which components are added.

get_local_profiles
ProfilelnfoSeq get_|ocal _profiles(in IOR ref);

From the given IOR, get basic information about all profiles for which arelocal. This operation
isequivaent to calling get _| ocal _profil es onall registered Acceptors, and to return a
sequence of al profile information returned.

Parameters:
ref - ThelOR from which the profiles are taken.

Returns:

The sequence of basic information about profiles. If this sequence is empty, there is no pro-
fileinthe IOR that islocal.

312

ORBacus

Interface OCI::Current

E.16 Interface OCI::Current

interface Current
inherits from CORBA::Current

Interface to access Transport and Acceptor information objects related to the current request.
Operations

get_oci_transport_info
Transportinfo get_oci_transport _info();

This method returns the Transport information object for the Transport used to invoke the cur-
rent request.

get_oci_acceptor_info
Acceptorlnfo get_oci_acceptor_info();

This method returns the Acceptor information object for the Acceptor which created the Trans-
port used to invoke the current request.

ORBacus 313

Open Communications I nterface Reference

E.17 Module OCI::lIOP

This module contains interfaces to gather information on the 11OP OCI plug-in.
Aliases

InetAddr
typedef octet |netAddr[4];

Aliasfor an array of four octets. Thisaliaswill be used for address information from the various
information classes. The address will aways be in network byte order.

314 ORBacus

Interface OCI::I10P:: Transportinfo

E.18 Interface OCI::11OP::Transportlnfo

interface Transportinfo
inherits from OCI:: Transportinfo

Information on an 11OP OCI Transport object.

See Also:
Transport
Transportlnfo

Attributes

addr
readonly attribute | net Addr addr;

The local 32 bit IP address.

port
readonly attribute unsigned short port;

Thelocal port.

remote_addr
readonly attribute | net Addr renote_addr;

The remote 32 bit IP address.

remote_port
readonly attribute unsigned short renote_port;

The remote port.

ORBacus 315

Open Communications I nterface Reference

E.19 Interface OCI::110P::Connectorinfo

interface Connector I nfo
inherits from OCI::ConnectorInfo

Information on an 11OP OCI Connector object.

See Also:
Connector
Connectorlnfo

Attributes

remote addr
readonly attribute | net Addr renote_addr;

The remote 32 bit | P address to which this connector connects.

remote_port
readonly attribute unsigned short renote_port;

The remote port to which this connector connects.

316

ORBacus

Interface OCI::110P::Acceptorinfo

E.20 Interface OCI::110P::Acceptorinfo

interface Acceptor I nfo
inherits from OCI::Acceptorinfo

Information on an 11OP OCI Acceptor object.

See Also:
Acceptor
Acceptorinfo

Attributes

host
readonly attribute string host;

Hostname used for creation of 110P object references.

addr
readonly attribute | net Addr addr;

Thelocal 32 bit 1P address on which this acceptor accepts.

port
readonly attribute unsigned short port;

Thelocal port on which this acceptor accepts.

ORBacus

317

Open Communications I nterface Reference

E.21 Interface OCI::l1OP::ConFactorylnfo

interface ConFactorylnfo
inherits from OCI::ConFactorylnfo

Information on an 11OP OCI Connector Factory object.

See Also:
ConFactory
ConFactorylnfo

318

ORBacus

References

(1]

(2]
(3]

(4

(5]

(6]

(7]

Buschman, F., et al. 1996. Pattern-Oriented Software Architecture: A System of Patterns.
New York: Wiley.

Gamma, E., et al. 1994. Design Patterns. Reading, MA: Addison-Wesley

Henning, M., and S. Vinoski. 1999. Advanced CORBA Programming with C++. Reading,
MA: Addison-Wedley.

Object Management Group. 1999. The Common Object Request Broker: Architecture and
Foecification. Revision 2.3.1. ftp://www.omg.org/pub/docs/formal/99-10-07.pdf .
Framingham, MA: Object Management Group.

Object Management Group. 1999. C++ Language Mapping.
ftp://www.omg.org/pub/docs/formal/99-07-45.pdf. Framingham, MA: Object
Management Group.

Object Management Group. 1999. I DL/Java Language Mapping.
ftp://lwww.omg.org/pub/docs/formal/99-07-53.pdf. Framingham, MA: Object
Management Group.

Object Management Group. 1999. Portable Interceptors.
ftp://ftp.omg.org/pub/docs/orbos/99-12-02.pdf. Framingham, MA: Object Management
Group.

ORBacus 319

References

(8]

(9

[10]

(11]

[12]

[13]

[14]

Object Management Group. 1998. CORBA Messaging.
ftp://ftp.omg.org/pub/docs/orbos/98-05-06.pdf. Framingham, MA: Object Management
Group.

Object Management Group. 1998. CORBAservices: Common Object Services
Soecification. ftp://www.omg.org/pub/docs/formal/98-12-09.pdf. Framingham, MA:
Object Management Group.

Object Management Group. 1999. Naming Service Specification.
ftp://ftp.omg.org/pub/docs/ptc/99-12-03.pdf. Framingham, MA: Object Management
Group.

Object Oriented Concepts. 2000 ORBAcuUS. http://www.ooc.com/jtc/. Billerica, MA:
Object-Oriented Concepts.

Object Oriented Concepts. 2000. JTHREADYC++ User’s ManualBillerica, MA:
Object-Oriented Concepts.

Object Oriented Concepts. 2000. ORBAcus. http://www.ooc.com/ob/. Billerica, MA:
Object Oriented Concepts.

Schmidt, D. C. 1995. “Reactor: An Object Behavioral Pattern for Concurrent Event
Demultiplexing and Event Handler Dispatching.”Rattern Languages of Program
Design, ed. James O. Coplien and Douglas C. Schmidt. Reading, MA: Addison-Wesley.

320

ORBacus

|ndex

A
Applet 98

B

Basic Object Adapter 70
Bindings 128

BOA 70

Boot Manager 100

c

Code Generators 31
Command-line Options 57
Concurrency Models
Blocking 228
Thread Pool 234
Threaded 231
Thread-per-Client 232
Thread-per-Request 233
Concurreny Models
Reactive 229
Configuration File 58
Currently Executing Request 89

ORBacus 321

Index

D

demo program 17
Documenting IDL Files 41

E

Event Channel 159
Event Consumers 159
Event Loop 64

Event Service 153
Event Suppliers 159
Exceptions 249

H

Hostname 94, 243
HTML 41

IFR 215

Implementation Repository 107

Implementation Repository Administration 112

IMR 107

IMR Console 119

included IDL files 40

Initial Services 102
Configuring 104
Resolving 102

Interface Repository 215

IP Address 244, 246

irdel 219

irfeed 218

J

javadoc 43
JDK 1.2 48

M
mailing list 16

N
Name Service

322 ORBacus

Configuration 126

Initialization 130

Persistence 126
Names Console 137
Netscape 66

o

OA Initialization 48
OAD 107
Object Activation Daemon 107
Object Key 95
Object References 91
Objects
Locating 91
Persistent 83
Transient 83
OCI 239
Acceptor 240
Connector 240
Connector Factory 240
Info Objects 240
Registries 240
Transport 240
Open Communications Interface 239
Options
hidl 37
idl 32
irgen 39
jidl 35
ridl 38
ORB
Destruction 64
Initialization 47
ORBacus Names 123

P

POA 70, 110

Policies 221
ConnectionReusePolicy 222
ProtocolPolicy 222
RetryPolicy 222

ORBacus 323

Index

TimeoutPolicy 222

Popup Menu 144

Port 94, 243

Portable Object Adapter 70

Programming Examples
Event Service 162
Implementation Repository 116
Interface Repository 219
Name Service 130
OCI 242
Policies 222
Property Service 150
Trading Service 182

Properties
ooc.config 51
ooc.event.max_events 155
ooc.event.max_retries 155
ooc.event.port 156
ooc.event.pull_interval 156
ooc.event.retry_multiplier 156
ooc.event.retry timeout 156
ooc.event.trace.events 156
ooc.event.trace.lifecycle 156
ooc.event.typed service 156
ooc.ifr.options 217
ooc.ifr.port 217
ooc.imr.dbdir 110
ooc.imr.forward_port 110
ooc.imr.host 110
ooc.imr.port 111
ooc.imr.trace.oad 111
ooc.imr.trace.process_control 111
ooc.imr.trace.server_status 111
ooc.naming.callback_timeout 126
ooc.naming.database 126
ooc.naming.display_root_ior 126
ooc.naming.no_updates 126
ooc.naming.port 126
ooc.naming.timeout 126
ooc.naming.trace level 126
ooc.oad.dbdir 111

324 ORBacus

ooc.oad.port 111
ooc.oad.trace level 111
ooc.orb.add iiop_connector 51
ooc.orb.client_shutdown_timeout 51
ooc.orb.client_timeout 51
ooc.orb.conc_model 52
ooc.orb.default_init_ref 52
ooc.orb.default_wcs 52
ooc.orb.giop.max_message size 52
ooc.orb.id 52
ooc.orb.native _cs 53
ooc.orb.native wcs 53
ooc.orb.oa.add_iiop_acceptor 54
ooc.orb.oa.conc_model 55
ooc.orb.oa.host 55
ooc.orb.oa.numeric 55
ooc.orb.oa.port 55
ooc.orb.oa.thread pool 56
ooc.orb.poamanager.manager.add_iiop_acceptor 56
ooc.orb.poamanager.manager.host 56
ooc.orb.poamanager.manager.numeric 56
ooc.orb.poamanager.manager.port 56
ooc.orb.raise_dii_exceptions 53
ooc.orb.server_name 53
ooc.orb.server_shutdown_timeout 53
ooc.orb.server_timeout 54
ooc.orb.service.name 54
ooc.orb.trace.connections 54
ooc.orb.trace.retry 54
ooc.property.port 146
ooc.trading.allow_nil_objects 168
ooc.trading.dbdir 168
ooc.trading.port 168
ooc.trading.timeout 168
ooc.trading.use_ir 168

Property Service 145

R

Reactor 235
Recursion 139
RTF 41

ORBacus 325

Index

S

Security 68

Servants 70
Activation 80
C++ 78
Deactivation 83
Delegation 73
Inheritance 71
Java 79

T

Toolbar 122, 143
Trader Console 187
Trader Federation 179
Trading Service 167

u

URL 97,99
corbaloc 99
corbaname 101
file 101
relfile 102

w

Windows NT Registry 59
Windows Reactor 237

X
X11 Reactor 236

326 ORBacus

	CHAPTER 1 Introduction
	1.1 What is ORBacus?
	1.2 About this Document
	1.3 Getting Help

	CHAPTER 2 Getting Started
	2.1 The “Hello World” Application
	2.2 The IDL Code
	2.3 Implementing the Example in C++
	2.3.1 Implementing the Server
	2.3.2 Implementing the Client
	2.3.3 Compiling and Linking
	2.3.4 Running the Application

	2.4 Implementing the Example in Java
	2.4.1 Implementing the Server
	2.4.2 Implementing the Client
	2.4.3 Compiling
	2.4.4 Running the Application

	2.5 Summary
	2.6 Where to go from here

	CHAPTER 3 The ORBacus Code Generators
	3.1 Overview
	3.2 Synopsis
	3.3 Description
	3.4 Options for idl
	3.5 Options for jidl
	3.6 Options for hidl
	3.7 Options for ridl
	3.8 Options for irgen
	3.9 The IDL-to-C++ Translator and the Interface Repository
	3.10 Include Statements
	3.11 Documenting IDL Files
	3.12 Using javadoc

	CHAPTER 4 ORB and OA Initialization
	4.1 ORB Initialization
	4.1.1 Initializing the C++ ORB
	4.1.2 Initializing the Java ORB for Applications
	4.1.3 Initializing the Java ORB in JDK 1.2

	4.2 OA Initialization
	4.2.1 Initialization of the OA in C++
	4.2.2 Initialization of the OA in Java

	4.3 Configuring the ORB and OA
	4.3.1 Properties
	4.3.2 Command-line Options
	4.3.3 Using a Configuration File
	4.3.4 Using the Windows NT Registry
	4.3.5 Defining Properties
	4.3.6 Precedence of Properties
	4.3.7 Advanced Property Usage

	4.4 ORB Destruction
	4.4.1 Destroying the C++ ORB
	4.4.2 Destroying the Java ORB

	4.5 Server Event Loop
	4.6 Applets
	4.6.1 Compatibility with Netscape
	4.6.2 Initializing the Java ORB for Applets
	4.6.3 Adding ORBacus Applets to Web Pages
	4.6.4 Defining ORB Options for an Applet
	4.6.5 Defining the ORB Class Parameters
	4.6.6 Security Issues

	CHAPTER 5 CORBA Objects
	5.1 Overview
	5.2 Implementing Servants
	5.2.1 Implementing Servants using Inheritance
	5.2.2 Implementing Servants using Delegation

	5.3 Creating Servants
	5.3.1 Creating Servants using C++
	5.3.2 Creating Servants using Java

	5.4 Activating Servants
	5.4.1 Implicit Activation of Servants using C++
	5.4.2 Implicit Activation of Servants using Java
	5.4.3 Explicit Activation of Servants using C++
	5.4.4 Explicit Activation of Servants using Java

	5.5 Deactivating Servants
	5.5.1 Deactivation of Servants using C++
	5.5.2 Deactivation of Servants using Java
	5.5.3 Transient and Persistent Objects

	5.6 Factory Objects
	5.6.1 Factory Objects using C++
	5.6.2 Factory Objects using Java
	5.6.3 Caveats
	5.6.4 Obtaining the POA for a Servant
	5.6.5 Getting the POA for a Currently Executing Request

	CHAPTER 6 Locating Objects
	6.1 Obtaining Object References
	6.2 Lifetime of Object References
	6.2.1 Hostname
	6.2.2 Port Number
	6.2.3 Object Key

	6.3 Stringified Object References
	6.3.1 Using a File
	6.3.2 Using a URL
	6.3.3 Using Applet Parameters

	6.4 Object Reference URLs
	6.4.1 corbaloc: URLs
	6.4.2 corbaname: URLs
	6.4.3 file: URLs
	6.4.4 relfile: URLs

	6.5 Initial Services
	6.5.1 Resolving an Initial Service
	6.5.2 Configuring the Initial Services

	CHAPTER 7 The Implementation Repository
	7.1 Background
	7.1.1 How It All Works
	7.1.2 Information Managed by the IMR

	7.2 Synopsis
	7.2.1 Usage
	7.2.2 Configuration Properties

	7.3 Connecting to the Service
	7.4 Utilities
	7.4.1 Implementation Repository Administration
	7.4.2 Making References

	7.5 Getting Started with the Implementation Repository
	7.6 Programming Example

	CHAPTER 8 The Implementation Repository Console
	8.1 Synopsis
	8.1.1 Usage
	8.1.2 CLASSPATH Requirements
	8.1.3 Implementation Repository Service Lookup

	8.2 The Menus
	8.2.1 The File Menu
	8.2.2 The Edit Menu
	8.2.3 The View Menu

	8.3 The Toolbar and the Popup Menu

	CHAPTER 9 ORBacus Names
	9.1 Synopsis
	9.1.1 Usage
	9.1.2 Windows NT Native Service
	9.1.3 Configuration Properties
	9.1.4 Persistence
	9.1.5 CLASSPATH Requirements

	9.2 Connecting to the Service
	9.3 Using the Naming Service with the IMR
	9.4 Naming Service Concepts
	9.4.1 Bindings
	9.4.2 Name Resolution

	9.5 Programming Example
	9.5.1 Initialization
	9.5.2 Binding
	9.5.3 Exceptions
	9.5.4 The Event Loop
	9.5.5 Releasing Resources

	CHAPTER 10 ORBacus Names Console
	10.1 Synopsis
	10.1.1 Usage
	10.1.2 CLASSPATH Requirements
	10.1.3 Naming Service Lookup

	10.2 The Menus
	10.2.1 The File Menu
	10.2.2 The Edit Menu
	10.2.3 The View Menu
	10.2.4 The Tools Menu

	10.3 The Toolbar
	10.4 The Popup Menu

	CHAPTER 11 ORBacus Properties
	11.1 Synopsis
	11.1.1 Usage
	11.1.2 Configuration Properties
	11.1.3 CLASSPATH Requirements

	11.2 Connecting to the Service
	11.3 Using the Property Service with the IMR
	11.4 Property Service Concepts
	11.4.1 Creating Properties
	11.4.2 Querying for Properties
	11.4.3 Deleting Properties

	11.5 Programming Example

	CHAPTER 12 ORBacus Events
	12.1 Synopsis
	12.1.1 Usage
	12.1.2 Windows NT Native Service
	12.1.3 Configuration Properties
	12.1.4 Diagnostics
	12.1.5 CLASSPATH Requirements

	12.2 Connecting to the Service
	12.3 Using the Event Service with the IMR
	12.4 Event Service Concepts
	12.4.1 The Event Channel
	12.4.2 Event Suppliers and Consumers
	12.4.3 Event Channel Policies
	12.4.4 Event Channel Factories

	12.5 Programming Example

	CHAPTER 13 ORBacus Trader
	13.1 Synopsis
	13.1.1 Usage
	13.1.2 Configuration Properties
	13.1.3 CLASSPATH Requirements

	13.2 Connecting to the Service
	13.3 Using the Trading Service with the IMR
	13.4 Trading Service Concepts
	13.4.1 Basic Concepts
	13.4.2 Importing Service Offers
	13.4.3 Offer Management
	13.4.4 Dynamic Properties
	13.4.5 Trader Federation with Links
	13.4.6 Supporting Legacy Applications with Proxy Offers

	13.5 Programming Example
	13.5.1 The Print Server
	13.5.2 The Client

	CHAPTER 14 ORBacus Trader Console
	14.1 Synopsis
	14.1.1 Usage
	14.1.2 CLASSPATH Requirements

	14.2 Main Window
	14.3 Terminology
	14.4 The Trader Console Menus
	14.4.1 The Console menu
	14.4.2 The Edit menu
	14.4.3 The View menu
	14.4.4 The Insert menu
	14.4.5 The Tools menu

	14.5 The Toolbar
	14.6 Managing Service Types
	14.6.1 Adding a New Service Type
	14.6.2 Removing a Service Type
	14.6.3 Masking a Service Type
	14.6.4 Unmasking a Service Type

	14.7 Managing Offers
	14.7.1 Adding a New Offer
	14.7.2 Modifying an Offer
	14.7.3 Withdrawing Offers

	14.8 Managing Proxy Offers
	14.8.1 Adding a New Proxy Offer
	14.8.2 Withdrawing Proxy Offers

	14.9 Managing Links
	14.9.1 Adding a New Link
	14.9.2 Modifying a Link
	14.9.3 Removing a Link

	14.10 Configuring the Trader Attributes
	14.10.1 Support Attributes
	14.10.2 Import Attributes
	14.10.3 Link Attributes
	14.10.4 Admin Attributes

	14.11 Executing Queries
	14.12 Connecting to a New Trader

	CHAPTER 15 The Interface Repository
	15.1 Synopsis
	15.1.1 Usage
	15.1.2 Windows NT Native Service
	15.1.3 Configuration Properties

	15.2 Connecting to the Interface Repository
	15.3 Configuration Issues
	15.4 Interface Repository Utilities
	15.4.1 irfeed
	15.4.2 irdel

	15.5 Programming Example

	CHAPTER 16 Using Policies
	16.1 Overview
	16.2 Supported Policies
	16.3 Programming Examples
	16.3.1 Connection Reuse Policy
	16.3.2 Timeout Policy

	CHAPTER 17 Concurrency Models
	17.1 Introduction
	17.1.1 What is a Concurrency Model?
	17.1.2 Why different Concurrency Models?
	17.1.3 ORBacus Concurrency Models Overview

	17.2 Single-Threaded Concurrency Models
	17.2.1 Blocking Clients
	17.2.2 Reactive Clients and Servers

	17.3 Multi-Threaded Concurrency Models
	17.3.1 Threaded Clients and Servers
	17.3.2 Thread-per-Client Server
	17.3.3 Thread-per-Request Server
	17.3.4 Thread Pool Server

	17.4 Selecting Concurrency Models
	17.5 The Reactor
	17.5.1 What is a Reactor?
	17.5.2 Available Reactors

	CHAPTER 18 The Open Communications Interface
	18.1 What is the Open Communications Interface?
	18.2 Interface Summary
	18.2.1 Buffer
	18.2.2 Transport
	18.2.3 Acceptor and Connector
	18.2.4 Connector Factory
	18.2.5 The Registries
	18.2.6 The Info Objects
	18.2.7 Class Diagram

	18.3 OCI Reference
	18.4 OCI for the Application Programmer
	18.4.1 A “Converter” Class for Java
	18.4.2 Getting Hostnames and Port Numbers
	18.4.3 Finding out a Client’s IP Address
	18.4.4 Finding out a Server’s IP Address

	CHAPTER 19 Exceptions and Error Messages
	19.1 CORBA System Exceptions
	19.1.1 INITIALIZE Minor Exception Code
	19.1.2 UNKNOWN Minor Exception Code
	19.1.3 BAD_PARAM Minor Exception Code
	19.1.4 NO_MEMORY Minor Exception Code
	19.1.5 IMP_LIMIT Minor Exception Code
	19.1.6 COMM_FAILURE Minor Exception Code
	19.1.7 MARSHAL Minor Exception Code
	19.1.8 NO_IMPLEMENT Minor Exception Code
	19.1.9 NO_RESOURCES Minor Exception Code
	19.1.10 BAD_INV_ORDER Minor Exception Code
	19.1.11 TRANSIENT Minor Exception Code
	19.1.12 INTF_REPOS Minor Exception Code
	19.1.13 OBJECT_NOT_EXIST Minor Exception Code
	19.1.14 INV_POLICY Minor Exception Code

	19.2 Non-Compliant Application Asserts

	APPENDIX A Boot Manager Reference
	A.1 Interface OB::BootManager
	A.2 Interface OB::BootLocator

	APPENDIX B ORBacus Policy Reference
	B.1 Module OB
	B.2 Interface OB::ConnectionReusePolicy
	B.3 Interface OB::InterceptorPolicy
	B.4 Interface OB::LocationTransparencyPolicy
	B.5 Interface OB::ProtocolPolicy
	B.6 Interface OB::RetryPolicy
	B.7 Interface OB::TimeoutPolicy

	APPENDIX C Reactor Reference
	C.1 Interface OB::Reactor

	APPENDIX D Logger Reference
	D.1 Interface OB::Logger

	APPENDIX E Open Communications Interface Reference
	E.1 Module OCI
	E.2 Interface OCI::Buffer
	E.3 Interface OCI::Transport
	E.4 Interface OCI::TransportInfo
	E.5 Interface OCI::CloseCB
	E.6 Interface OCI::Connector
	E.7 Interface OCI::ConnectorInfo
	E.8 Interface OCI::ConnectCB
	E.9 Interface OCI::Acceptor
	E.10 Interface OCI::AcceptorInfo
	E.11 Interface OCI::AcceptCB
	E.12 Interface OCI::ConFactory
	E.13 Interface OCI::ConFactoryInfo
	E.14 Interface OCI::ConFactoryRegistry
	E.15 Interface OCI::AccRegistry
	E.16 Interface OCI::Current
	E.17 Module OCI::IIOP
	E.18 Interface OCI::IIOP::TransportInfo
	E.19 Interface OCI::IIOP::ConnectorInfo
	E.20 Interface OCI::IIOP::AcceptorInfo
	E.21 Interface OCI::IIOP::ConFactoryInfo

	References
	Index

