
Horus CORBA Reference
Version 2.0 - Jan 2003

Marc Navarro
Dennis Koelma

Intelligent Sensory Information Systems
University of Amsterdam, Faculty of Science
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
koelma@science.uva.nl
http://www.science.uva.nl/˜horus/

Contents

1 Corba 2

1.1 Corba . 2

1.2 Corba architecture . 2

1.3 Interoperable object references (IOR) . 4

1.4 Portable object adapter (POA) . 5

1.5 Corba services . 8

2 Client and server 10

2.1 Client and server . 10

2.2 Corba configuration . 10

2.3 Horus server . 11

2.4 C++ client . 13

2.5 RGB image display data transfer . 14

2.6 Data object management . 18

3 Stubs and servants in C++ 19

3.1 Stubs and servants in C++ . 19

4 Stubs and servants in Java 22

4.1 Stubs and servants in Java . 22

5 Servant generator 24

5.1 Servant Generator . 24

5.2 GenType Objects . 25

Chapter 1

Corba

1.1 Corba

This overview is based on the book ”Advanced CORBA progamming with C++” by Michi Henning and
Steve Vinoski.

Corba provides platform independent progamming interfaces and models for portable distributed object-
oriented computing applications. In other words, Corba provides access to objects, i.e. sending requests to
objects and receiving responses from these objects, independent of the language used for the implementa-
tion of the object, the operating system of the computer the object lives on, the location of the computer in
the network, the type of network connecting the computers, and the implementation of the ORB managing
the objects.

• Corba architecture (p. 2)
• Interoperable object references (IOR) (p. 4)
• Portable object adapter (POA) (p. 5)
• Corba services (p. 8)

1.2 Corba architecture

A Corba object is a virtual entity capable of being located by an ORB and having client requests invoked
on it. It is virtual in the sense that it does not really exist unless it is made concrete by an implementation
written in a programming language.

A request in an invocation of an operation on a Corba object by a client. Requests flow from a client to the
target object in the server, and the target object sends the results back if the request requires one.

An object reference is a handle used to identify, locate, and address a Corba object. To clients, object
references are opaque entities.

A servant is a programming language entity that implements one or more Corba objects. Servants are said
to incarnate Corba objects because they provide bodies, or implementations, for those objects. Servants
exist within the context of a server application. In C++, servants are object instances of a particular class.

1.2 Corba architecture 3

Static
Stub

�
DII

� �
Client Application

Client ORB Core

ORB
Interface

Skeleton

� �
DSI

�� �
Server Application

Server ORB Core

Object
Adapter

� �
ORB

Interface

Network

� � 	
IDL-dependent Same for all applications There may be multiple object adapters

Figure 1.1: Common Object Request Broker Architecture (CORBA)

General request flow:

1. The client can choose to make requests either using static stubs (generated from the IDL definition,
see below) or using the Dynamic Invocation Interface (DII). Either way, the client directs the request
into the ORB core linked into its process.

2. The client ORB core transmits the request to the ORB core linked with the server application.

3. The server ORB core dispatches the request to the object adapter that created the target object.

4. The object adapter further dispatches the request to the servant that is implementing the target object.
Like the client, the server can choose between static and dynamic dispatching mechanisms for its
servants. It can rely on static skeletons generated from the object’s IDL definition, or its servants can
use the Dynamic Skeleton Interface (DSI).

5. After the servant carries out the request, it returns its response to the client application.

To invoke operations on a Corba object, a client must know the interface offered by the object. An object’s
interface is composed of the operations it supports and the types of data that can be passed to and from those
operations. The interface is defined in IDL - the Interface Definition Language. IDL is not a programming
language, so objects and applications cannot be implemented in IDL. The sole purpose of IDL is to allow
object interfaces to be defined in a manner that is independent of any particular programming language.

Language mappings specify how IDL is translated into different programming languages. IDL is translated
into stubs and skeletons that are compiled into applications. Compiling stubs and skeletons into an appli-
cation gives it static knowledge of the programming language type and functions mapped from the IDL
descriptions of remote objects. A stub is a client-side function that allows a request invocation to be made
via a normal local function call. In C++, a Corba stub is a member function of a class. The local C++ object
that supports stubs functions is often called a proxy because it represents the remote target object to the
local application. Similarly, a skeleton is a server-side function that allows a request invocation received
by a server to be dispatched to the appropriate servant.

In Corba, object adapters serve as the glue between servants and the ORB. As described by the Adapter
design pattern, an object adapter is an object that adapts the interface of one object to a different interface
expected by a caller. In other words, an object adapter is an interposed object that uses delegation to allow
a caller to invoke requests on an object without knowing the object’s true interface.

Corba object adapters fulfill three key requirements

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

1.3 Interoperable object references (IOR) 4

1. They create object references, which allow clients to address objects.

2. They ensure that each target object is incarnated by a servant.

3. They take requests dispatched by a server-side ORB and further direct them to the servants incarnat-
ing each of the target objects.

The General Inter-ORB Protocol (GIOP) is an abstract protocol that specifies transfer syntax and a stan-
dard set of message formats to allow independently developed ORBs to communicate over any connection-
oriented transport. The Internet Inter-ORB Protocol (IIOP) specifies how GIOP is implemented over Trans-
mission Control Protocol/Internet Protocol (TCP/IP). In the remainder, we will focus on IIOP.

1.3 Interoperable object references (IOR)

ORB interoperability also requires standardized object reference formats. Object references are opaque to
applications, but they contain information that ORBs need in order to establish communications between
clients and target objects. The standard object reference format, called the Interoperable Object Reference
(IOR), is flexible enough to store information for almost any inter-ORB protocol imaginable. An IOR
identifies one or more suported protocols and, for each protocol, contains information specific to that
protocol.

Endpoint Info Object KeyObject Reference (IOR)

Object Key

Object Identifier M y O b j e c t

Repository ID ...

Figure 1.2: Object reference, key, and identifier

An IOR contains three major pieces of information

1. The repository ID is a string that identifies the most derived IDL type of the IOR at the time the IOR
was created, for example ”IDL:HxCorba/ImageRep:1.0”. The repository ID allows you to locate a
detailed description of the interface of the object in the Interface Repository.

2. The endpoint info field contains all information required by the ORB to establish a physical connec-
tion to the server implementing the object. The endpoint information specifies which protocol to use
and contains physical addressing information appropriate for a particular transport. For example,
for the IIOP it contains a host name and a TCP/IP port number. The addressing information may

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

1.4 Portable object adapter (POA) 5

directly contain the address and port number of the server (direct binding) but it is more likely to
contain the address of an implementation repository that can be consulted to locate the correct server
(indirect binding). This extra level of indirection permits server processes to migrate from machine
to machine without breaking existing references held by clients. Corba also allows information for
several different protocols and transports to be embedded in the reference.

3. The object key identifies the target object at the given host name and port combination. Exactly
how this information is organized and used depends on the ORB. However, all ORBs allow the
server, more specifically the POA, to embed an application-specific object identifier inside the object
key when the server creates the reference. Object identifiers are specified using the ObjectId
type, which is defined in the PortableServer module as a sequence of octet. This allows for
virtually any type of data to be used to identify an object, for example, a string or a database key or
a simple number.

1.4 Portable object adapter (POA)

The standard object adapter defined in the Corba specification is the Portable Object Adapter (POA). It
provides features necessary to allow programming language servants to be portable among ORBs supplied
by different vendors. A server application may contain multiple POA instances to support Corba objects
with different characteristics or to support multiple servant implementation styles.

ORB POA Manager POA Servants

dispatch

Incoming
request

Figure 1.3: Incoming request

Conceptually, requests for Corba objects residing in the server application are sent from a client and arrive
at the server ORB, which dispatches them to the POA in which the target object was created (dispatch is
based on the object key). The POA then further dispatches the request to the servant incarnating the target
object (using the object identifier).

A server cannot accept any incoming requests until it tells its ORB to start listening for them. In addition,
because a single server application may contain multiple POAs, the flow of requests into each POA is
controlled by a POAManager object associated with that POA. In addition to letting requests flow into a
POA, a POAManager can queue requests for later dispatch or can discard them.

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

1.4 Portable object adapter (POA) 6

POA
Manager

POA
Manager

ORB

Root
POA

POA

POA

POA
POA

POA

POA

Figure 1.4: POA manager

In a server application, a POA is responsible for creating object references, activating objects, and dispatch-
ing requests made on objects to their respective servants. As such, the POA deals with three key entities :
object references, object identifiers (a sequence of octets), and servants. How a POA handles these entities
is determined via policies that are specified when a POA is created. All server applications have at least
one POA, the Root POA, which has a standard set of policies.

LifespanPolicy (TRANSIENT, PERSISTENT) Controls the object life span. The default is TRAN-
SIENT. The Root POA uses the default.

IdAssignmentPolicy (USER ID, SYSTEM ID) Controls object identification, i.e. generation of object
identifiers. Typically, an application that uses persistent objects supplies its own identifiers (USER -
ID) because it uses them to keep track of where it stores the persistent state of the object. Applications
that use transient objects usually let the POA create identifiers for them (SYSTEM ID). The default
is SYSTEM ID. The Root POA uses the default.

IdUniquenessPolicy (UNIQUE ID, MULTIPLE ID) Allows a single servant to incarnate multiple Corba
objects, or restricts servants to incarnating only a single object. Basically, the policy controls the
entries in the Active Object Map of the POA. Each entry consists of an association between an
ObjectId and a pointer to a servant. With UNIQUE ID, each ObjectId must map to a different servant.
With MULTIPLE ID, multiple ObjectId’s can map to a single servant. The default is UNIQUE ID.
The Root POA uses the default.

ImplicitActivationPolicy (IMPLICIT ACTIVATION, NO IMPLICIT ACTIVATION) Specifies that the
POA should allow Corba objects to be created and activated implicitly or that only explicit Corba
object creation and servant registration is allowed. Implicit activation is usually performed through
a shortcut function supplied by a language mapping, such as the this function provided by C++
skeleton classes. The default is NO IMPLICIT ACTIVATION. The Root POA uses IMPLICIT -
ACTIVATION.

RequestProcessingPolicyValue (USE ACTIVE OBJECT MAP ONLY, USE DEFAULT SERVANT,
USE SERVANT MANAGER) Controls associations between objects and servants. An application
containing many thousands of objects may want to incarnate only those objects that actually receive
requests. It does this by registering a servant manager with the POA. Servant managers are local
objects that are up-called by a POA if it receives an invocation on an object that has no associated
servant. Depending upon the POA’s value for the IdUniquenessPolicy, the servant manager can

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

1.4 Portable object adapter (POA) 7

either provide the POA with a newly created servant or reuse an existing one. Either way, it returns
the servant as the result of the up-call, which the POA uses to complete the request invocation.
After the invocation completes, the POA either retains the association of the servant and the Corba
object in its Active Object Map or throws the association away, meaning that the next invocation
on the object will again require the services of the servant manager. Still anoher alternative is for
applications to supply a default servant to a POA. A default servant incarnates all Corba objects for
a POA. The default is USE ACTIVE OBJECT MAP ONLY. The Root POA uses the default.

ServantRetentionPolicy (RETAIN, NON RETAIN) Specifies whether associations between objects and
servants should be retained in the Active Object Map. The default is RETAIN. The Root POA uses
the default.

ThreadPolicy (ORB CTRL MODEL, SINGLE THREAD MODEL) Specifies the threading model
used for handling requests. The ORB-controlled model allows the underlying ORB implementa-
tion to choose an appropriate multithreading model, whereas the single-thread model guarantees that
all requests for all objects in that POA will be dispatched sequentially. The default is ORB CTRL -
MODEL. The Root POA uses the default.

A POA is created by invoking the create POA operation on another POA. Because all server applications
have a Root POA, its create POA operation serves as the starting point for creating other POAs. The Root
POA is obtained via ServantBase:: default POA. A POA created using another POA becomes a child POA
of the creating POA. Note, however, that this has no effect on the policies of the child POA. Policies are not
inherited. During shutdown, child POAs are destroyed before their parents, meaning that the Root POA is
the last POA to be destroyed.

The POA provides several options for creating objects and activating them by servant registration:

Object creation without creating any servants The POA interface provides two functions for this : cre-
ate reference and create reference with id. Both create a Corba object (without creating a servant)
using a RepositoryId that identifies the most derived IDL interface that the new object will support.

Servant registration The POA interface provides two functions for this : activate object and activate -
object with id. With these operations, the user explicitly supplies a servant to incarnate the object
being activated.

Servant managers There are two types of servant managers, i.e. interfaces to be implemented by the user
supplied servant manager object (both interfaces are derived from the ServantManager interface):

ServantActivator (ServantRetentionPolicy == RETAIN) The interface supplies the incarnate
and etherealize operations. When the POA receives a request for a target object that is not
in its Active Object Map, it calls the incarnate function of the servant manager to supply the
servant. The POA normally invokes the etherealize operation in response to an explicit object
deactivation via deactivate object (even if the servant for that object was not created by the
servant activator) or in response to the deactication or destruction of the POA itself.

ServantLocator (ServantRetentionPolicy == NON RETAIN) The interface supplies the prein-
voke and postinvoke operations. The POA does not store object-to-servant associations in its
Active Object Map, so it must invoke its ServantLocator for each incoming request. If first
invokes preinvoke to obtain a servant to dispatch the request to. After the request returns, the
POA invokes postinvoke.

Because servant managers are themselves Corba objects, they must be created and activated before
they can be registered with a POA. The easiest way to create an object reference for a servant manager
is to implicitly register its servant in the Root POA using this(). The registration as a servant
manager is done via the set servant manager function of the POA.

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

1.5 Corba services 8

Default servants The POA interface provides the set servant function for this. The default servant acts
as a catch-all servant for those objects that do not have their own servants. Each object incarnated by
the default servant must support the same interface. Because they incarnate multiple Corba objects,
a key aspect is that a default servant must not hold object-specific state, so that must be contained
within the ObjectId. Wihtin the context of a request dispatch, the server ORB allows to obtain
the ObjectId of the target object and a reference to the POA that is dispatching the request via the
PortableServer::Current interface. You obtain a reference to the POA Current by passing the string
”POACurrrent” to ORB::resolve initial references.

Memory related problems with servants are best avoided by deriving the servant class from the RefCount-
ServantBase class provided in the PortableServer namespace. The interface provides the add ref and
remove ref functions. Unlike the do-nothing versions of the add ref and remove ref functions supplied

by PortableServer::ServantBase, the versions provided by the RefCountServantBase class perform thread-
safe reference counting for derived servant classes.

Like servants, POAs can be created on demand. POA activation occurs when a request arrives for an
object in a descendant POA that has not yet been created or when the application searches a hierarchy of
POAs using the POA::find POA operation for a named POA that has not yet been created. The application
registers an AdapterActivator with each POA that must activate its descendant POAs. Adapter activators
are normal Corba objects, so they are incarnated via servants.

1.5 Corba services

Implementation repository

The process of opening a connection (between a client and a server) and associating an object reference
with its servant is known as binding. ORBs typically support two binding modes : direct binding and
indirect binding. Direct binding is supported by all ORBs. Indirect binding relies on an external location
broker known as an implementation repository and is an optional component of Corba.

Whenever a server application creates an object reference, the server-side run time embeds information to
support binding inside the object reference. Specifically, an IOR contains an IP address (or host name),
TCP port number, and an object key. If a server inserts its own address and port number into a reference,
the reference uses direct binding.

With indirect binding, the address and port number of the implementation repository are inserted into
the object reference. The implemetation repository maintains a registry of known servers and records
which server is currently running on which host and at which port number. The implementation repository
basically forwards the request to a server or starts a new server to handle the request.

Naming service

The Naming Service provides a mapping from names to object references: given a name, the service returns
an object reference stored under that name. A name-to-reference assiciation is called a name binding. The
same object reference can be stored several times under different names, but each name identifies exactly
one reference.

A naming context is an object that stores name bindings. In other words, each context object implements
a table that maps names to object references. A name in the table can denote either an object reference to
an application object or another context object in the Naming Service. This means that, like a file system,
contexts can be connected to form hierarchies : contexts correspond to directories that store names to either
directories (other contexts) or files (application objects).

A hierarchy of contexts and bindings is known as a naming graph. It is possible for the graph to have
contexts that have no names. Such contexts are known as orphaned contexts. A naming graph has one or
more distinguished contexts known as initial naming contexts. Initial naming contexts determine the points

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

1.5 Corba services 9

at which clients gain access to a naming graph.

ORB::resolve initial references allows you to partably obtain references that are crucial for bootstrapping
your client or server. The parameter to the call determines which particular reference is returned. The OMG
standardizes the set of well-known object identifiers. Currently, they are RootPOA, POACurrent, Interface-
Repository, NameService, TradingService, SecurityCurrent, and TransactionCurrent. list initial references
returns the list of object identifiers configured for your ORB.

If you call resolve initial references with an object identifier of NameService, the operation returns a ref-
erence to an object of type NamingContext. The returned context is the configured initial context of the
Naming Service for the local ORB.

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 2

Client and server

2.1 Client and server

• Corba configuration (p. 10)
• Horus server (p. 11)
• C++ client (p. 13)
• RGB image display data transfer (p. 14)
• Data object management (p. 18)

2.2 Corba configuration

Configuration of connections between Corba components (servers, clients, and Corba services) relies on
a number of configuration files and environment variables. Assuming you installed Horus correctly, these
are already setup.

The main configuration file is ${HXSRC}/HxCorba/cfg/orbacus.cfg. It looks something like this:

Copyright (c) 2000, University of Amsterdam, The Netherlands.
All rights reserved.
#
Author(s):
Marc Navarro (mnavarro@wins.uva.nl)

org.omg.CORBA.ORBClass = com.ooc.CORBA.ORB
org.omg.CORBA.ORBSingletonClass = com.ooc.CORBA.ORBSingleton

Naming Service
ooc.naming.port=8001
ooc.naming.database=NS.dat
ooc.naming.endpoint=iiop --port 8001

Interface Repository (2.3)
ooc.ifr.port=8002
From 4.1.0 on :
ooc.ifr.endpoint=iiop --port 8002

Initial references
ooc.orb.service.NameService=corbaloc::localhost:8001/NameService
ooc.orb.service.InterfaceRepository=corbaloc::localhost:8002/DefaultRepository

2.3 Horus server 11

ooc.orb.service.Constructor=corbaloc::localhost:8010/Constructor
ooc.orb.service.GlobalOps=corbaloc::localhost:8010/GlobalOps
ooc.orb.service.Registry=corbaloc::localhost:8010/Registry
ooc.orb.service.Test=corbaloc::localhost:8010/Test
ooc.orb.service.Configure=corbaloc::localhost:8010/Configure

ooc.orb.service.WebImageFactory=corbaloc::localhost:8011/WebImageFactory
ooc.orb.service.TVCapture=corbaloc::localhost:8020/TVCapture
ooc.orb.service.VideoPlayerFactory=corbaloc::localhost:8020/VideoPlayerFactory

ooc.orb.service.Database=corbaloc::carol.wins.uva.nl:8888/Oracle

The file specifies the default Horus setup to all Corba components. The Orbacus C++ ORB’s access the
file via the ORBACUS CONFIG environment variable. Since Java applications do not have access to
environment variables we use the ${HXSRC}/HxBin/hxproperties scripts to turn the content of orbacus.cfg
into Java properties (Java applets do not have access to the script so they so something like a services.txt).

Of course, you can override the default values of orbacus.cfg via command line arguments, see the exam-
ples in this document and the Orbacus manual.

Interface Repository

The Interface Repository (started with irserv) runs at port 8002 as specified in orbacus.cfg. Typically,
the Interface Repository is started via the ${HXSRC}/HxBin/ss(.bat) script with ss ir. On Windows,
the Horus toolbar contains an icon to call the ss script.

Naming Service

The Naming Service (started with nameserv) runs at port 8001 as specified in orbacus.cfg. The ss script
provides two ways to start the Naming Service : with (ss nss) and without (ss ns) creating a new
database for its bindings.

Orbacus provides a command line tool (nsadmin) to list the content of the Naming Service and to add
new bindings. For example, the following will list the Horus servers (see Horus server (p. 11)) registered
in the Naming Service running on the local machine at port 8001 under HxCorba/Servers:

nsadmin -l HxCorba/Servers

To list the Horus servers registered in the Naming Service running on machine Mach2 at port 8001:

nsadmin -l HxCorba/Servers -ORBservice NameService corbaloc::Mach2:8001/NameService

To register the Horus server running on machine Mach2 at port 8010 in the Naming Service running on the
local machine under the name Mach2Server:

nsadmin -b HxCorba/Servers/Mach2Server corbaloc::Mach2:8010/Constructor

Note that the context HxCorba/Servers should already exist. You can create it using:

nsadmin -c HxCorba
nsadmin -c HxCorba/Servers

2.3 Horus server

In this context, a Horus server basically refers to a Corba server that provides a HxCorba::Constructor
object. The server is addressed via the C language API defined in HxServerCAPI.h.

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

2.3 Horus server 12

HxServerBase

HxServer

_orb

_rootPOA
_initialPOA
_dataPOA

_bootMgr

_poaCurrent

_nsBindings

CORBA::ORB

HxServer C API
<<calls>>

PortableServer::POA

OB::BootManager

PortableServer::Current

HxNSBinding

Figure 2.1: Corba Horus server

The heart of the server is HxServer (p. ??). Initialization is done in HxServer::init (p. ??). The most
important steps are:

• Initialize HxDataObjectManager (p. ??) by calling HxDataObjectManager::init (p. ??)
• Initialize the ORB
• Create a POA for the initial objects and create the objects themselves by activating the corresponding

servants (in HxServer::addInitialObject (p. ??)). By giving the initial objects also to the Orbacus
specific BootManager they are more easily accessible to clients (via corbaloc). The current list of
initial objects is:

– ”Constructor” - HxConstructorServant (p. ??)
– ”GlobalOps” - HxGlobalOpsServant (p. ??)
– ”Registry” - HxRegistryServant (p. ??)
– ”Test” - HxTestServant (p. ??)
– ”Configure” - HxConfigureServant (p. ??)

• Set up HxEnvCorba (p. ??)

The server also maintains a list of HxNSBinding (p. ??)’s that record bindings of Horus servers in the
Corba NamingService.

Stand-alone server application

A stand-alone Horus server is started by the HxServerApp program. The main function is defined in Hx-
Corba/ServerApp/main.c.

hxserverapp HxServer C API
<<calls>>

Figure 2.2: Stand-alone Horus server

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

2.4 C++ client 13

Command line arguments:

–help show command line options

–interactive run the server (ORB) as a background process and provide a command line to execute some
commands (see showHelp (p. ??)) to control the server application.

-OAport port start the server using the given port (default is a random port)

-bind name address:port bind the server (ORB) under the given name in the NameService at the given
address:port combination

For example, to start a Horus server on your local machine at port 8010 use:

hxserverapp -OAport 8010 --interactive

To start a Horus server on your local machine at port 8010 and register it in the Naming Service on machine
Mach2 under the name TheServer:

hxserverapp -OAport 8010 --interactive -bind TheServer Mach2:8001

If you start the server with –interactive you can also do the binding at the command prompt of the already
running server:

bind TheServer Mach2:8001

2.4 C++ client

An example is given in HxSamples/ConsDemo/clientDemoImageOps.c.

HxCorbaMediator

HxDefaultCorbaMediator

_orb
_ctor CORBA::ORB

HxServer C API

<<calls>>

HxCorba::Constructor

example
client

application

HxCorba::GlobalOps

HxCorba::Imagerep

HxConstructorServant

HxGlobalOpsServant

HxImagerepTiedSvt

<<Corba calls>>

<<Corba calls>>

<<Corba calls>>

Figure 2.3: C++ client application structure

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

2.5 RGB image display data transfer 14

Basically, a client takes the following steps:

• Instantiate a HxCorbaMediator (p. ??) (usually HxDefaultCorbaMediator (p. ??)) to facilitate the
connection to Corba.

• Obtain an initial object (a stub) from the server such as HxCorba::Constructor and Hx-
Corba::GlobalOps.

• Apply functions to Corba objects obtained from calls to the initial objects and previous calls to other
Corba objects.

In a normal client-server configuration, any call to a member function of a stub results (in the end) in a call
to a servant member function. The <<Corba call>> in the figure is then done via IIOP. However, if the
client use the ”-createServer” option (see below), the server runs in the same process as the client and the
<<Corba call>> is a normal virtual function call.

To indicate the Horus server we want to be a client of there are some command line arguments (handled by
HxDefaultCorbaMediator (p. ??) in C++):

-useServer name connect to the server registered in the NameService under ”HxCorba/Servers”

-useServerRef ior connect to the server designated by the given ior, e.g. a corbaloc

-createServer start a new server within the client process

For example, to have the client call the Horus server that is running on the machine Mach2 at port 8010
use:

clientDemoImageOps -useServerRef corbaloc::Mach2:8010/Constructor

To use the Horus server that is registered in the Naming Service under the name TheServer:

clientDemoImageOps -useServer TheServer

The Corba version of the shot detection program (clientShotDetection) is an example of a client
that communicates with two Corba servers : a Horus server to do the processing and an OracleServer to
store the results in the Oracle database. To use the Horus server running on the localhost at port 8888 as
well as the OracleServer running on carol at port 9999 use:

clientShotDetection -useServerRef corbaloc::localhost:8888/Constructor \
-ORBservice Database corbaloc::carol:9999/Oracle

2.5 RGB image display data transfer

Transferring image data from server to client for the purpose of image display is a frequent operation that
requires quite a lot of resources. For reasons of efficiency and easy of use, we introduce several ways to
transfer image data in RGB format for a Corba object from server to client. The efficiency and feasibility
of an approach depend upon the client-server connection.

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

2.5 RGB image display data transfer 15

RgbSource

ImageDataImageRepRgbSource RefCountBase

RgbBuffer

RgbBufferFactory ImageRepImageFactory

Figure 2.4: IDL definitions related to RGB data transfer

1. Using the Corba (image data) object itself

(a) Call the getRgb2d member function of the Corba object to obtain an RgbSeq. An RgbSeq is
an array of integers with pixel values in RGB format. Currently, the ImageData and ImageSeq
IDL definitions support this (see ad 1.1 - getRgb2d of image object (p. 16)).

(b) Call the fillRgb2d member function of the Corba object to have it fill an RgbBuffer. An Rgb-
Buffer is an object that is capable of storing image data in RGB format. In case the RgbBuffer
servant was constructed around your own destination buffer the transfer is now completed.
Otherwise, you can ask the RgbBuffer to produce an RgbSeq via getRgb. Currently, the Image-
Data and ImageSeq IDL definitions support filling of an RgbBuffer (see ad 1.2 - fillRgb2d of
image object (p. 16)).

2. Using an RgbSource obtained from the Corba (image data) object. An RgbSource is used to abstract
from the Corba (image data) object, the parameters used in preparing the RGB data, and the actual
transfer mechanism used.

(a) Call the getRgb member function of the RgbSource object to obtain an RgbSeq. Currently, the
ImageRepRgbSource IDL definition support this (see ad 2.1 - getRgb of RgbSource (p. 17)).
NOTE that ImageSeq uses an ImageSeqDisplayer that has a function similar to RgbSource but
it still has to be rewritten.

(b) Call the fillRgb member function of the RgbSource object to have it fill an RgbBuffer. Cur-
rently, the ImageRepRgbSource IDL definition support this (see ad 2.2 - fillRgb of RgbSource
(p. 17)). NOTE that ImageSeq uses an ImageSeqDisplayer that has a function similar to Rgb-
Source but it still has to be rewritten.

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

2.5 RGB image display data transfer 16

HxImageRep

HxRgbBuffer

_rgbBuffer

POA_HxCorba::
ImageRepRgbSource

<<calls>>

CORBA::
OBJECT

POA_HxCorba::
RgbBuffer

HxImageRepRgbSource
HxImageRepTiedSvt

HxRgbBufferServant
HxCorba::
RgbBuffer <<calls>>

Figure 2.5: Server side classes related to RGB data transfer

Classes in the diagram: HxImageRepTiedSvt (p. ??), HxImageRepRgbSource (p. ??), HxRgbBuffer
(p. ??), HxRgbBufferServant (p. ??). A similar structure holds for HxImageSeqTiedSvt (p. ??) and Hx-
ImageSeqDisplayer (p. ??).

2.5.1 ad 1.1 - getRgb2d of image object

IDL interface excerpt:

interface ImageData
{

RgbSeq getRgb2d(in string displayMode);
}

interface ImageSeq
{

RgbSeq getRgb2d(in long frameNr, in string displayMode);
}

The actual functions called are HxImageRepTiedSvt::getRgb2d (p. ??) and HxImageSeqTiedSvt::get-
Rgb2d (p. ??). They create an HxRgbBuffer (p. ??), ask the corresponding image object to fill the buffer,
and ask the HxRgbBuffer (p. ??) to produce an RgbSeq.

2.5.2 ad 1.2 - fillRgb2d of image object

IDL interface excerpt:

interface ImageData

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

2.5 RGB image display data transfer 17

{
void fillRgb2d(in RgbBuffer buf, in string displayMode);

}

interface ImageSeq
{

void fillRgb2d(in long frameNr, in RgbBuffer buf, in string displayMode);
}

The actual functions called are HxImageRepTiedSvt::fillRgb2d (p. ??) and HxImageSeqTiedSvt::fill-
Rgb2d (p. ??). They create an HxRgbBuffer (p. ??) and ask the corresponding image object to fill the
buffer.

IDL interface excerpt:

interface RgbBuffer
{

RgbSeq getRgb();
}

The actual function called is HxRgbBufferServant::getRgb (p. ??). It creates an RgbSeq from data in its
internal buffer.

2.5.3 ad 2.1 - getRgb of RgbSource

IDL interface excerpt:

interface RgbSource
{

RgbSeq getRgb();
}

The actual functions called are HxImageRepRgbSource::getRgb (p. ??) and HxImageSeq-
Displayer::getRgb2d (p. ??). They ask the image data object to fill their internal buffer and create
an RgbSeq from that buffer. The RgbSeq can be sent in batches or at once.

2.5.4 ad 2.2 - fillRgb of RgbSource

IDL interface excerpt:

interface RgbSource
{

void fillRgb(in RgbBuffer buffer);
}

The actual functions called are HxImageRepRgbSource::fillRgb (p. ??) and HxImageSeqDisplayer::fill-
Rgb2d (p. ??). They create an HxRgbBuffer (p. ??) and ask the corresponding image object to fill the
buffer. The buffer can be filled in batches or at once.

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

2.6 Data object management 18

2.6 Data object management

HxDataObjectManager

_map

_default

HxDefaultDataObjectManager

_dataPOA

_list

HxImageRepManager

PortableServer::POA

PortableInterceptor::
ServerRequestInterceptor

HxDataObjectInterceptor

<<calls>>

HxDefaultObjectInfo

HxImageRepInfo

PortableInterceptor::
ORBInitializer

HxDataObjectInitializer

Figure 2.6: Corba data object management

Classes : HxDataObjectManager (p. ??), HxDefaultDataObjectManager (p. ??), HxImageRep-
Manager (p. ??), HxDataObjectInterceptor (p. ??), HxDefaultDataObjectManager::HxDefault-
ObjectInfo (p. ??), HxImageRepManager::HxImageRepInfo (p. ??)

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 3

Stubs and servants in C++

3.1 Stubs and servants in C++

As an example, we show the stubs and skeletons for the ImageRep IDL definition. Given the IDL interface
definitions of RefCountBase, ImageData and ImageRep (where ImageRep inherits from both RefCount-
Base and ImageData) we use the idl compiler to generate the following C++ binding (note that the same
structure holds for any set of IDL definitions):

Figure 3.1: IDL binding in C++

The classes CORBA::Object and PortableServer::ServantBase are part of the Corba definition and are im-
plemented by the ORB. The other classes are generated by the IDL compiler. The generated files are
located in $HXSRC/HxCorba/idl/stubs.

• Stubs HxCorba::ImageData and HxCorba::ImageRep are defined in HxCorbaImageRep.h
• Skeletons POA HxCorba::ImageData and POA HxCorba::ImageRep are defined in HxCorba-

ImageRep skel.h

3.1 Stubs and servants in C++ 20

• Tie POA HxCorba::ImageRep tie is defined in HxCorbaImageRep skel tie.h

Basically, we employ two ways to implement servants : using ties and using inheritance. The tie approach
is used when there is an existing class that matches an IDL definition, e.g. the C++ class HxImage-
Rep matches the IDL HxCorba::ImageRep definition. The inheritance approach is used when there is
no existing class to implement the IDL definition nor do we want to be able to address the class to be
implemented later on without using Corba.

Servants using ties

In the tie approach, the servant object is a combination of a tie (generated by the IDL compiler) and an
object that actually implements the functionality. All that the tie does is forward all member function calls
to the tied object. In case the argument types and result type of the member functions of the skeleton match
the member functions of the ”real” object there is nothing more to do.

However, in the case of e.g. ImageRep, the types do not always match exactly. Consider the following
functions from the IDL interface:

long dimensionSize(in long d);
ImageRep unaryPixOp(in string upoName, in TagList tags);

The argument and return type of the tie function POA HxCorba::ImageRep tie::dimensionSize match
the HxImageRep::dimensionSize function of the real object in that the compiler can find a suited conver-
sion. However, both the argument and the return type of POA HxCorba::ImageRep tie::unaryPixOp
do not match HxImageRep::unaryPixOp. So, we have implemented a specialization of HxImageRep
called HxImageRepTiedSvt (p. ??) with a member function HxImageRepTiedSvt::unaryPixOp (p. ??)
that converts the argument, calls HxImageRep::unaryPixOp, and converts the return value.

Other classes in $HXSRC/HxCorba/Main/ that employ the tie mechanism are:

HxBlob2dTiedSvt (p. ??), HxBSplineCurveTiedSvt (p. ??), HxHistogramTiedSvt (p. ??), HxImage-
RepTiedSvt (p. ??), HxImageSeqTiedSvt (p. ??), HxMatrixTiedSvt (p. ??), HxNJetTiedSvt (p. ??),
HxPolyline2dTiedSvt (p. ??), HxSampledBSplineCurveTiedSvt (p. ??), HxSFTiedSvt (p. ??), HxTag-
ListTiedSvt (p. ??), VxSegmentationTiedSvt (p. ??), VxSegmentTiedSvt (p. ??), and VxStructureTied-
Svt (p. ??).

A list of these is maintained in HxTiedServants.h to ... (check this)

Servants using inheritance

In the inheritance apporach, we make the object that implements the functionality a specialization of the
skeleton. That is, in the ImageRep example it would be derived from POA HxCorba::ImageRep.

Classes in $HXSRC/HxCorba/Main/ that employ the inheritance mechanism are:

HxConfigureServant (p. ??), HxConstructorServant (p. ??), HxRegistryServant (p. ??), HxRgb-
BufferServant (p. ??), and HxTestServant (p. ??).

Taglists

Taglists require special care, because (up till now) HxCorba::TagList is the only Corba object that the
user can modify. And, only TagList arguments can be nil.

One difference is the constructor. HxTagList has an empty constructor. The way a TagList is constructed
(Corba TagList, not HxTagList) is that the user creates an empty TagList and calls its operations to add
tags. The other Corba objects are created from a C++ object obtained from a C++ operation.

Now we can not instantiate a TagList from an HxTagList. To do that we would have to define a constructor
for HxTagListTiedSvt (p. ??) with an HxTagList as argument, with the problem that we would instantiate
a servant for a copy of that HxTagList, not that HxTagList itself.

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

3.1 Stubs and servants in C++ 21

Another difference is the way we obtain the tied object from the servant. This is done with the template
function HxGetTiedObject (p. ??). This function has the tied servant as template and requires that the
template has the next typedefs:

• HxT: the Horus type (for example HxImageRep)
• CorbaT: the Corba type (for example HxCorba::ImageRep)
• TieT: the TIE class type (for example POA HxCorba::ImageRep tie<HxImageRepTiedSvt>)

(we use ImageRep as example, but actually ImageRepTiedSvt doesn’t have these typedef’s because the
conversion functions HxGetTiedObject and HxRegisterTiedServant can not be applied to ImageRep be-
cause the ImageRep servants are registered in a different POA :-)

The call to HxGetTiedObject is a little different for TagList because an argument of type TagList can be nil
and HxGetTiedObject must return (in case of nil) an empty HxTagList, and this empty HxTagList has to
be provided as an argument to HxGetTiedObject.

Why doesn’t HxGetTiedObject create itself the empty HxTagList? Because the result to HxGetTiedObject
is assigned to a reference of HxTagList, not copied to another HxTagList. And the empty HxTagList will
be disposed when it goes out of scope: it doesn’t survive the call of HxGetTiedObject.

Why doesn’t HxGetTiedObject create the empty HxTagList with ”new”? Because the caller of HxGetTied-
Object can not do a ”delete”: this delete will mess up things in the case that HxGetTiedObject returns a
tied HxTagList, not an empty one.

And why the result of HxGetTiedObject is assigned to a reference of HxTagList, not just to a HxTagList
(using the assignment operator)? The call to HxGetTiedObject for all the other types of tied servants are
not assigned to a reference, but HxTagList is different: An HxTagList can be modified via a Corba call and
we want to modify the real HxTagList, not a copy.

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 4

Stubs and servants in Java

4.1 Stubs and servants in Java

As an example, we show the stubs and servants for the ImageRep IDL definition. Given the IDL interface
definitions of RefCountBase, ImageData and ImageRep (where ImageRep inherits from both RefCount-
Base and ImageData) we use the idl compiler to generate the following Java binding (RefCountBase related
stuff has been omitted for clarity):

Figure 4.1: IDL Binding in Java

The classes org.omg.CORBA.Object and org.omg.PortableServer.Servant are part of the Corba definition
and are implemented by the ORB. The other classes are generated by the IDL compiler. The generated files
are located in $HXSRC/HxCorba/idl/HxCorba.

4.1 Stubs and servants in Java 23

• The common interfaces HxCorba.ImageDataOperations and HxCorba.ImageRepOperations are de-
fined in ImageDataOperations.java and ImageRepOperations.java

• Stubs HxCorba.ImageData and HxCorba.ImageRep are defined in ImageData.java and Image-
Rep.java

• Skeletons HxCorba.ImageDataPOA and HxCorba.ImageRepPOA are defined in ImageData-
POA.java and ImageRepPOA.java

• Ties HxCorba.ImageDataPOATie and HxCorba.ImageRepPOATie are defined in ImageData-
POATie.java and ImageRepPOATie.java

In the tie approach the tied object is derived from the ”Operations” class and a servant is created by putting
the tied object in the ”POATie” class. For example, an ImageData servant is created by instantiating an
HxCorba.ImageDataPOATie with a JavaImageData, a class derived from HxCorba.ImageDataOperations.

In the inheritance approach a servant is derived from the ”POA” class. For example, a RgbBufferServant
is derived from HxCorba.RgbBufferPOA.

Note that implementation of servants for IDL interfaces that use multiple inheritance is not possible us-
ing the inheritance approach since Java does not support multiple inheritance. Such servants have to be
implemented using the tie approach.

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 5

Servant generator

5.1 Servant Generator

The ServantGenerator tool generates the source code of the servant for the HxCorba::GlobalOps CORBA
Object. It should generate member functions that look like:

(1) #include "HxAbs.h"

(2) HxCorba::ImageRep_ptr
(3) HxGlobalOpsGenSvt::HxAbs(HxCorba::ImageRep_ptr im)

{
(4) HxImageRep _im_arg = HxGetTiedObject<HxImageRepTiedSvt>(_server, im);
(5) HxImageRep _result = ::HxAbs(_im_arg);
(6) return HxRegisterTiedServant<HxImageRepTiedSvt>(_server, _result);

}

It also generates the declaration of this function in the class declaration, that is almost the same as lines 2
and 3.

The ServantGenerator (SG for short) obtains from the InterfaceRepository (IR for short) a list of the oper-
ations it has to generate. It also obtains the description of the operation (return type, params, etc...).

SG has to be able to generate code like the shown above from the information it gets from the IR. Let’s
describe a little the code shown and how SG has to generate it:

(1) #include directive: For each operation of the GlobalOps interface, SG generates a member for the
servant. This member funcion calls a global HORUS function that performs the operation. The IDL
operation and the HORUS global function should have the same name.

For each member function, the first thing the SG generates is an include directive of a file with the
same name as the member function. This file should contain the declaration of a HORUS global
function, with the same name, that implements the operation.

Then, the name of the operation obtained from the IR is enough to generate that line.

(2) Return type: Next, SG has to generate the result type of the operation. SG knows (from the IR) the
result type of the operation, but the IDL one. IDL types and C++ types are not equal, but there is a
mapping between them. For each type we want SG to handle, we have to tell to SG the C++ type
that has to be used as result type.

(3) Type of arguments: Now its time to generate the rest of the function header. The class name and
function name is easy to generate from the information obtained from IR. But the type of the function

5.2 GenType Objects 25

arguments is not easy to generate. As for the result type, we have to tell to SG the C++ type that has
to be used as argument type. In the example (ImageRep) the type of the argument is the same type
as the result type, but this is not true for all types.

(4) Conversion lines: The body of the function has three parts: first, all arguments are converted from
CORBA values to their HORUS related values. Next the global HORUS function is called and
finally the HORUS result is converted to a CORBA result and it’s returned.

To generate the conversion lines, SG has to know, for each argument, the related HORUS type and
the procedure to use for the conversion. These are other information we will have to tell to SG for
each type.

Not all types require this conversion. Some types (basic types) can be used both for CORBA and
HORUS.

(5) Calling HORUS function: To generate the line that calls the HORUS global function, SG has to
know the type to use to retrieve the function result. This is related to the type that the IDL operation
returns. We will have to tell SG which HORUS type to use to get the result.

(6) Return line: The return line is like the conversion line but the other way around: a HORUS value if
converted to a CORBA value. We will also have to tell SG how to make that conversion.

As we can see, for each type (IDL type) we want SG to support we have to tell him:

• The CORBA/C++ type used as return type.
• The CORBA/C++ type used for arguments.
• Its related HORUS type and the procedure to perform the conversion.
• The HORUS type used to retrieve the result from the global HORUS function.
• The way to convert that result to a CORBA value.

Example: how to support HxCorba.ImageRep interface:

• The CORBA/C++ type used as return type is HxCorba::ImageRep ptr.
• The CORBA/C++ type used for arguments is also HxCorba::ImageRep ptr.
• HxImageRep is its related HORUS type and the conversion is done calling: HxGetTied-
Object<HxImageRepTiedSvt (p. ??)>(server, im).

• Global HORUS function returning images will return a HxImageRep.
• To convert that result to a HxCorba::ImageRep ptr SG has to call: HxRegisterTied-
Servant<HxImageRepTiedSvt (p. ??)>(server, res).

This information is given to the SG as a GenType (p. 25) object.

To extend SG to a new type, implement a GenType for that type and update the getType function in
ServantGenerator.c to include this new GenType.

5.2 GenType Objects

class GenType
{
public:

virtual const char* paramDecl() = 0;
virtual const char* resultDecl() = 0;

virtual const char* requiredLine() = 0;

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

5.2 GenType Objects 26

virtual const char* conversionLine(const char* argname) = 0;
virtual const char* convertedParam(const char* argname) = 0;

virtual const char* callAssignment() = 0;
virtual const char* returnLine() = 0;

};

For each type we want SG to support, we use a GenType object to specify all the information it needs to
know about this type:

const char∗ paramDecl(): paramDecl returns the associated CORBA/C++ type used for func-
tion parameters. For instace, paramDecl() of the GenType for HxCorba.ImageRep should
return HxCorba::ImageRep ptr.

const char∗ resultDecl(): resultDecl returns the associated CORBA/C++ type used as re-
sult type. For instace, resultDecl() of the GenType for HxCorba.ImageRep should return
also HxCorba::ImageRep ptr.

const char∗ requiredLine(): requiredLine returns a line of code that has to be added to
the implementation file before any function that uses the type. The GenType for enumerators
(p. 27) uses this feature.

const char∗ conversionLine(const char∗ argname): conversionLine returns the
line of code used to convert from the CORBA/C++ type to the HORUS related type. argname
is the name of the variable that contains the CORBA/C++ value. For instace, conversion-
Line("im") of the GenType for HxCorba.ImageRep should return HxImageRep im arg
= HxGetTiedObject<HxImageRepTiedSvt (p. ??)>(server, im);.

const char∗ convertedParam(const char∗ argname): convertedParam returns the
variable name used to retrieve the result of the conversion. Usualy, convertedParam("N")
returns " N arg". If there is no need of conversion, it returns "N" itself.

const char∗ callAssignment(): callAssignment returns how to hold the value returned
by the call to the HORUS global function. For instance, callAssignment() of the GenType
for HxCorba.ImageRep should return HxImageRep result = .

const char∗ returnLine(): returnLine returns the return statement of the generated func-
tion. It contains the conversion, if needed, from the HORUS value to the related CORBA/C++ type.
For instance, returnLine() of the GenType for HxCorba.ImageRep should return return
HxRegisterTiedServant<HxImageRepTiedSvt (p. ??)>(server, result);.

5.2.1 SampleGenType

The class SampleGenType can be used to easily create GenTypes. The idea is to build GenType objects
just providing a pice of code like:

HxCorba::ImageRep_ptr
HxGlobalOpsGenSvt::HxAbs(HxCorba::ImageRep_ptr im)
{

HxImageRep _im_arg = HxGetTiedObject<HxImageRepTiedSvt>(_server, im);
HxImageRep _result = ::HxAbs(_im_arg);
return HxRegisterTiedServant<HxImageRepTiedSvt>(_server, _result);

}

SampleGenType extracts all the information it needs from this code.

SampleGenType takes the sample code in a TypeSample struct:

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

5.2 GenType Objects 27

struct TypeSample
{

char* func_name;
char* arg_name;
char* header;
char* conversionLine;
char* callAssignment;
char* returnLine;

};

Here is an example that shows how to create a GenType for HxCorba.ImageRep using a SampleGenType:

char* head = "HxCorba::ImageRep_ptr ImageSample(HxCorba::ImageRep_ptr img)";
char* conv = "HxImageRep _img_arg = HxGetTiedObject<HxImageRepTiedSvt>(_server, img);";
char* call = "HxImageRep _result = ::ImageSample(_img_arg);";
char* retn = "return HxRegisterTiedServant<HxImageRepTiedSvt>(_server, _result);";

char* func = "ImageSample";
char* arg = "img";

TypeSample sample = {func, arg, head, conv, call, retn};
GenType* typeImageRep = new SampleGenType(sample);

• func name and arg name help SampleGenType to parse the code provided.
• paramDecl and resultDecl is implemented using the header field.
• conversionLine and convertedParam is implemented using the conversionLine field.
• callAssignment is implemented using the callAssignment field.
• returnLine is implemented using the returnLine field.

5.2.2 GenType for enumerators

EnumGenType is a class that can be used to implement the GenType for enumerators, but the enumerators
should follow these rules:

1. For an enumeration named HxCorba::MyEnum, its HORUS type is HxMyEnum.

2. Both the HORUS enumeration and the CORBA enumeration contain the same elements.

In case that the enumeration doesn’t follow these rules, EnumGenType should not be used and a GenType
has to be defined for that enumeration.

If a GenType is not defined for a given enumeration type, SG instantiates a EnumGenType for it. No need
to tell SG explicitly how to support this enum type.

Generated on Mon Jan 27 15:20:57 2003 for CorbaReference by Doxygen written by Dimitri van Heesch c© 1997-2001

	Corba
	Corba
	Corba architecture
	Interoperable object references (IOR)
	Portable object adapter (POA)
	Corba services

	Client and server
	Client and server
	Corba configuration
	Horus server
	C++ client
	RGB image display data transfer
	Data object management

	Stubs and servants in C++
	Stubs and servants in C++

	Stubs and servants in Java
	Stubs and servants in Java

	Servant generator
	Servant Generator
	GenType Objects

